Non-alcoholic fatty liver is associated with increased risk of irritable bowel syndrome: a prospective cohort study

Shanshan Wu, Changzheng Yuan, Zhirong Yang, Si Liu, Qian Zhang, Shutian Zhang, Shengtao Zhu, Shanshan Wu, Changzheng Yuan, Zhirong Yang, Si Liu, Qian Zhang, Shutian Zhang, Shengtao Zhu

Abstract

Background: The relationship between non-alcoholic fatty liver degree as well as non-alcoholic fatty liver disease (NAFLD) and irritable bowel syndrome (IBS) remains poorly understood. We aimed to investigate the prospective association of non-alcoholic fatty liver degree as well as NAFLD with incident IBS in a large-scale population-based cohort.

Methods: Participants free of IBS, coeliac disease, inflammatory bowel disease, alcoholic liver disease, and any cancer at baseline from the UK Biobank were included. Non-alcoholic fatty liver degree was measured by a well-validated fatty liver index (FLI), with FLI ≥ 60 as an indicator of NAFLD. Primary outcome was incident IBS. Cox proportional hazard model was used to investigate the associated risk of incident IBS.

Results: Among 396,838 participants (mean FLI was 48.29 ± 30.07), 153,203(38.6%) were with NAFLD diagnosis at baseline. During a median of 12.4-year follow-up, 7129 cases of incident IBS were identified. Compared with non-NAFLD, NAFLD patients showed a 13% higher risk of developing IBS (HR = 1.13, 95%CI: 1.05-1.17) after multivariable adjustment. Compared with the lowest, the highest FLI quartile was associated with a significantly increased risk of IBS (HRQ4 VS Q1 = 1.21, 1.13-1.30, Ptrend < 0.001). Specifically, the positive association between non-alcoholic fatty liver degree and IBS was also observed by per SD change of FLI (adjusted HR = 1.08, 1.05-1.10). Further sensitivity analysis and subgroup analysis indicated similar results, with the positive association particularly observed in females, but not in males.

Conclusions: High degree of non-alcoholic fatty liver as well as non-alcoholic fatty liver disease is associated with increased risk of incident IBS. Further studies are warranted to confirm the findings and elucidate the underlying biological mechanisms.

Keywords: Cohort study; Irritable bowel syndrome; Non-alcoholic fatty liver disease.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Flowchart of the study population. UKB: UK Biobank; IBS: irritable bowel syndrome; IBD: inflammatory bowel disease; ALD: alcoholic liver disease; FLI: fatty liver index
Fig. 2
Fig. 2
The association between baseline FLI and incident IBS.  Note: All adjusted HRs were calculated by adjusting the following covariates: age, gender, Townsend deprivation index, education level, ethnicity, smoking status, alcohol drinking, IPAQ (International Physical Activity Questionnaire), and type 2 diabetes. IBS: irritable bowel syndrome; FLI: fatty liver index; CI: confidence interval; HR: hazard ratio
Fig. 3
Fig. 3
Subgroup analysis for the association between baseline FLI and incident IBS. A According to FLI quartiles. B According to FLI per SD change. C According to the diagnosis of NAFLD or not by the predefined cutoff of FLI. All adjusted HRs were calculated by adjusting the following covariates: age, gender, Townsend deprivation index, education level, ethnicity, smoking status, alcohol drinking, IPAQ (International Physical Activity Questionnaire) and type 2 diabetes; IBS: irritable bowel syndrome; FLI: fatty liver index; CI: confidence interval; HR: hazard ratio

