Efficacy and Safety of Acute Phase Intensive Electrical Muscle Stimulation in Frail Older Patients with Acute Heart Failure: Results from the ACTIVE-EMS Trial

Shinya Tanaka, Kentaro Kamiya, Yuya Matsue, Ryusuke Yonezawa, Hiroshi Saito, Nobuaki Hamazaki, Ryota Matsuzawa, Kohei Nozaki, Masashi Yamashita, Kazuki Wakaume, Yoshiko Endo, Emi Maekawa, Minako Yamaoka-Tojo, Takaaki Shiono, Takayuki Inomata, Junya Ako, Shinya Tanaka, Kentaro Kamiya, Yuya Matsue, Ryusuke Yonezawa, Hiroshi Saito, Nobuaki Hamazaki, Ryota Matsuzawa, Kohei Nozaki, Masashi Yamashita, Kazuki Wakaume, Yoshiko Endo, Emi Maekawa, Minako Yamaoka-Tojo, Takaaki Shiono, Takayuki Inomata, Junya Ako

Abstract

As frailty in older patients with acute heart failure (AHF) has an adverse effect on clinical outcomes, the addition of electrical muscle stimulation (EMS) to exercise-based early rehabilitation may improve the effects of treatment. Post hoc analysis was performed on a randomized controlled study for clinical outcomes and prespecified subgroups (ACTIVE-EMS: UMIN000019551). In this trial, 31 AHF patients aged ≥ 75 years with frailty (Short Physical Performance Battery [SPPB] score 4-9) were randomized 1:1 to receive treatment with an early rehabilitation program only (n = 16) or early rehabilitation with add-on EMS therapy (n = 15) for 2 weeks. Changes in physical function and cognitive function between baseline and after two weeks of treatment were assessed. There were no adverse events during the EMS period. The EMS group showed significantly greater changes in quadriceps' isometric strength and SPPB compared to the control group, and EMS therapy showed uniform effects in the prespecified subgroups. There were no significant differences in the changes in other indexes of physical function and cognitive function between groups. There was no significant difference in the rate of heart failure hospitalization at 90 days between groups. In conclusion, older AHF patients with frailty showed greater improvement in lower extremity function with the addition of EMS therapy to early rehabilitation without adverse events.

Keywords: acute decompensated heart failure; early rehabilitation; electrical muscle stimulation; exercise; frail; muscle strength; physical function.

Conflict of interest statement

K.K. has received research and scholarship funding from Eiken Chemical Co., Ltd. Y.M. is affiliated with a department endowed by Philips Respironics, ResMed, Teijin Home Healthcare, and Fukuda Denshi, and received a honorarium from Novartis Japan and Otsuka Pharmaceutical Co. Other authors have no conflict of interest to disclose.

Figures

Figure 1
Figure 1
Belt electrode skeletal muscle electrical stimulation.
Figure 2
Figure 2
Study flow diagram. ACS, acute coronary syndrome; AS, aortic stenosis; EMS, electrical muscle stimulation; HF, heart failure; HOCM, hypertrophic obstructive cardiomyopathy; MS, mitral stenosis; SPPB, short physical performance battery.
Figure 3
Figure 3
Waterfall plots of changes in physical and cognitive function. BW, body weight; CI, confidence interval; EMS, electrical muscle stimulation.
Figure 4
Figure 4
Prespecified subgroup analysis of the primary outcome. Values are expressed as means ± SD. BW, body weight; CI, confidence interval; EMS, electrical muscle stimulation; LVEF, left ventricular ejection fraction; QIS, quadriceps isometric strength; 6MWD, 6-min walking distance.

