Combined effects of virtual reality techniques and motor imagery on balance, motor function and activities of daily living in patients with Parkinson's disease: a randomized controlled trial

Muhammad Kashif, Ashfaq Ahmad, Muhammad Ali Mohseni Bandpei, Syed Amir Gilani, Asif Hanif, Humaira Iram, Muhammad Kashif, Ashfaq Ahmad, Muhammad Ali Mohseni Bandpei, Syed Amir Gilani, Asif Hanif, Humaira Iram

Abstract

Background: Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder, impairing balance and motor function. Virtual reality (VR) and motor imagery (MI) are emerging techniques for rehabilitating people with PD. VR and MI combination have not been studied in PD patients. This study was conducted to investigate the combined effects of VR and MI techniques on the balance, motor function, and activities of daily living (ADLs) of patients with PD.

Methods: This study was a single-centered, two-armed, parallel-designed randomized controlled trial. A total of 44 patients of either gender who had idiopathic PD were randomly allocated into two groups using lottery methods. Both groups received Physical therapy (PT) treatment, while the experimental group (N: 20) received VR and MI in addition to PT. Both groups received assigned treatment for three days a week on alternate days for 12 weeks. The Unified Parkinson's Disease Rating Scale (UPDRS) (parts II and III), Berg Balance Scale (BBS), and Activities-specific Balance Confidence (ABC) Scale were used as outcome measures for motor function, balance, and ADLs. The baseline, 6th, and 12th weeks of treatment were assessed, with a 16th week follow-up to measure retention. The data was analysed using SPSS 24.

Results: The experimental group showed significant improvement in motor function than the control group on the UPDRS part III, with 32.45±3.98 vs. 31.86±4.62 before and 15.05±7.16 vs. 25.52±7.36 at 12-weeks, and a p-value < 0.001. At 12 weeks, the experimental group's BBS scores improved from 38.95±3.23 to 51.36±2.83, with p-value < 0.001. At 12 weeks, the experimental group's balance confidence improved considerably, from 59.26±5.87to 81.01±6.14, with a p-value of < 0.001. The experimental group's ADL scores improved as well, going from 22.00±4.64 to 13.07±4.005 after 12 weeks, with a p-value of < 0.001.

Conclusion: VR with MI techniques in addition to routine PT significantly improved motor function, balance, and ADLs in PD patients compared to PT alone.

Trial registration: IRCT20200221046567N1 . Date of registration: 01/04/2020.

Keywords: Motor imagery; Parkinson’s disease; Physical therapy, Rehabilitation; Virtual reliability.

Conflict of interest statement

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
CONSORT study flow diagram
Fig. 2
Fig. 2
Different types of games used in VR training

