Human state anxiety classification framework using EEG signals in response to exposure therapy

Farah Muhammad, Saad Al-Ahmadi, Farah Muhammad, Saad Al-Ahmadi

Abstract

Human anxiety is a grave mental health concern that needs to be addressed in the appropriate manner in order to develop a healthy society. In this study, an objective human anxiety assessment framework is developed by using physiological signals of electroencephalography (EEG) and recorded in response to exposure therapy. The EEG signals of twenty-three subjects from an existing database called "A Database for Anxious States which is based on a Psychological Stimulation (DASPS)" are used for anxiety quantification into two and four levels. The EEG signals are pre-processed using appropriate noise filtering techniques to remove unwanted ocular and muscular artifacts. Channel selection is performed to select the significantly different electrodes using statistical analysis techniques for binary and four-level classification of human anxiety, respectively. Features are extracted from the data of selected EEG channels in the frequency domain. Frequency band selection is applied to select the appropriate combination of EEG frequency bands, which in this study are theta and beta bands. Feature selection is applied to the features of the selected EEG frequency bands. Finally, the selected subset of features from the appropriate frequency bands of the statistically significant EEG channels were classified using multiple machine learning algorithms. An accuracy of 94.90% and 92.74% is attained for two and four-level anxiety classification using a random forest classifier with 9 and 10 features, respectively. The proposed state anxiety classification framework outperforms the existing anxiety detection framework in terms of accuracy with a smaller number of features which reduces the computational complexity of the algorithm.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Block diagram of the proposed…
Fig 1. Block diagram of the proposed human anxiety classification scheme in response to exposure therapy.
Fig 2. Timing diagram of the data…
Fig 2. Timing diagram of the data acquisition protocol followed in DASPS database.
Fig 3. Raw EEG data obtained from…
Fig 3. Raw EEG data obtained from the 14 channels of the Emotiv EPOC headset.
Fig 4. Percentage of instances using SAM…
Fig 4. Percentage of instances using SAM score based labeling for (a) Two-level (b) Four-level and HAM-A based lableling for (c) Two-level (d) Four-level anxiety classification.
Fig 5. Box-and-whisker diagram of the power…
Fig 5. Box-and-whisker diagram of the power obtained from each channel of the Emotiv EPOC headset for binary anxiety classification.
Fig 6. Box-and-whisker diagram of the power…
Fig 6. Box-and-whisker diagram of the power obtained from each channel of the Emotiv EPOC headset for four level anxiety classification.
Fig 7. Classification accuracy of DT, k-NN,…
Fig 7. Classification accuracy of DT, k-NN, SVM, MLP and RF classifier using features from different frequency band combinations of EEG signal using SAM score based labeling for (a) Two-levels (b) Four-levels anxiety classification.
Fig 8. Classification accuracy of DT, k-NN,…
Fig 8. Classification accuracy of DT, k-NN, SVM, MLP and RF classifier using features from different frequency band combinations of EEG signal using HAM-A based labeling for (a) Two-levels (b) Four-levels anxiety classification.

References

    1. Yaribeygi H, Panahi Y, Sahraei H, Johnston TP, Sahebkar A. The impact of stress on body function: A review. EXCLI journal. 2017;16:1057. doi: 10.17179/excli2017-480
    1. von der Embse N, Jester D, Roy D, Post J. Test anxiety effects, predictors, and correlates: A 30-year meta-analytic review. Journal of affective disorders. 2018;227:483–493. doi: 10.1016/j.jad.2017.11.048
    1. Leichsenring F, Leweke F. Social anxiety disorder. New England Journal of Medicine. 2017;376(23):2255–2264. doi: 10.1056/NEJMcp1614701
    1. Bradt J, Teague A. Music interventions for dental anxiety. Oral diseases. 2018;24(3):300–306. doi: 10.1111/odi.12615
    1. Reynolds GO, Hanna KK, Neargarder S, Cronin-Golomb A. The relation of anxiety and cognition in Parkinson’s disease. Neuropsychology. 2017;31(6):596. doi: 10.1037/neu0000353
    1. McEwen BS. Neurobiological and systemic effects of chronic stress. Chronic stress. 2017;1:2470547017692328. doi: 10.1177/2470547017692328
    1. Willner P. The chronic mild stress (CMS) model of depression: History, evaluation and usage. Neurobiology of stress. 2017;6:78–93. doi: 10.1016/j.ynstr.2016.08.002
    1. Chalmers JA, Quintana DS, Abbott MJ, Kemp AH, et al.. Anxiety disorders are associated with reduced heart rate variability: a meta-analysis. Frontiers in psychiatry. 2014;5:80. doi: 10.3389/fpsyt.2014.00080
    1. Alvares GA, Quintana DS, Hickie IB, Guastella AJ. Autonomic nervous system dysfunction in psychiatric disorders and the impact of psychotropic medications: a systematic review and meta-analysis. Journal of Psychiatry & Neuroscience. 2016;. doi: 10.1503/jpn.140217
    1. Saviola F, Pappaianni E, Monti A, Grecucci A, Jovicich J, De Pisapia N. Trait and state anxiety are mapped differently in the human brain. Scientific Reports. 2020;10(1):1–11. doi: 10.1038/s41598-020-68008-z
    1. Arsalan A, Majid M. A study on multi-class anxiety detection using wearable EEG headband. Journal of Ambient Intelligence and Humanized Computing. 2021; p. 1–11.