References

    1. Afilalo J., Alexander K.P., Mack M.J., Maurer M.S., Green P., Allen L.A., Popma J.J., Ferrucci L., Forman D.E. Frailty assessment in the cardiovascular care of older adults. J. Am. Coll. Cardiol. 2014;63:747–762. doi: 10.1016/j.jacc.2013.09.070.
    1. Pandey A., Kitzman D., Reeves G. Frailty Is Intertwined With Heart Failure: Mechanisms, Prevalence, Prognosis, Assessment, and Management. JACC Heart Fail. 2019;7:1001–1011. doi: 10.1016/j.jchf.2019.10.005.
    1. Bueno H., Ross J.S., Wang Y., Chen J., Vidán M.T., Normand S.L., Curtis J.P., Drye E.E., Lichtman J.H., Keenan P.S., et al. Trends in length of stay and short-term outcomes among Medicare patients hospitalized for heart failure, 1993–2006. JAMA. 2010;303:2141–2147. doi: 10.1001/jama.2010.748.
    1. Tanaka S., Yamashita M., Saito H., Kamiya K., Maeda D., Konishi M., Matsue Y. Multidomain Frailty in Heart Failure: Current Status and Future Perspectives. Curr. Heart. Fail. Rep. 2021;18:107–120. doi: 10.1007/s11897-021-00513-2.
    1. Gomes-Neto M., Durães A.R., Conceição L.S.R., Roever L., Silva C.M., Alves I.G.N., Ellingsen Ø., Carvalho V.O. Effect of combined aerobic and resistance training on peak oxygen consumption, muscle strength and health-related quality of life in patients with heart failure with reduced left ventricular ejection fraction: A systematic review and meta-analysis. Int. J. Cardiol. 2019;293:165–175. doi: 10.1016/j.ijcard.2019.02.050.
    1. Taylor R.S., Long L., Mordi I.R., Madsen M.T., Davies E.J., Dalal H., Rees K., Singh S.J., Gluud C., Zwisler A.D. Exercise-Based Rehabilitation for Heart Failure: Cochrane Systematic Review, Meta-Analysis, and Trial Sequential Analysis. JACC Heart Fail. 2019;7:691–705. doi: 10.1016/j.jchf.2019.04.023.
    1. Parissis J., Farmakis D., Karavidas A., Arapi S., Filippatos G., Lekakis J. Functional electrical stimulation of lower limb muscles as an alternative mode of exercise training in chronic heart failure: Practical considerations and proposed algorithm. Eur. J. Heart Fail. 2015;17:1228–1230. doi: 10.1002/ejhf.409.
    1. Gomes Neto M., Oliveira F.A., Reis H.F., de Sousa Rodrigues E., Jr., Bittencourt H.S., Oliveira Carvalho V. Effects of Neuromuscular Electrical Stimulation on Physiologic and Functional Measurements in Patients With Heart Failure: A systematic review with meta-analysis. J. Cardiopulm. Rehabil. Prev. 2016;36:157–166. doi: 10.1097/HCR.0000000000000151.
    1. Groehs R.V., Antunes-Correa L.M., Nobre T.S., Alves M.J., Rondon M.U., Barreto A.C., Negrão C.E. Muscle electrical stimulation improves neurovascular control and exercise tolerance in hospitalised advanced heart failure patients. Eur. J. Prev. Cardiol. 2016;23:1599–1608. doi: 10.1177/2047487316654025.
    1. Forestieri P., Bolzan D.W., Santos V.B., Moreira R.S.L., de Almeida D.R., Trimer R., de Souza Brito F., Borghi-Silva A., de Camargo Carvalho A.C., Arena R., et al. Neuromuscular electrical stimulation improves exercise tolerance in patients with advanced heart failure on continuous intravenous inotropic support use-randomized controlled trial. Clin. Rehabil. 2018;32:66–74. doi: 10.1177/0269215517715762.
    1. Tanaka S., Kamiya K., Matsue Y., Yonezawa R., Saito H., Hamazaki N., Matsuzawa R., Nozaki K., Yamashita M., Wakaume K., et al. Effects of electrical muscle stimulation on physical function in frail older patients with acute heart failure: A randomized controlled trial. Eur. J. Prev. Cardiol. 2022. >in press.