References

    1. Fereshtehnejad S-M, Yao C, Pelletier A, Montplaisir JY, Gagnon J-F, Postuma RB. Evolution of prodromal Parkinson’s disease and dementia with Lewy bodies: a prospective study. Brain. 2019;142(7):2051–2067. doi: 10.1093/brain/awz111.
    1. Jankovic J, Lang AE. Diagnosis and assessment of Parkinson disease and other movement disorders. Bradley's Neurology in Clinical Practice E-Book 2021:310.
    1. Nuic D, Vinti M, Karachi C, Foulon P, Van Hamme A, Welter M-L. The feasibility and positive effects of a customised videogame rehabilitation programme for freezing of gait and falls in Parkinson’s disease patients: a pilot study. J Neuroeng Rehabil. 2018;15(1):31. doi: 10.1186/s12984-018-0375-x.
    1. Schootemeijer S, van der Kolk NM, Ellis T, Mirelman A, Nieuwboer A, Nieuwhof F, et al. Barriers and motivators to engage in exercise for persons with Parkinson’s disease. J Parkinsons Dis. 2020;10(4):1293–1299. doi: 10.3233/JPD-202247.
    1. Mak MK, Wong-Yu IS, Shen X, Chung CL. Long-term effects of exercise and physical therapy in people with Parkinson disease. Nat Rev Neurol. 2017;13(11):689–703. doi: 10.1038/nrneurol.2017.128.
    1. Mirelman A, Maidan I, Deutsch JE. Virtual reality and motor imagery: promising tools for assessment and therapy in Parkinson's disease. Mov Disord. 2013;28(11):1597–1608. doi: 10.1002/mds.25670.
    1. Weiss PL, Rand D, Katz N, Kizony R. Video capture virtual reality as a flexible and effective rehabilitation tool. J Neuroeng Rehabil. 2004;1(1):1–12. doi: 10.1186/1743-0003-1-12.
    1. Santos P, Machado T, Santos L, Ribeiro N, Melo A. Efficacy of the Nintendo Wii combination with conventional exercises in the rehabilitation of individuals with Parkinson’s disease: a randomized clinical trial. NeuroRehabilitation. 2019;45(2):255–263. doi: 10.3233/NRE-192771.
    1. Ribas CG, da Silva LA, Corrêa MR, Teive HG, Valderramas S. Effectiveness of exergaming in improving functional balance, fatigue and quality of life in Parkinson's disease: A pilot randomized controlled trial. Parkinsonism Relat Disord. 2017;38:13–18. doi: 10.1016/j.parkreldis.2017.02.006.
    1. Carpinella I, Cattaneo D, Bonora G, Bowman T, Martina L, Montesano A, et al. Wearable sensor-based biofeedback training for balance and gait in Parkinson disease: a pilot randomized controlled trial. Arch Phys Med Rehab. 2017;98(4):622–30. e3. doi: 10.1016/j.apmr.2016.11.003.
    1. Gandolfi M, Geroin C, Dimitrova E, Boldrini P, Waldner A, Bonadiman S, et al. Virtual reality telerehabilitation for postural instability in Parkinson’s disease: a multicenter, single-blind, randomized, controlled trial. Biomed Res Int. 2017;2017:7962826. doi: 10.1155/2017/7962826.
    1. Shih M-C, Wang R-Y, Cheng S-J, Yang Y-R. Effects of a balance-based exergaming intervention using the Kinect sensor on posture stability in individuals with Parkinson’s disease: a single-blinded randomized controlled trial. J Neuroeng Rehabil. 2016;13(1):1–9. doi: 10.1186/s12984-016-0185-y.
    1. Liao Y-Y, Yang Y-R, Wu Y-R, Wang R-Y. Virtual reality-based Wii fit training in improving muscle strength, sensory integration ability, and walking abilities in patients with Parkinson's disease: a randomized control trial. Int J Gerontol. 2015;9(4):190–195. doi: 10.1016/j.ijge.2014.06.007.
    1. Yang W-C, Wang H-K, Wu R-M, Lo C-S, Lin K-H. Home-based virtual reality balance training and conventional balance training in Parkinson's disease: A randomized controlled trial. J Formos Med Assoc. 2016;115(9):734–743. doi: 10.1016/j.jfma.2015.07.012.
    1. Martin JA, Zimmermann N, Scheef L, Jankowski J, Paus S, Schild HH, et al. Disentangling motor planning and motor execution in unmedicated de novo Parkinson's disease patients: An fMRI study. Neuroimage Clin. 2019;22:101784. doi: 10.1016/j.nicl.2019.101784.