References

    1. Ford AC, Sperber AD, Corsetti M, Camilleri M. Irritable bowel syndrome. Lancet. 2020;396(10263):1675–1688. doi: 10.1016/S0140-6736(20)31548-8.
    1. Lacy BE, Pimentel M, Brenner DM, Chey WD, Keefer LA, Long MD, et al. ACG Clinical Guideline: Management of Irritable Bowel Syndrome. Am J Gastroenterol. 2021;116(1):17–44. doi: 10.14309/ajg.0000000000001036.
    1. Sperber AD, Bangdiwala SI, Drossman DA, Ghoshal UC, Simren M, Tack J, et al. Worldwide Prevalence and Burden of Functional Gastrointestinal Disorders, Results of Rome Foundation Global Study. Gastroenterology. 2021;160(1):99–114.e3. doi: 10.1053/j.gastro.2020.04.014.
    1. Frändemark Å, Törnblom H, Jakobsson S, Simrén M. Work productivity and activity impairment in irritable bowel syndrome (IBS): a multifaceted problem. Am J Gastroenterol. 2018;113(10):1540–1549. doi: 10.1038/s41395-018-0262-x.
    1. Peery AF, Crockett SD, Murphy CC, Lund JL, Dellon ES, Williams JL, et al. Burden and cost of gastrointestinal, liver, and pancreatic diseases in the United States: update 2018. Gastroenterology. 2019;156(1):254–272.e11. doi: 10.1053/j.gastro.2018.08.063.
    1. Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67(1):328–357. doi: 10.1002/hep.29367.
    1. Estes C, Anstee QM, Arias-Loste MT, Bantel H, Bellentani S, Caballeria J, et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030. J Hepatol. 2018;69(4):896–904. doi: 10.1016/j.jhep.2018.05.036.
    1. Younossi ZM. Non-alcoholic fatty liver disease-A global public health perspective. J Hepatol. 2019;70(3):531–544. doi: 10.1016/j.jhep.2018.10.033.
    1. Dietrich P, Hellerbrand C. Non-alcoholic fatty liver disease, obesity and the metabolic syndrome. Best Pract Res Clin Gastroenterol. 2014;28(4):637–653. doi: 10.1016/j.bpg.2014.07.008.
    1. Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018;15(1):11–20. doi: 10.1038/nrgastro.2017.109.
    1. Porras D, Nistal E, Martínez-Flórez S, González-Gallego J, García-Mediavilla MV, Sánchez-Campos S. Intestinal Microbiota Modulation in Obesity-Related Non-alcoholic Fatty Liver Disease. Front Physiol. 2018;9:1813. doi: 10.3389/fphys.2018.01813.
    1. Higarza SG, Arboleya S, Gueimonde M, Gómez-Lázaro E, Arias JL, Arias N. Neurobehavioral dysfunction in non-alcoholic steatohepatitis is associated with hyperammonemia, gut dysbiosis, and metabolic and functional brain regional deficits. PLoS ONE. 2019;14(9):e0223019. doi: 10.1371/journal.pone.0223019.
    1. Ding JH, Jin Z, Yang XX, Lou J, Shan WX, Hu YX, et al. Role of gut microbiota via the gut-liver-brain axis in digestive diseases. World J Gastroenterol. 2020;26(40):6141–6162. doi: 10.3748/wjg.v26.i40.6141.
    1. Teratani T, Mikami Y, Nakamoto N, Suzuki T, Harada Y, Okabayashi K, et al. The liver-brain-gut neural arc maintains the T reg cell niche in the gut. Nature. 2020;585(7826):591–596. doi: 10.1038/s41586-020-2425-3.
    1. Matsubara Y, Kiyohara H, Teratani T, Mikami Y, Kanai T. Organ and brain crosstalk: The liver-brain axis in gastrointestinal, liver, and pancreatic diseases. Neuropharmacol. 2022;205:108915. doi: 10.1016/j.neuropharm.2021.108915.
    1. Scalera A, Di Minno MN, Tarantino G. What does irritable bowel syndrome share with non-alcoholic fatty liver disease? World J Gastroenterol. 2013;19(33):5402–5420. doi: 10.3748/wjg.v19.i33.5402.
    1. Purssell H, Whorwell PJ, Athwal VS, Vasant DH. Non-alcoholic fatty liver disease in irritable bowel syndrome: More than a coincidence? World J Hepatol. 2021;13(12):1816–1827. doi: 10.4254/wjh.v13.i12.1816.
    1. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12:e1001779. doi: 10.1371/journal.pmed.1001779.
    1. Bedogni G, Bellentani S, Miglioli L, Masutti F, Passalacqua M, Castiglione A, et al. The Fatty Liver Index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006;6:33. doi: 10.1186/1471-230X-6-33.
    1. Liu Z, Suo C, Zhao R, Yuan H, Jin L, Zhang T, et al. Genetic predisposition, lifestyle risk, and obesity associate with the progression of nonalcoholic fatty liver disease. Dig Liver Dis. 2021;53(11):1435–1442. doi: 10.1016/j.dld.2021.07.009.
