Nanobodies; new molecular instruments with special specifications for targeting, diagnosis and treatment of triple-negative breast cancer

Hamid Bakherad, Fahimeh Ghasemi, Maryam Hosseindokht, Hamed Zare, Hamid Bakherad, Fahimeh Ghasemi, Maryam Hosseindokht, Hamed Zare

Abstract

Breast cancer is the most common type of cancer in women and the second leading cause of cancer death in female. Triple-negative breast cancer has a more aggressive proliferation and a poorer clinical diagnosis than other breast cancers. The most common treatments for TNBC are chemotherapy, surgical removal, and radiation therapy, which impose many side effects and costs on patients. Nanobodies have superior advantages, which makes them attractive for use in therapeutic agents and diagnostic kits. There are numerous techniques suggested by investigators for early detection of breast cancer. Nevertheless, there are fewer molecular diagnostic methods in the case of TNBC due to the lack of expression of famous breast cancer antigens in TNBC. Although conventional antibodies have a high ability to detect tumor cell markers, their large size, instability, and costly production cause a lot of problems. Since the HER-2 do not express in TNBC diagnosis, the production of nanobodies for the diagnosis and treatment of cancer cells should be performed against other antigens expressed in TNBC. In this review, nanobodies which developed against triple negative breast cancer, were classified based on type of antigen.

Keywords: Diagnosis; Nanobody; TNBC; Treatment; VHH.

Conflict of interest statement

The authors declare that there are no conflicts of interest.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
VHH or nanobodies are derived from camel heavy chain antibodies. These nanobodies are labeled by various agents and are able to detect specific antigens in breast cancer tissues
Fig. 2
Fig. 2
Nanobody production procedure. A camel was immunized with a desired antigen. After lymphocyte separation, mRNA isolation and cDNA synthesis were performed. The variable fragment of heavy-chain antibodies (HCAbs) was amplified by PCR and cloned into the phagemid vector. The variable fragment antibody (VHH) was displayed on the surface of an M13 phage. After panning and selection of colonies with the maximum affinity, soluble VHH was expressed in E. coli