    1. Martin JA, Zimmermann N, Scheef L, Jankowski J, Paus S, Schild HH, et al. Disentangling motor planning and motor execution in unmedicated de novo Parkinson's disease patients: An fMRI study. Neuroimage Clin. 2019;22:1–13. doi: 10.1016/j.nicl.2019.101784.
    1. Kim T, Frank C, Schack T. A systematic investigation of the effect of action observation training and motor imagery training on the development of mental representation structure and skill performance. Front Hum Neurosci. 2017;11(499):1–13.
    1. Abraham A, Duncan RP, Earhart GM. The Role of Mental Imagery in Parkinson’s Disease Rehabilitation. Brain Sci. 2021;11(2):185. doi: 10.3390/brainsci11020185.
    1. Da Yap BW, Lim ECW. The Effects of Motor Imagery on Pain and Range of Motion in Musculoskeletal Disorders: A Systematic Review Using Meta-Analysis. Clin J Pain. 2019;35(1):87–99. doi: 10.1097/AJP.0000000000000648.
    1. Paivio A. Cognitive and motivational functions of imagery in human performance. Can J Appl Sport Sci J Canadien des sciences appliquées au sport. 1985;10(4):22S–28S.
    1. Au KL, Giacobbe A, Dinh E, Nguyen O, Moore K, Zamora AR, et al. Underserved patient access to multidisciplinary rehabilitation for movement disorders in a single tertiary academic referral center. Neurology. 2020;94:2830.
    1. Dorsey ER, Vlaanderen FP, Engelen LJ, Kieburtz K, Zhu W, Biglan KM, et al. Moving Parkinson care to the home. Mov Disord. 2016;31(9):1258–1262. doi: 10.1002/mds.26744.
    1. Isernia S, Di Tella S, Pagliari C, Jonsdottir J, Castiglioni C, Gindri P, et al. Effects of an innovative telerehabilitation intervention for people with Parkinson's Disease on quality of life, motor, and Non-motor abilities. Front Neurol. 2020;11:846. doi: 10.3389/fneur.2020.00846.
    1. Hanakawa T. Organizing motor imageries. Neurosci Res. 2016;104:56–63. doi: 10.1016/j.neures.2015.11.003.
    1. Cuthbert JP, Staniszewski K, Hays K, Gerber D, Natale A, O’dell D. Virtual reality-based therapy for the treatment of balance deficits in patients receiving inpatient rehabilitation for traumatic brain injury. Brain Inj. 2014;28(2):181–188. doi: 10.3109/02699052.2013.860475.
    1. Meldrum D, Herdman S, Vance R, Murray D, Malone K, Duffy D, et al. Effectiveness of conventional versus virtual reality–based balance exercises in vestibular rehabilitation for unilateral peripheral vestibular loss: results of a randomized controlled trial. Arch Phys Med Rehab. 2015;96(7):1319–28. e1. doi: 10.1016/j.apmr.2015.02.032.
    1. Corbetta D, Imeri F, Gatti R. Rehabilitation that incorporates virtual reality is more effective than standard rehabilitation for improving walking speed, balance and mobility after stroke: a systematic review. J Physiother. 2015;61(3):117–124. doi: 10.1016/j.jphys.2015.05.017.
    1. Ravi D, Kumar N, Singhi P. Effectiveness of virtual reality rehabilitation for children and adolescents with cerebral palsy: an updated evidence-based systematic review. Physiotherapy. 2017;103(3):245–258. doi: 10.1016/j.physio.2016.08.004.
    1. Dickstein R, Deutsch JE. Motor imagery in physical therapist practice. Phys Ther. 2007;87(7):942–953. doi: 10.2522/ptj.20060331.
    1. Mirelman A, Maidan I, Herman T, Deutsch JE, Giladi N, Hausdorff JM. Virtual reality for gait training: can it induce motor learning to enhance complex walking and reduce fall risk in patients with Parkinson's disease? J Gerontol A Biol Sci Med Sci. 2011;66(2):234–240. doi: 10.1093/gerona/glq201.
    1. Smania N, Corato E, Tinazzi M, Stanzani C, Fiaschi A, Girardi P, et al. Effect of balance training on postural instability in patients with idiopathic Parkinson’s disease. Neurorehabil Neural Repair. 2010;24(9):826–834. doi: 10.1177/1545968310376057.
    1. Kashif M, Ahmad A, Bandpei MAM, Gillani SA, Hanif A, Iram H. Effects of virtual reality with motor imagery techniques in patients with Parkinson’s disease: study protocol for a randomized controlled trial. Neurodegener Dis. 2020;20(2-3):90–6.