    1. Baghdadi A, Aribi Y, Fourati R, Halouani N, Siarry P, Alimi AM. DASPS: A Database for Anxious States based on a Psychological Stimulation. arXiv preprint arXiv:190102942. 2019;.
    1. Hellhammer D, Stone A, Hellhammer J, Broderick J. Measuring stress. Encyclopedia of behavioral neuroscience. 2010;2:186–191. doi: 10.1016/B978-0-08-045396-5.00188-3
    1. Won E, Kim YK. Stress, the autonomic nervous system, and the immune-kynurenine pathway in the etiology of depression. Current neuropharmacology. 2016;14(7):665–673. doi: 10.2174/1570159X14666151208113006
    1. Edition F, et al.. Diagnostic and statistical manual of mental disorders. Am Psychiatric Assoc. 2013;21.
    1. Newman MG, Llera SJ, Erickson TM, Przeworski A, Castonguay LG. Worry and generalized anxiety disorder: a review and theoretical synthesis of evidence on nature, etiology, mechanisms, and treatment. Annual review of clinical psychology. 2013;9:275–297. doi: 10.1146/annurev-clinpsy-050212-185544
    1. Merikangas KR, He Jp, Burstein M, Swanson SA, Avenevoli S, Cui L, et al.. Lifetime prevalence of mental disorders in US adolescents: results from the National Comorbidity Survey Replication–Adolescent Supplement (NCS-A). Journal of the American Academy of Child & Adolescent Psychiatry. 2010;49(10):980–989. doi: 10.1016/j.jaac.2010.05.017
    1. Emdin CA, Odutayo A, Wong CX, Tran J, Hsiao AJ, Hunn BH. Meta-analysis of anxiety as a risk factor for cardiovascular disease. The American journal of cardiology. 2016;118(4):511–519. doi: 10.1016/j.amjcard.2016.05.041
    1. Kollia N, Panagiotakos D, Georgousopoulou E, Chrysohoou C, Yannakoulia M, Stefanadis C, et al.. Exploring the path between depression, anxiety and 10-year cardiovascular disease incidence, among apparently healthy Greek middle-aged adults: The ATTICA study. Maturitas. 2017;106:73–79. doi: 10.1016/j.maturitas.2017.09.005
    1. Skarl S. Anxiety and depression association of america. Journal of Consumer Health on the Internet. 2015;19(2):100–106.
    1. Evans-Lacko S, Aguilar-Gaxiola S, Al-Hamzawi A, Alonso J, Benjet C, Bruffaerts R, et al.. Socio-economic variations in the mental health treatment gap for people with anxiety, mood, and substance use disorders: results from the WHO World Mental Health (WMH) surveys. Psychological medicine. 2018;48(9):1560–1571. doi: 10.1017/S0033291717003336
    1. Association AP, Association AP, et al.. Diagnostic and statistical manual of mental disorders: DSM-5. United States. 2013;.
