Clinical utility of brain MRS imaging of patients with adult-onset non-cirrhotic hyperammonemia

Andrew B Stergachis, Joel B Krier, Sai K Merugumala, Gerard T Berry, Alexander P Lin, Andrew B Stergachis, Joel B Krier, Sai K Merugumala, Gerard T Berry, Alexander P Lin

Abstract

Adult-onset non-cirrhotic hyperammonemia (NCH) is a rare, but often fatal condition that can result in both reversible and irreversible neurological defects. Here we present five cases of adult-onset non-cirrhotic hyperammonemia wherein brain magnetic resonance spectroscopy (MRS) scans for cerebral glutamine (Gln) and myo-inositol (mI) levels helped guide clinical management. Specifically, we demonstrate that when combined with traditional brain magnetic resonance imaging (MRI) scans, cerebral Gln and mI MRS can help disentangle the reversible from irreversible neurological defects associated with hyperammonemic crisis. Specifically, we demonstrate that whereas an elevated brain MRS Gln level is associated with reversible neurological defects, markedly low mI levels are associated with a risk for irreversible neurological defects such as central pontine myelinolysis. Overall, our findings indicate the utility of brain MRS in guiding clinical care and prognosis in patients with adult-onset non-cirrhotic hyperammonemia.

Keywords: BG, Basal ganglia; Cerebral glutamine; Cerebral myo-inositol; Gln, Glutamine; Magnetic resonance spectroscopy; NAA, N-acetylaspartate; NAAG, N-acetylaspartylglutamate; NCH, Non-cirrhotic hyperammonemia; Non-cirrhotic hyperammonemia; PCG, Posterior cingulate gyrus; PWM, Parietal white matter; Urea cycle disorder; mI, Myo-inositol.

Conflict of interest statement

All authors declare that they have no conflict of interest.

© 2021 Published by Elsevier Inc.

Figures

Fig. 1
Fig. 1
Representative spectra from patient 1 from the three regions of interest measured in each patient. Left: Voxel location shown on T1 MPRAGE images. Right: MR spectra with metabolite fit for myo-inositol (mI), N-acetylaspartate (NAA), and glutamine (Gln).
Fig. 2
Fig. 2
Time course of plasma ammonia and glutamine levels as well as brain glutamine levels in (a) patient 2 and (b) patient 4. Plasma ammonia levels are in red, plasma glutamine levels in purple and brain glutamine levels from the PCG blue. Reference ranges for all three metabolites are indicated by dashed lines and shaded boxes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 3
Fig. 3
Comparison of brain glutamine and myo-inositol levels between brain MRS scans in (a) patient 2, (b) patient 4, and (c) patient 1. Brain glutamine levels from the PCG are in blue, and brain myo-inositol levels from the PCG are in orange. Reference ranges for both metabolites are indicated by dashed lines and shaded boxes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 4
Fig. 4
Association between cerebral myo-inositol levels and irreversible neurological outcomes. (a) Scatterplot showing the relationship between brain MRS myo-inositol and glutamine levels. P-value and Pearson's correlation also displayed. (b) plot showing the initial brain MRS myo-inositol level within the PCG region, as well as any long-term neurological sequalae or MRI findings of demyelination.