    1. Morris ME. Movement disorders in people with Parkinson disease: a model for physical therapy. Phys Ther. 2000;80(6):578–597. doi: 10.1093/ptj/80.6.578.
    1. Keus SH, Bloem BR, Hendriks EJ, Bredero-Cohen AB, Munneke M, Group PRD Evidence-based analysis of physical therapy in Parkinson's disease with recommendations for practice and research. Mov Disord. 2007;22(4):451–460. doi: 10.1002/mds.21244.
    1. Descombes S, Bonnet A, Gasser U, Thalamas C, Dingemanse J, Arnulf I, et al. Dual-release formulation, a novel principle in L-dopa treatment of Parkinson’s disease. Neurology. 2001;56(9):1239–1242. doi: 10.1212/WNL.56.9.1239.
    1. Yen C-Y, Lin K-H, Hu M-H, Wu R-M, Lu T-W, Lin C-H. Effects of virtual reality–augmented balance training on sensory organization and attentional demand for postural control in people with Parkinson disease: a randomized controlled trial. Phys Ther. 2011;91(6):862–874. doi: 10.2522/ptj.20100050.
    1. Błaszczyk J, Orawiec R, Duda-Kłodowska D, Opala G. Assessment of postural instability in patients with Parkinson’s disease. Exp Brain Res. 2007;183(1):107–114. doi: 10.1007/s00221-007-1024-y.
    1. Barry G, Galna B, Rochester L. The role of exergaming in Parkinson’s disease rehabilitation: a systematic review of the evidence. J Neuroeng Rehabil. 2014;11(1):1–10.
    1. Pompeu JE, dos Santos Mendes FA, da Silva KG, Lobo AM, de Paula OT, Zomignani AP, et al. Effect of Nintendo Wii™-based motor and cognitive training on activities of daily living in patients with Parkinson's disease: a randomised clinical trial. Physiotherapy. 2012;98(3):196–204. doi: 10.1016/j.physio.2012.06.004.
    1. dos Santos Mendes FA, Pompeu JE, Lobo AM, da Silva KG, de Paula OT, Zomignani AP, et al. Motor learning, retention and transfer after virtual-reality-based training in Parkinson's disease–effect of motor and cognitive demands of games: a longitudinal, controlled clinical study. Physiotherapy. 2012;98(3):217–223. doi: 10.1016/j.physio.2012.06.001.
    1. Herz NB, Mehta SH, Sethi KD, Jackson P, Hall P, Morgan JC. Nintendo Wii rehabilitation (“Wii-hab”) provides benefits in Parkinson's disease. Parkinsonism Relat Disord. 2013;19(11):1039–1042. doi: 10.1016/j.parkreldis.2013.07.014.
    1. Cianci H. Parkinson's disease: fitness counts: National Parkinson Foundation; 2004.
    1. Akiduki H, Nishiike S, Watanabe H, Matsuoka K, Kubo T, Takeda N. Visual-vestibular conflict induced by virtual reality in humans. Neurosci Lett. 2003;340(3):197–200. doi: 10.1016/S0304-3940(03)00098-3.
    1. Mittelstaedt JM, Wacker J, Stelling D. VR aftereffect and the relation of cybersickness and cognitive performance. Virtual Reality. 2019;23(2):143–154. doi: 10.1007/s10055-018-0370-3.
    1. Martínez-Martín P, Gil-Nagel A, Gracia LM, Gómez JB, Martinez-Sarries J, Bermejo F, et al. Unified Parkinson's disease rating scale characteristics and structure. Mov Disord. 1994;9(1):76–83. doi: 10.1002/mds.870090112.
    1. Stebbins GT, Goetz CG. Factor structure of the Unified Parkinson's Disease Rating Scale: motor examination section. Mov Disord. 1998;13(4):633–636. doi: 10.1002/mds.870130404.
    1. Louis ED, Lynch T, Marder K, Fahn S. Reliability of patient completion of the historical section of the Unified Parkinson's Disease Rating Scale. Mov Disord. 1996;11(2):185–192. doi: 10.1002/mds.870110212.
    1. Richards M, Marder K, Cote L, Mayeux R. Interrater reliability of the Unified Parkinson's Disease Rating Scale motor examination. Mov Disord. 1994;9(1):89–91. doi: 10.1002/mds.870090114.
    1. Camicioli R, Grossmann SJ, Spencer PS, Hudnell K, Anger WK. Discriminating mild parkinsonism: methods for epidemiological research. Mov Disord. 2001;16(1):33–40. doi: 10.1002/1531-8257(200101)16:1<33::AID-MDS1014>;2-W.