References

    1. Ji X, Han T, Kang N, Huang S, Liu Y. Preparation of RGD4C fused anti-TNFα nanobody and inhibitory activity on triple-negative breast cancer in vivo. Life Sci. 2020;260:118274. doi: 10.1016/j.lfs.2020.118274.
    1. Ji X, Peng Z, Li X, Yan Z, Yang Y, Qiao Z, Liu Y. Neutralization of TNFα in tumor with a novel nanobody potentiates paclitaxel-therapy and inhibits metastasis in breast cancer. Cancer Lett. 2017;386:24–34. doi: 10.1016/j.canlet.2016.10.031.
    1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi: 10.3322/caac.21660.
    1. Yin L, Duan J-J, Bian X-W, Yu S-c. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22(1):1–13. doi: 10.1186/s13058-020-01296-5.
    1. Zare H, Aghamollaei H, Hosseindokht M, Heiat M, Razei A, Bakherad H. Nanobodies, the potent agents to detect and treat the coronavirus infections: a systematic review. Mol Cell Probes. 2021;55:101692. doi: 10.1016/j.mcp.2020.101692.
    1. Zare H, Rajabibazl M, Rasooli I, Ebrahimizadeh W, Bakherad H, Ardakani LS, Gargari SLM. Production of nanobodies against prostate-specific membrane antigen (PSMA) recognizing LnCaP cells. Int J Biol Mark. 2014;29(2):169–179. doi: 10.5301/jbm.5000063.
    1. Bakherad H, Mousavi Gargari SL, Rasooli I, RajabiBazl M, Mohammadi M, Ebrahimizadeh W, Safaee Ardakani L, Zare H. In vivo neutralization of botulinum neurotoxins serotype E with heavy-chain camelid antibodies (VHH) Mol Biotechnol. 2013;55(2):159–167. doi: 10.1007/s12033-013-9669-1.
    1. Hosseindokht M, Bakherad H, Zare H. Nanobodies: a tool to open new horizons in diagnosis and treatment of prostate cancer. Cancer Cell Int. 2021;21(1):1–9. doi: 10.1186/s12935-021-02285-0.
    1. Hu Y, Liu C, Muyldermans S. Nanobody-based delivery systems for diagnosis and targeted tumor therapy. Front Immunol. 2017;8:1442. doi: 10.3389/fimmu.2017.01442.
    1. Barakat S, Berksoz M, Zahedimaram P, Piepoli S, Erman B. Nanobodies as molecular imaging probes. Free Rad Biol Med. 2022 doi: 10.1016/j.freeradbiomed.2022.02.031.
    1. Sánchez-García L, Voltà-Durán E, Parladé E, Mazzega E, Sánchez-Chardi A, Serna N, López-Laguna H, Mitstorfer M, Unzueta U, Vázquez E. Self-assembled nanobodies as selectively targeted, nanostructured, and multivalent materials. ACS Appl Mater Interfac. 2021;13(25):29406–29415. doi: 10.1021/acsami.1c08092.
    1. Safarzadeh Kozani P, Naseri A, Mirarefin SMJ, Salem F, Nikbakht M, Evazi Bakhshi S, Safarzadeh Kozani P. Nanobody-based CAR-T cells for cancer immunotherapy. Biomar Res. 2022;10(1):1–18. doi: 10.1186/s40364-022-00371-7.
    1. Dolk E, Van Der Vaart M, Lutje Hulsik D, Vriend G, de Haard H, Spinelli S, Cambillau C, Frenken L, Verrips T. Isolation of llama antibody fragments for prevention of dandruff by phage display in shampoo. Appl Environ Microbiol. 2005;71(1):442–450. doi: 10.1128/AEM.71.1.442-450.2005.
    1. Kastelic D, Frković-Grazio S, Baty D, Truan G, Komel R, Pompon D. A single-step procedure of recombinant library construction for the selection of efficiently produced llama VH binders directed against cancer markers. J Immunol Method. 2009;350(1–2):54–62. doi: 10.1016/j.jim.2009.08.016.
    1. Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem. 2013;82(1):775–797. doi: 10.1146/annurev-biochem-063011-092449.
    1. Kolkman JA, Law DA. Nanobodies–from llamas to therapeutic proteins. Drug Discov Today Technol. 2010;7(2):e139–e146. doi: 10.1016/j.ddtec.2010.03.002.