References

    1. Barker P.B., Bizzi A., De Stefano N. Cambridge University Press; 2009. Clinical MR Spectroscopy: Techniques and Applications.
    1. Braissant O., Rackayová V., Pierzchala K. Longitudinal neurometabolic changes in the hippocampus of a rat model of chronic hepatic encephalopathy. J. Hepatol. 2019;71:505–515. doi: 10.1016/j.jhep.2019.05.022.
    1. Cardenas J.F., Bodensteiner J.B. Osmotic demyelination syndrome as a consequence of treating hyperammonemia in a patient with ornithine transcarbamylase deficiency. J. Child Neurol. 2009;24:884–886. doi: 10.1177/0883073808331349.
    1. Connelly A., Cross J.H., Gadian D.G. Magnetic resonance spectroscopy shows increased brain glutamine in ornithine carbamoyl transferase deficiency. Pediatr. Res. 1993;33:77–81. doi: 10.1203/00006450-199301000-00016.
    1. Córdoba J., Gottstein J., Blei A.T. Glutamine, myo -inositol, and organic brain osmolytes after portocaval anastomosis in the rat: implications for ammonia-induced brain edema. Hepatology. 1996;24:919–923. doi: 10.1002/hep.510240427.
    1. Coulter D.L., Allen R.J. Hyperammonemia with valproic acid therapy. J. Pediatr. 1981;99:317–319.
    1. Davies S.M., Szabo E., Wagner J.E. Idiopathic hyperammonemia: a frequently lethal complication of bone marrow transplantation. Bone Marrow Transplant. 1996;17:1119–1125.
    1. Ernst T., Kreis R., Ross B.D. Absolute quantitation of water and metabolites in the human brain. I. Compartments and water. J. Magn. Reson. Ser. B. 1993;102:1–8. doi: 10.1006/JMRB.1993.1055.
    1. Fenves A.Z., Shchelochkov O.A., Mehta A. Hyperammonemic syndrome after Roux-en-Y gastric bypass. Obesity. 2015;23:746–749. doi: 10.1002/oby.21037.
    1. Gropman A.L., Fricke S.T., Seltzer R.R. 1H MRS identifies symptomatic and asymptomatic subjects with partial ornithine transcarbamylase deficiency. Mol. Genet. Metab. 2008;95:21–30. doi: 10.1016/J.YMGME.2008.06.003.
    1. Kreis R., Farrow N., Ross B.D. Localized1H NMR spectroscopy in patients with chronic hepatic encephalopathy. Analysis of changes in cerebral glutamine, choline and inositols. NMR Biomed. 1991;4:109–116. doi: 10.1002/nbm.1940040214.
    1. Lichtenstein G.R., Yang Y.X., Nunes F.A. Fatal hyperammonemia after orthotopic lung transplantation. Ann. Intern. Med. 2000;132:283–287.
    1. Madathil R.J., Gilstrap L.G., Pelletier M.P., Mehra M.R. Isolated hyperammonemic encephalopathy in heart transplantation. J. Hear Lung Transplant. 2018;37:427–429. doi: 10.1016/j.healun.2017.12.001.
    1. O’Donnell-Luria A.H., Lin A.P., Merugumala S.K. Brain MRS glutamine as a biomarker to guide therapy of hyperammonemic coma. Mol. Genet. Metab. 2017;121:9–15. doi: 10.1016/j.ymgme.2017.03.003.
    1. Ogg R.J., Kingsley P.B., Taylor J.S. WET, a T1- and B1-insensitive water-suppression method for in vivo localized 1H NMR spectroscopy. J. Magn. Reson. B. 1994;104:1–10. doi: 10.1006/jmrb.1994.1048.
    1. Oz G., Alger J.R., Barker P.B., Bartha R., Bizzi A., Boesch C., Bolan P.J., Brindle K.M., Cudalbu C., Dinçer A., Dydak U., Emir U.E., Frahm J., González R.G., Gruber S., Gruetter R., Gupta R.K., Heerschap A., Henning A., Hetherington H.P., Howe F.A., Hüppi P.S., Hurd R.E., Kantarci K., Klomp D.W., Kreis R., Kruiskamp M.J., Leach M.O., Lin A.P., Luijten P.R., Marjańska M., Maudsley A.A., Meyerhoff D.J., Mountford C.E., Nelson S.J., Pamir M.N., Pan J.W., Peet A.C., Poptani H., Posse S., Pouwels P.J., Ratai E.M., Ross B.D., Scheenen T.W., Schuster C., Smith I.C., Soher B.J., Tkáč I., Vigneron D.B., Kauppinen R.A., MRS Consensus Group Clinical proton MR spectroscopy in central nervous system disorders. Radiology. 2014;270(3):658–679. doi: 10.1148/radiol.13130531.
    1. Provencher S.W. Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed. 2001;14:260–264. doi: 10.1002/nbm.698.
    1. Ross B.D., Jacobson S., Villamil F. Subclinical hepatic encephalopathy: proton MR spectroscopic abnormalities. Radiology. 1994;193:457–463. doi: 10.1148/radiology.193.2.7972763.
    1. Rowland B.C., Liao H., Adan F. Correcting for frequency drift in clinical brain MR spectroscopy. J. Neuroimaging. 2017;27:23–28. doi: 10.1111/jon.12388.
    1. Stergachis A.B., Mogensen K.M., Khoury C.C. A retrospective study of adult patients with noncirrhotic hyperammonemia. J. Inherit. Metab. Dis. 2020;43:1165–1172. doi: 10.1002/jimd.12292.
    1. Summar M.L., Dobbelaere D., Brusilow S., Lee B. Diagnosis, symptoms, frequency and mortality of 260 patients with urea cycle disorders from a 21-year, multicentre study of acute hyperammonaemic episodes. Acta Paediatr. 2008;97:1420–1425. doi: 10.1111/j.1651-2227.2008.00952.x.

Source: PubMed

3
Iratkozz fel