    1. Jafari A, Pouramir M, Shirzad A, Motallebnejad M, Bijani A, Moudi S, et al.. Evaluation of salivary alpha amylase as a biomarker for dental anxiety. Iranian Journal of Psychiatry and Behavioral Sciences. 2018;12(1). doi: 10.5812/ijpbs.9350
    1. Hua J, Le Scanff C, Larue J, José F, Martin JC, Devillers L, et al.. Global stress response during a social stress test: impact of alexithymia and its subfactors. Psychoneuroendocrinology. 2014;50:53–61. doi: 10.1016/j.psyneuen.2014.08.003
    1. Spielberger CD. State-Trait anxiety inventory. The Corsini encyclopedia of psychology. 2010; p. 1–1.
    1. Hamilton M. The assessment of anxiety states by rating. British journal of medical psychology. 1959;32(1):50–55. doi: 10.1111/j.2044-8341.1959.tb00467.x
    1. Lovibond SH, Lovibond PF. Manual for the depression anxiety stress scales. Psychology Foundation of Australia; 1996.
    1. Conte HR, Weiner MB, Plutchik R. Measuring death anxiety: Conceptual, psychometric, and factor-analytic aspects. Journal of personality and social psychology. 1982;43(4):775. doi: 10.1037/0022-3514.43.4.775
    1. Beck AT, Steer RA. Beck anxiety inventory: BAI. Psychological Corporation; 1993.
    1. Cai W, Tang Yl, Wu S, Li H. Scale of death anxiety (SDA): Development and validation. Frontiers in psychology. 2017;8:858. doi: 10.3389/fpsyg.2017.00858
    1. Giannakakis G, Grigoriadis D, Tsiknakis M. Detection of stress/anxiety state from EEG features during video watching. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE; 2015. p. 6034–6037.
    1. Elgendi M, Menon C. Assessing anxiety disorders using wearable devices: Challenges and future directions. Brain sciences. 2019;9(3):50. doi: 10.3390/brainsci9030050
    1. Perpetuini D, Chiarelli AM, Cardone D, Filippini C, Rinella S, Massimino S, et al.. Prediction of state anxiety by machine learning applied to photoplethysmography data. PeerJ. 2021;9:e10448. doi: 10.7717/peerj.10448
    1. Craske MG, Waters AM, Bergman RL, Naliboff B, Lipp OV, Negoro H, et al.. Is aversive learning a marker of risk for anxiety disorders in children? Behaviour research and therapy. 2008;46(8):954–967. doi: 10.1016/j.brat.2008.04.011
    1. Dimitriev DA, Saperova EV, Dimitriev AD. State anxiety and nonlinear dynamics of heart rate variability in students. PloS one. 2016;11(1):e0146131. doi: 10.1371/journal.pone.0146131
    1. Andrade DdM, Amaral JF, Trevizan PF, Toschi-Dias E, Silva LPd, Laterza MC, et al.. Anxiety increases the blood pressure response during exercise. Motriz: Revista de Educação Física. 2019;25.
    1. Jan MM, Schwartz M, Benstead TJ. EMG related anxiety and pain: a prospective study. Canadian journal of neurological sciences. 1999;26(4):294–297. doi: 10.1017/S031716710000041X
    1. Arsalan A, Majid M, Anwar SM. Electroencephalography based machine learning framework for anxiety classification. In: International Conference on Intelligent Technologies and Applications. Springer; 2019. p. 187–197.
    1. Baghdadi A, Aribi Y, Fourati R, Halouani N, Siarry P, Alimi A. Psychological stimulation for anxious states detection based on EEG-related features. Journal of Ambient Intelligence and Humanized Computing. 2021;12(8):8519–8533. doi: 10.1007/s12652-020-02586-8
    1. Klados MA, Pandria N, Athanasiou A, Bamidis PD. An automatic EEG based system for the recognition of math anxiety. In: 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS). IEEE; 2017. p. 409–412.
    1. Chaitanya MN, Jayakkumar S, Chong E, Yeow CH. A wearable, EEG-based massage headband for anxiety alleviation. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE; 2017. p. 3557–3560.
    1. Chen C, Yu X, Belkacem AN, Lu L, Li P, Zhang Z, et al.. EEG-Based Anxious States Classification Using Affective BCI-Based Closed Neurofeedback System. Journal of medical and biological engineering. 2021;41(2):155–164. doi: 10.1007/s40846-020-00596-7
    1. Wen W, Liu G, Mao ZH, Huang W, Zhang X, Hu H, et al.. Toward constructing a real-time social anxiety evaluation system: Exploring effective heart rate features. IEEE Transactions on Affective Computing. 2018;11(1):100–110. doi: 10.1109/TAFFC.2018.2792000
    1. Zheng Y, Wong TC, Leung BH, Poon CC. Unobtrusive and multimodal wearable sensing to quantify anxiety. IEEE Sensors Journal. 2016;16(10):3689–3696. doi: 10.1109/JSEN.2016.2539383
    1. Ihmig FR, Neurohr-Parakenings F, Schäfer SK, Lass-Hennemann J, Michael T. On-line anxiety level detection from biosignals: Machine learning based on a randomized controlled trial with spider-fearful individuals. Plos one. 2020;15(6):e0231517. doi: 10.1371/journal.pone.0231517
    1. Nath RK, Thapliyal H. Machine Learning Based Anxiety Detection in Older Adults using Wristband Sensors and Context Feature. arXiv preprint arXiv:210603019. 2021;.