    1. Qutubuddin AA, Pegg PO, Cifu DX, Brown R, McNamee S, Carne W. Validating the Berg Balance Scale for patients with Parkinson’s disease: a key to rehabilitation evaluation. Arch Phys Med Rehabil. 2005;86(4):789–792. doi: 10.1016/j.apmr.2004.11.005.
    1. Dal Bello-Haas V, Klassen L, Sheppard MS, Metcalfe A. Psychometric properties of activity, self-efficacy, and quality-of-life measures in individuals with Parkinson disease. Physiother Can. 2011;63(1):47–57. doi: 10.3138/ptc.2009-08.
    1. Moiz JA, Bansal V, Noohu MM, Gaur SN, Hussain ME, Anwer S, et al. Activities-specific balance confidence scale for predicting future falls in Indian older adults. Clin Interv Aging. 2017;12:645–651. doi: 10.2147/CIA.S133523.
    1. Angst F, Aeschlimann A, Angst J. The minimal clinically important difference (MCID) raised the significance of outcome effects above the statistical level, with methodological implications for future studies. J Clin Epidemiol. 2016.
    1. Copay AG, Subach BR, Glassman SD, Polly DW, Jr, Schuler TC. Understanding the minimum clinically important difference: a review of concepts and methods. Spine J. 2007;7(5):541–546. doi: 10.1016/j.spinee.2007.01.008.
    1. Shulman LM, Gruber-Baldini AL, Anderson KE, Fishman PS, Reich SG, Weiner WJ. The clinically important difference on the unified Parkinson's disease rating scale. Arch Neurol. 2010;67(1):64–70. doi: 10.1001/archneurol.2009.295.
    1. Chen Y, Gao Q, He C-Q, Bian R. Effect of virtual reality on balance in individuals with Parkinson disease: a systematic review and meta-analysis of randomized controlled trials. Phys Ther. 2020;100(6):933–945. doi: 10.1093/ptj/pzaa042.
    1. Barcala L, Colella F, Araujo MC, Salgado ASI, Oliveira CS. Análise do equilíbrio em pacientes hemiparéticos após o treino com o programa Wii Fit. Fisioterapia em Movimento. 2011;24(2):337–343. doi: 10.1590/S0103-51502011000200015.
    1. Saposnik G, Mamdani M, Bayley M, Thorpe KE, Hall J, Cohen LG, et al. Effectiveness of Virtual Reality Exercises in STroke Rehabilitation (EVREST): rationale, design, and protocol of a pilot randomized clinical trial assessing the Wii gaming system. Int J Stroke. 2010;5(1):47–51. doi: 10.1111/j.1747-4949.2009.00404.x.
    1. Schiza E, Matsangidou M, Neokleous K, Pattichis CS. Virtual reality applications for neurological disease: A review. Front Roboti AI. 2019;6:100. doi: 10.3389/frobt.2019.00100.
    1. Ong DSM, Weibin MZ, Vallabhajosyula R. Serious games as rehabilitation tools in neurological conditions: A comprehensive review. Technol Health Care. 2021;29(1):15–31. doi: 10.3233/THC-202333.
    1. Lina C, Guoen C, Huidan W, Yingqing W, Ying C, Xiaochun C, et al. The Effect of Virtual Reality on the Ability to Perform Activities of Daily Living, Balance During Gait, and Motor Function in Parkinson Disease Patients: A Systematic Review and Meta-Analysis. Am J Phys Med Rehabil. 2020;99(10):917–924. doi: 10.1097/PHM.0000000000001447.
    1. Gowda AS, Memon AN, Bidika E, Salib M, Rallabhandi B, Fayyaz H. Investigating the Viability of Motor Imagery as a Physical Rehabilitation Treatment for Patients With Stroke-Induced Motor Cortical Damage. Cureus. 2021;13(3).
    1. Sarasso E, Agosta F, Piramide N, Gardoni A, Canu E, Leocadi M, et al. Action Observation and Motor Imagery Improve Dual Task in Parkinson's Disease: A Clinical/fMRI Study. Mov Disord. 2021.
    1. Loureiro APC, Ribas CG, Zotz TGG, Chen R, Ribas F. Feasibility of virtual therapy in rehabilitation of Parkinson's disease patients: pilot study. Fisioterapia em Movimento. 2012;25(3):659–666. doi: 10.1590/S0103-51502012000300021.
    1. Feng H, Li C, Liu J, Wang L, Ma J, Li G, et al. Virtual reality rehabilitation versus conventional physical therapy for improving balance and gait in parkinson’s disease patients: A randomized controlled trial. Med Sci Monit. 2019;25:4186. doi: 10.12659/MSM.916455.