    1. Kitzman D.W., Whellan D.J., Duncan P., Pastva A.M., Mentz R.J., Reeves G.R., Nelson M.B., Chen H., Upadhya B., Reed S.D., et al. Physical Rehabilitation for Older Patients Hospitalized for Heart Failure. N. Engl. J. Med. 2021;385:203–216. doi: 10.1056/NEJMoa2026141.
    1. Kamiya K., Sato Y., Takahashi T., Tsuchihashi-Makaya M., Kotooka N., Ikegame T., Takura T., Yamamoto T., Nagayama M., Goto Y., et al. Multidisciplinary Cardiac Rehabilitation and Long-Term Prognosis in Patients With Heart Failure. Circ. Heart. Fail. 2020;13:e006798. doi: 10.1161/CIRCHEARTFAILURE.119.006798.
    1. Kamiya K., Yamamoto T., Tsuchihashi-Makaya M., Ikegame T., Takahashi T., Sato Y., Kotooka N., Saito Y., Tsutsui H., Miyata H., et al. Nationwide Survey of Multidisciplinary Care and Cardiac Rehabilitation for Patients With Heart Failure in Japan—An Analysis of the AMED-CHF Study. Circ. J. 2019;83:1546–1552. doi: 10.1253/circj.CJ-19-0241.
    1. Pandey A., Keshvani N., Zhong L., Mentz R.J., Piña I.L., DeVore A.D., Yancy C., Kitzman D.W., Fonarow G.C. Temporal Trends and Factors Associated With Cardiac Rehabilitation Participation Among Medicare Beneficiaries With Heart Failure. JACC Heart Fail. 2021;9:471–481. doi: 10.1016/j.jchf.2021.02.006.
    1. Reeves G.R., Whellan D.J., Patel M.J., O’Connor C.M., Duncan P., Eggebeen J.D., Morgan T.M., Hewston L.A., Pastva A.M., Kitzman D.W. Comparison of Frequency of Frailty and Severely Impaired Physical Function in Patients ≥ 60 Years Hospitalized With Acute Decompensated Heart Failure Versus Chronic Stable Heart Failure With Reduced and Preserved Left Ventricular Ejection Fraction. Am. J. Cardiol. 2016;117:1953–1958. doi: 10.1016/j.amjcard.2016.03.046.
    1. Saitoh M., Takahashi Y., Okamura D., Akiho M., Suzuki H., Noguchi N., Yamaguchi Y., Hori K., Adachi Y., Takahashi T. Prognostic impact of hospital-acquired disability in elderly patients with heart failure. ESC Heart Fail. 2021;8:1767–1774. doi: 10.1002/ehf2.13356.
    1. Kaneko H., Itoh H., Kamiya K., Morita K., Sugimoto T., Konishi M., Kiriyama H., Kamon T., Fujiu K., Michihata N., et al. Acute-phase initiation of cardiac rehabilitation and clinical outcomes in hospitalized patients for acute heart failure. Int. J. Cardiol. 2021;340:36–41. doi: 10.1016/j.ijcard.2021.08.041.
    1. Tanaka S., Kamiya K., Matsue Y., Yonezawa R., Saito H., Hamazaki N., Matsuzawa R., Nozaki K., Wakaume K., Endo Y., et al. Effects of Acute Phase Intensive Electrical Muscle Stimulation in Frail Elderly Patients With Acute Heart Failure (ACTIVE-EMS): Rationale and protocol for a multicenter randomized controlled trial. Clin. Cardiol. 2017;40:1189–1196. doi: 10.1002/clc.22845.
    1. Boutron I., Moher D., Altman D.G., Schulz K.F., Ravaud P. Methods and processes of the CONSORT Group: Example of an extension for trials assessing nonpharmacologic treatments. Ann. Intern. Med. 2008;148:W60–W66. doi: 10.7326/0003-4819-148-4-200802190-00008-w1.
    1. Guralnik J.M., Ferrucci L., Pieper C.F., Leveille S.G., Markides K.S., Ostir G.V., Studenski S., Berkman L.F., Wallace R.B. Lower extremity function and subsequent disability: Consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J. Gerontol. A. Biol. Sci. Med. Sci. 2000;55:M221–M231. doi: 10.1093/gerona/55.4.M221.