    1. Romao E, Morales-Yanez F, Hu Y, Crauwels M, De Pauw P, Ghassanzadeh Hassanzadeh G, Devoogdt N, Ackaert C, Vincke C, Muyldermans S. Identification of useful nanobodies by phage display of immune single domain libraries derived from camelid heavy chain antibodies. Curr Pharm Des. 2016;22(43):6500–6518. doi: 10.2174/1381612822666160923114417.
    1. Shah PP, Kakar SS. Pituitary tumor transforming gene induces epithelial to mesenchymal transition by regulation of Twist, Snail, Slug, and E-cadherin. Cancer Lett. 2011;311(1):66–76. doi: 10.1016/j.canlet.2011.06.033.
    1. Orosz P, Echtenacher B, Falk W, Rüschoff J, Weber D, Männel DN. Enhancement of experimental metastasis by tumor necrosis factor. J Exp Med. 1993;177(5):1391–1398. doi: 10.1084/jem.177.5.1391.
    1. Wang Y, Wang Y, Chen G, Li Y, Xu W, Gong S. Quantum-dot-based theranostic micelles conjugated with an anti-EGFR nanobody for triple-negative breast cancer therapy. ACS Appl Mater Interfac. 2017;9(36):30297–30305. doi: 10.1021/acsami.7b05654.
    1. Sharifi J, Khirehgesh MR, Safari F, Akbari B. EGFR and anti-EGFR nanobodies: review and update. J Drug Target. 2021;29(4):387–402. doi: 10.1080/1061186X.2020.1853756.
    1. Roovers RC, Laeremans T, Huang L, De Taeye S, Verkleij AJ, Revets H, de Haard HJ, van en Henegouwen PM. Efficient inhibition of EGFR signalling and of tumour growth by antagonistic anti-EGFR nanobodies. Cancer Immunol Immunother. 2007;56(3):303–317. doi: 10.1007/s00262-006-0180-4.
    1. Kitamura Y, Kanaya N, Moleirinho S, Du W, Reinshagen C, Attia N, Bronisz A, Revai Lechtich E, Sasaki H, Mora JL. Anti-EGFR VHH-armed death receptor ligand–engineered allogeneic stem cells have therapeutic efficacy in diverse brain metastatic breast cancers. Sci Adv. 2021;7(10):eabe8671. doi: 10.1126/sciadv.abe8671.
    1. Yoshizawa H, Sakai K, Chang AE, Shu S. Activation by anti-CD3 of tumor-draining lymph node cells for specific adoptive immunotherapy. Cell Immunol. 1991;134(2):473–479. doi: 10.1016/0008-8749(91)90318-6.
    1. Bacac M, Fauti T, Sam J, Colombetti S, Weinzierl T, Ouaret D, Bodmer W, Lehmann S, Hofer T, Hosse RJ. A novel carcinoembryonic antigen T-cell bispecific antibody (CEA TCB) for the treatment of solid tumors. Clin Cancer Res. 2016;22(13):3286–3297. doi: 10.1158/1078-0432.CCR-15-1696.
    1. Moradi-Kalbolandi S, Sharifi-K A, Darvishi B, Majidzadeh-A K, Sadeghi S, Mosayebzadeh M, Sanati H, Salehi M, Farahmand L. Evaluation the potential of recombinant anti-CD3 nanobody on immunomodulatory function. Mol Immunol. 2020;118:174–181. doi: 10.1016/j.molimm.2019.12.017.
    1. Khatibi AS, Roodbari NH, Majidzade-A K, Yaghmaei P, Farahmand L. In vivo tumor-suppressing and anti-angiogenic activities of a recombinant anti-CD3ε nanobody in breast cancer mice model. Immunotherapy. 2019;11(18):1555–1567. doi: 10.2217/imt-2019-0068.
    1. Liu D, Badell IR, Ford ML. Selective CD28 blockade attenuates CTLA-4–dependent CD8+ memory T cell effector function and prolongs graft survival. JCI Insight. 2018 doi: 10.1172/jci.insight.96378.
    1. Tang Z, Mo F, Liu A, Duan S, Yang X, Liang L, Hou X, Yin S, Jiang X, Vasylieva N. A nanobody against cytotoxic t-lymphocyte associated antigen-4 increases the anti-tumor effects of specific cd8+ T cells. J Biomed Nanotechnol. 2019;15(11):2229–2239. doi: 10.1166/jbn.2019.2859.
    1. Carpenter RL, Lo H-W. STAT3 target genes relevant to human cancers. Cancers. 2014;6(2):897–925. doi: 10.3390/cancers6020897.
    1. Singh S, Murillo G, Chen D, Parihar AS, Mehta RG. Suppression of breast cancer cell proliferation by selective single-domain antibody for intracellular STAT3. Breast Cancer. 2018;12:1178223417750858.