    1. Giannakakis G, Pediaditis M, Manousos D, Kazantzaki E, Chiarugi F, Simos PG, et al.. Stress and anxiety detection using facial cues from videos. Biomedical Signal Processing and Control. 2017;31:89–101. doi: 10.1016/j.bspc.2016.06.020
    1. Lee S, Lee T, Yang T, Yoon C, Kim SP. Detection of drivers’ anxiety invoked by driving situations using multimodal biosignals. Processes. 2020;8(2):155. doi: 10.3390/pr8020155
    1. Šalkevicius J, Damaševičius R, Maskeliunas R, Laukienė I. Anxiety level recognition for virtual reality therapy system using physiological signals. Electronics. 2019;8(9):1039. doi: 10.3390/electronics8091039
    1. Rodríguez-Arce J, Lara-Flores L, Portillo-Rodríguez O, Martínez-Méndez R. Towards an anxiety and stress recognition system for academic environments based on physiological features. Computer methods and programs in biomedicine. 2020;190:105408. doi: 10.1016/j.cmpb.2020.105408
    1. Khan NS, Ghani MS, Anjum G. ADAM-sense: Anxiety-displaying activities recognition by motion sensors. Pervasive and Mobile Computing. 2021;78:101485. doi: 10.1016/j.pmcj.2021.101485
    1. Guez J, Saar-Ashkenazy R, Keha E, Tiferet-Dweck C. The effect of Trier Social Stress Test (TSST) on item and associative recognition of words and pictures in healthy participants. Frontiers in psychology. 2016;7:507. doi: 10.3389/fpsyg.2016.00507
    1. Dodo N, Hashimoto R. The effect of anxiety sensitivity on psychological and biological variables during the cold pressor test. Autonomic Neuroscience. 2017;205:72–76. doi: 10.1016/j.autneu.2017.05.006
    1. Gallego A, McHugh L, Penttonen M, Lappalainen R. Measuring Public Speaking Anxiety: Self-report, behavioral, and physiological. Behavior Modification. 2021; p. 0145445521994308.
    1. Arsalan A, Majid M. Human stress classification during public speaking using physiological signals. Computers in Biology and Medicine. 2021;133:104377. doi: 10.1016/j.compbiomed.2021.104377
    1. Al-Shargie F, Kiguchi M, Badruddin N, Dass SC, Hani AFM, Tang TB. Mental stress assessment using simultaneous measurement of EEG and fNIRS. Biomedical optics express. 2016;7(10):3882–3898. doi: 10.1364/BOE.7.003882
    1. Li Z, Wu X, Xu X, Wang H, Guo Z, Zhan Z, et al.. The recognition of multiple anxiety levels based on electroencephalograph. IEEE Transactions on Affective Computing. 2019;. doi: 10.1109/TAFFC.2017.2678472
    1. Eraldi-Gackiere D, Graziani P. Exposition et désensibilisation: en thérapie comportementale et cognitive. Dunod; 2007.
    1. Ekanayake H. P300 and Emotiv EPOC: Does Emotiv EPOC capture real EEG? Web publication . 2010;133.
    1. Katsigiannis S, Ramzan N. DREAMER: A database for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices. IEEE journal of biomedical and health informatics. 2017;22(1):98–107. doi: 10.1109/JBHI.2017.2688239
    1. Liu Y, Sourina O, Nguyen MK. Real-time EEG-based emotion recognition and its applications. In: Transactions on computational science XII. Springer; 2011. p. 256–277.
    1. Jatupaiboon N, Pan-Ngum S, Israsena P. Real-time EEG-based happiness detection system. The Scientific World Journal. 2013;2013. doi: 10.1155/2013/618649
    1. Jatupaiboon N, Pan-ngum S, Israsena P. Emotion classification using minimal EEG channels and frequency bands. In: The 2013 10th international joint conference on Computer Science and Software Engineering (JCSSE). IEEE; 2013. p. 21–24.