    1. Numata H., Nakase J., Inaki A., Mochizuki T., Oshima T., Takata Y., Kinuya S., Tsuchiya H. Effects of the belt electrode skeletal muscle electrical stimulation system on lower extremity skeletal muscle activity: Evaluation using positron emission tomography. J. Orthop. Sci. 2016;21:53–56. doi: 10.1016/j.jos.2015.09.003.
    1. Miyamoto T., Kamada H., Tamaki A., Moritani T. Low-intensity electrical muscle stimulation induces significant increases in muscle strength and cardiorespiratory fitness. Eur. J. Sport. Sci. 2016;16:1104–1110. doi: 10.1080/17461391.2016.1151944.
    1. Nakamura K., Kihata A., Naraba H., Kanda N., Takahashi Y., Sonoo T., Hashimoto H., Morimura N. Efficacy of belt electrode skeletal muscle electrical stimulation on reducing the rate of muscle volume loss in critically ill patients: A randomized controlled trial. J. Rehabil. Med. 2019;51:705–711. doi: 10.2340/16501977-2594.
    1. Kamiya K., Mezzani A., Hotta K., Shimizu R., Kamekawa D., Noda C., Yamaoka-Tojo M., Matsunaga A., Masuda T. Quadriceps isometric strength as a predictor of exercise capacity in coronary artery disease patients. Eur. J. Prev. Cardiol. 2014;21:1285–1291. doi: 10.1177/2047487313492252.
    1. Nakamura T., Kamiya K., Hamazaki N., Matsuzawa R., Nozaki K., Ichikawa T., Yamashita M., Maekawa E., Reed J.L., Noda C., et al. Quadriceps Strength and Mortality in Older Patients With Heart Failure. Can. J. Cardiol. 2021;37:476–483. doi: 10.1016/j.cjca.2020.06.019.
    1. Faul F., Erdfelder E., Lang A.G., Buchner A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods. 2007;39:175–191. doi: 10.3758/BF03193146.
    1. Jones S., Man W.D., Gao W., Higginson I.J., Wilcock A., Maddocks M. Neuromuscular electrical stimulation for muscle weakness in adults with advanced disease. Cochrane Database Syst. Rev. 2016;10:Cd009419. doi: 10.1002/14651858.CD009419.pub3.
    1. Karavidas A., Parissis J.T., Matzaraki V., Arapi S., Varounis C., Ikonomidis I., Grillias P., Paraskevaidis I., Pirgakis V., Filippatos G., et al. Functional electrical stimulation is more effective in severe symptomatic heart failure patients and improves their adherence to rehabilitation programs. J. Card. Fail. 2010;16:244–249. doi: 10.1016/j.cardfail.2009.10.023.
    1. Landers K.A., Hunter G.R., Wetzstein C.J., Bamman M.M., Weinsier R.L. The interrelationship among muscle mass, strength, and the ability to perform physical tasks of daily living in younger and older women. J. Gerontol. A. Biol. Sci. Med. Sci. 2001;56:B443–B448. doi: 10.1093/gerona/56.10.B443.
    1. Barbat-Artigas S., Rolland Y., Cesari M., Abellan van Kan G., Vellas B., Aubertin-Leheudre M. Clinical relevance of different muscle strength indexes and functional impairment in women aged 75 years and older. J. Gerontol. A. Biol. Sci. Med. Sci. 2013;68:811–819. doi: 10.1093/gerona/gls254.
    1. Working Group on Functional Outcome Measures for Clinical Trials Functional outcomes for clinical trials in frail older persons: Time to be moving. J. Gerontol. A. Biol. Sci. Med. Sci. 2008;63:160–164. doi: 10.1093/gerona/63.2.160.
    1. Ambrosy A.P., Cerbin L.P., Armstrong P.W., Butler J., Coles A., DeVore A.D., Dunlap M.E., Ezekowitz J.A., Felker G.M., Fudim M., et al. Body Weight Change During and After Hospitalization for Acute Heart Failure: Patient Characteristics, Markers of Congestion, and Outcomes: Findings from the ASCEND-HF Trial. JACC Heart Fail. 2017;5:1–13. doi: 10.1016/j.jchf.2016.09.012.

Source: PubMed

3
Iratkozz fel