    1. Killane I, Fearon C, Newman L, McDonnell C, Waechter SM, Sons K, et al. Dual motor-cognitive virtual reality training impacts dual-task performance in freezing of gait. IEEE J Biomed Health Inform. 2015;19(6):1855–1861. doi: 10.1109/JBHI.2015.2479625.
    1. Schiavinato AM, Baldan C, Melatto L, Lima LS. Influência do Wii Fit no equilíbrio de paciente com disfunção cerebelar: estudo de caso. J Health Sci Inst. 2010;28(1):50–52.
    1. Gatica Rojas V, Elgueta Cancino E, Vidal Silva C, Cantin López M, Fuentealba AJ. Impacto del entrenamiento del balance a través de realidad virtual en una población de adultos mayores. Int J Morphol. 2010;28(1):303–308. doi: 10.4067/S0717-95022010000100044.
    1. Moshref-Razavi S, Sohrabi M, Sotoodeh MS. Effect of neurofeedback interactions and mental imagery on the elderly’s balance. Iran J Ageing. 2017;12(3):288–299.
    1. van Uem JM, Marinus J, Canning C, van Lummel R, Dodel R, Liepelt-Scarfone I, et al. Health-related quality of life in patients with Parkinson's disease—a systematic review based on the ICF model. Neurosci Biobehav Rev. 2016;61:26–34. doi: 10.1016/j.neubiorev.2015.11.014.
    1. LoJacono CT, MacPherson RP, Kuznetsov NA, Raisbeck LD, Ross SE, Rhea CK. Obstacle crossing in a virtual environment transfers to a real environment. J Motor Learn Dev. 2018;6(2):234–249. doi: 10.1123/jmld.2017-0019.
    1. Kim A, Darakjian N, Finley JM. Walking in fully immersive virtual environments: an evaluation of potential adverse effects in older adults and individuals with Parkinson’s disease. J Neuroeng Rehabil. 2017;14(1):1–12. doi: 10.1186/s12984-016-0214-x.
    1. Cikajlo I, Peterlin PK. Advantages of using 3D virtual reality based training in persons with Parkinson’s disease: A parallel study. J Neuroeng Rehabil. 2019;16(1):1–14. doi: 10.1186/s12984-019-0601-1.
    1. De Keersmaecker E, Lefeber N, Geys M, Jespers E, Kerckhofs E, Swinnen E. Virtual reality during gait training: does it improve gait function in persons with central nervous system movement disorders? A systematic review and meta-analysis. NeuroRehabilitation. 2019;44(1):43–66. doi: 10.3233/NRE-182551.
    1. Kobelt M, Wirth B, Schuster-Amft C. Muscle Activation During Grasping With and Without Motor Imagery in Healthy Volunteers and Patients After Stroke or With Parkinson's Disease. Front Psychol. 2018;9:597. doi: 10.3389/fpsyg.2018.00597.
    1. Shen X, Mak MK. Balance and gait training with augmented feedback improves balance confidence in people with Parkinson’s disease: a randomized controlled trial. Neurorehabil Neural Repair. 2014;28(6):524–535. doi: 10.1177/1545968313517752.
    1. Oostra K. Mental Practice through motor imagery in gait rehabilitation following acquired brain injury: Ghent University; 2016.
    1. Mirelman A, Rochester L, Maidan I, Del Din S, Alcock L, Nieuwhof F, et al. Addition of a non-immersive virtual reality component to treadmill training to reduce fall risk in older adults (V-TIME): a randomised controlled trial. Lancet. 2016;388(10050):1170–82.
    1. Ustinova K, Chernikova L, Bilimenko A, Telenkov A, Epstein N. Effect of robotic locomotor training in an individual with Parkinson's disease: a case report. Disabil Rehabil Assist Technol. 2011;6(1):77–85. doi: 10.3109/17483107.2010.507856.
    1. Nallegowda M, Singh U, Handa G, Khanna M, Wadhwa S, Yadav SL, et al. Role of sensory input and muscle strength in maintenance of balance, gait, and posture in Parkinson’s disease: a pilot study. Am J Phys Med Rehabil. 2004;83(12):898–908. doi: 10.1097/01.PHM.0000146505.18244.43.
    1. Pompeu JE, Arduini L, Botelho A, Fonseca M, Pompeu SAA, Torriani-Pasin C, et al. Feasibility, safety and outcomes of playing Kinect Adventures!™ for people with Parkinson's disease: a pilot study. Physiotherapy. 2014;100(2):162–168. doi: 10.1016/j.physio.2013.10.003.

Source: PubMed

3
Iratkozz fel