    1. Jones GS, Alvarez CS, Graubard BI, McGlynn KA. Agreement Between the Prevalence of Nonalcoholic Fatty Liver Disease Determined by Transient Elastography and Fatty Liver Indices. Clin Gastroenterol Hepatol. 2022;20(1):227–229.e2. doi: 10.1016/j.cgh.2020.11.028.
    1. Ye Q, Zou BY, Yeo YH, Li J, Huang DQ, Wu Y, et al. Global prevalence, incidence, and outcomes of non-obese or lean non-alcoholic fatty liver disease: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2020;5(8):739–752. doi: 10.1016/S2468-1253(20)30077-7.
    1. Papatheodoridi M, Cholongitas E. Diagnosis of non-alcoholic fatty liver disease (NAFLD): current concepts. Curr Pharm Des. 2018;24(38):4574–4586. doi: 10.2174/1381612825666190117102111.
    1. Lee JH, Kim D, Kim HJ, Lee CH, Yang JI, Kim W, et al. Hepatic steatosis index: a simple screening tool reflecting nonalcoholic fatty liver disease. Dig Liver Dis. 2010;42(7):503–508. doi: 10.1016/j.dld.2009.08.002.
    1. Townsend P. Deprivation. J. Soc Policy. 1987;16(02):125. doi: 10.1017/S0047279400020341.
    1. Black CJ, Ford AC. Global burden of irritable bowel syndrome: trends, predictions and risk factors. Nat Rev Gastroenterol Hepatol. 2020;17(8):473–486. doi: 10.1038/s41575-020-0286-8.
    1. Day CP, James OF. Steatohepatitis: a tale of two “hits”? Gastroenterology. 1998;114(4):842–845. doi: 10.1016/S0016-5085(98)70599-2.
    1. Bennet SM, Polster A, Törnblom H, Isaksson S, Capronnier S, Tessier A, et al. Global Cytokine Profiles and Association With Clinical Characteristics in Patients With Irritable Bowel Syndrome. Am J Gastroenterol. 2016;111(8):1165–1176. doi: 10.1038/ajg.2016.223.
    1. Ivashkin V, Poluektov Y, Kogan E, Shifrin O, Sheptulin A, Kovaleva A, et al. Disruption of the pro-inflammatory, anti-inflammatory cytokines and tight junction proteins expression, associated with changes of the composition of the gut microbiota in patients with irritable bowel syndrome. PLoS ONE. 2021;16(6):e0252930. doi: 10.1371/journal.pone.0252930.
    1. Choghakhori R, Abbasnezhad A, Hasanvand A, Amani R. Inflammatory cytokines and oxidative stress biomarkers in irritable bowel syndrome: Association with digestive symptoms and quality of life. Cytokine. 2017;93:34–43. doi: 10.1016/j.cyto.2017.05.005.
    1. Panera N, Corte CD, Crudele A, Stronati L, Nobili V, Alisi A. Recent advances in understanding the role of adipocytokines during non-alcoholic fatty liver disease pathogenesis and their link with hepatokines. Expert Rev Gastroenterol Hepatol. 2016;10(3):393–403. doi: 10.1586/17474124.2016.1110485.
    1. Hou X, Yin S, Ren R, Liu S, Yong L, Liu Y, et al. Myeloid-Cell-Specific IL-6 Signaling Promotes MicroRNA-223-Enriched Exosome Production to Attenuate NAFLD-Associated Fibrosis. Hepatology. 2021;74(1):116–132. doi: 10.1002/hep.31658.
    1. Brescia P, Rescigno M. The gut vascular barrier: a new player in the gut-liver-brain axis. Trends Mol Med. 2021;27(9):844–855. doi: 10.1016/j.molmed.2021.06.007.
    1. Tripathi A, Debelius J, Brenner DA, Karin M, Loomba R, Schnabl B, et al. The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol. 2018;15(7):397–411. doi: 10.1038/s41575-018-0011-z.
    1. Singh R, Zogg H, Wei L, Bartlett A, Ghoshal UC, Rajender S, et al. Gut Microbial Dysbiosis in the Pathogenesis of Gastrointestinal Dysmotility and Metabolic Disorders. J Neurogastroenterol Motil. 2021;27(1):19–34. doi: 10.5056/jnm20149.
    1. Zhao L, Yang W, Chen Y, Huang F, Lu L, Lin C, et al. A Clostridia-rich microbiota enhances bile acid excretion in diarrhea-predominant irritable bowel syndrome. J Clin Invest. 2020;130(1):438–450. doi: 10.1172/JCI130976.
    1. Kim YS, Kim N. Sex-Gender Differences in Irritable Bowel Syndrome. J Neurogastroenterol Motil. 2018;24(4):544–558. doi: 10.5056/jnm18082.
    1. Pretorius L, Smith C. The trace aminergic system: a gender-sensitive therapeutic target for IBS? J Biomed Sci. 2020;27(1):95. doi: 10.1186/s12929-020-00688-1.

Source: PubMed

3
Iratkozz fel