    1. Anh VH, Van MN, Ha BB, Quyet TH. A real-time model based support vector machine for emotion recognition through EEG. In: 2012 International conference on control, automation and information sciences (ICCAIS). IEEE; 2012. p. 191–196.
    1. Coan JA, Allen JJ. Frontal EEG asymmetry and the behavioral activation and inhibition systems. Psychophysiology. 2003;40(1):106–114. doi: 10.1111/1469-8986.00011
    1. Benitez DS, Toscano S, Silva A. On the use of the Emotiv EPOC neuroheadset as a low cost alternative for EEG signal acquisition. In: 2016 IEEE Colombian Conference on Communications and Computing (COLCOM). IEEE; 2016. p. 1–6.
    1. García-Acosta A, Riva-Rodríguez Jdl, Sánchez-Leal J, Reyes-Martínez RM. Neuroergonomic Stress Assessment with Two Different Methodologies, in a Manual Repetitive Task-Product Assembly. Computational Intelligence and Neuroscience. 2021;2021. doi: 10.1155/2021/5561153
    1. Blanco JA, Vanleer AC, Calibo TK, Firebaugh SL. Single-trial cognitive stress classification using portable wireless electroencephalography. Sensors. 2019;19(3):499. doi: 10.3390/s19030499
    1. Hou X, Liu Y, Sourina O, Tan YRE, Wang L, Mueller-Wittig W. EEG based stress monitoring. In: 2015 IEEE International Conference on Systems, Man, and Cybernetics. IEEE; 2015. p. 3110–3115.
    1. Tóth V. Measurement of stress intensity using EEG. Computer Science Engineering B Sc thesis, Budapest University of Technology and Economics, Faculty of Electrical Engineering and Informatics. 2015;.
    1. Badcock NA, Mousikou P, Mahajan Y, De Lissa P, Thie J, McArthur G. Validation of the Emotiv EPOC® EEG gaming system for measuring research quality auditory ERPs. PeerJ. 2013;1:e38. doi: 10.7717/peerj.38
    1. Badcock NA, Preece KA, de Wit B, Glenn K, Fieder N, Thie J, et al.. Validation of the Emotiv EPOC EEG system for research quality auditory event-related potentials in children. PeerJ. 2015;3:e907. doi: 10.7717/peerj.907
    1. Maskeliunas R, Damasevicius R, Martisius I, Vasiljevas M. Consumer-grade EEG devices: are they usable for control tasks? PeerJ. 2016;4:e1746. doi: 10.7717/peerj.1746
    1. Chabin T, Gabriel D, Haffen E, Moulin T, Pazart L. Are the new mobile wireless EEG headsets reliable for the evaluation of musical pleasure? Plos One. 2020;15(12):e0244820. doi: 10.1371/journal.pone.0244820
    1. Russell JA, Mehrabian A. Evidence for a three-factor theory of emotions. Journal of research in Personality. 1977;11(3):273–294. doi: 10.1016/0092-6566(77)90037-X
    1. Russell JA. A circumplex model of affect. Journal of personality and social psychology. 1980;39(6):1161. doi: 10.1037/h0077714
    1. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of neuroscience methods. 2004;134(1):9–21. doi: 10.1016/j.jneumeth.2003.10.009
    1. De Clercq W, Vergult A, Vanrumste B, Van Paesschen W, Van Huffel S. Canonical correlation analysis applied to remove muscle artifacts from the electroencephalogram. IEEE transactions on Biomedical Engineering. 2006;53(12):2583–2587. doi: 10.1109/TBME.2006.879459
    1. Gómez-Herrero G, De Clercq W, Anwar H, Kara O, Egiazarian K, Van Huffel S, et al. Automatic removal of ocular artifacts in the EEG without an EOG reference channel. In: Proceedings of the 7th Nordic Signal Processing Symposium-NORSIG 2006. IEEE; 2006. p. 130–133.
    1. Welch P. The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Transactions on audio and electroacoustics. 1967;15(2):70–73. doi: 10.1109/TAU.1967.1161901
    1. Arsalan A, Majid M, Butt AR, Anwar SM. Classification of perceived mental stress using a commercially available EEG headband. IEEE journal of biomedical and health informatics. 2019;23(6):2257–2264. doi: 10.1109/JBHI.2019.2926407

Source: PubMed

3
Iratkozz fel