    1. Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, Meyerson M, Gabriel SB, Lander ES, Getz G. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014;505(7484):495–501. doi: 10.1038/nature12912.
    1. Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell. 2007;129(7):1261–1274. doi: 10.1016/j.cell.2007.06.009.
    1. Hoxhaj G, Manning BD. The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer. 2020;20(2):74–88. doi: 10.1038/s41568-019-0216-7.
    1. Song M, Bode AM, Dong Z, Lee M-H. AKT as a therapeutic target for cancer. Can Res. 2019;79(6):1019–1031. doi: 10.1158/0008-5472.CAN-18-2738.
    1. Manning BD, Toker A. AKT/PKB signaling: navigating the network. Cell. 2017;169(3):381–405. doi: 10.1016/j.cell.2017.04.001.
    1. Merckaert T, Zwaenepoel O, Gevaert K, Gettemans J. An AKT2-specific nanobody that targets the hydrophobic motif induces cell cycle arrest, autophagy and loss of focal adhesions in MDA-MB-231 cells. Biomed Pharmacother. 2021;133:111055. doi: 10.1016/j.biopha.2020.111055.
    1. Keller L, Tardy C, Ligat L, Gilhodes J, Filleron T, Bery N, Rochaix P, Aquilina A, Bdioui S, Roux T. Nanobody-based quantification of GTP-bound RHO conformation reveals RHOA and RHOC activation independent from their total expression in breast cancer. Anal Chem. 2021;93(15):6104–6111. doi: 10.1021/acs.analchem.0c05137.
    1. Fritz G, Brachetti C, Bahlmann F, Schmidt M, Kaina B. Rho GTPases in human breast tumours: expression and mutation analyses and correlation with clinical parameters. Br J Cancer. 2002;87(6):635–644. doi: 10.1038/sj.bjc.6600510.
    1. Horiuchi A, Imai T, Wang C, Ohira S, Feng Y, Nikaido T, Konishi I. Up-regulation of small GTPases, RhoA and RhoC, is associated with tumor progression in ovarian carcinoma. Lab Invest. 2003;83(6):861–870. doi: 10.1097/01.LAB.0000073128.16098.31.
    1. Correia AL, Bissell MJ. The tumor microenvironment is a dominant force in multidrug resistance. Drug Resist Updat. 2012;15(1–2):39–49. doi: 10.1016/j.drup.2012.01.006.
    1. Gocheva V, Naba A, Bhutkar A, Guardia T, Miller KM, Li CMC, Dayton TL, Sanchez-Rivera FJ, Kim-Kiselak C, Jailkhani N. Quantitative proteomics identify Tenascin-C as a promoter of lung cancer progression and contributor to a signature prognostic of patient survival. Proc Nat Acad Sci. 2017;114(28):E5625–E5634. doi: 10.1073/pnas.1707054114.
    1. Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15(12):786–801. doi: 10.1038/nrm3904.
    1. Jailkhani N, Ingram JR, Rashidian M, Rickelt S, Tian C, Mak H, Jiang Z, Ploegh HL, Hynes RO. Noninvasive imaging of tumor progression, metastasis, and fibrosis using a nanobody targeting the extracellular matrix. Proc Natl Acad Sci. 2019;116(28):14181–14190. doi: 10.1073/pnas.1817442116.
    1. Kang S, Kim MJ, An H, Kim BG, Choi YP, Kang KS, Gao M-Q, Park H, Na HJ, Kim HK. Proteomic molecular portrait of interface zone in breast cancer. J Proteome Res. 2010;9(11):5638–5645. doi: 10.1021/pr1004532.
    1. Xu S-G, Yan P-J, Shao Z-M. Differential proteomic analysis of a highly metastatic variant of human breast cancer cells using two-dimensional differential gel electrophoresis. J Cancer Res Clin Oncol. 2010;136(10):1545–1556. doi: 10.1007/s00432-010-0812-0.
    1. Van Impe K, Bethuyne J, Cool S, Impens F, Ruano-Gallego D, De Wever O, Vanloo B, Van Troys M, Lambein K, Boucherie C. A nanobody targeting the F-actin capping protein CapG restrains breast cancer metastasis. Breast Cancer Res. 2013;15(6):1–15.
    1. van Brussel AS, Adams A, Oliveira S, Dorresteijn B, El Khattabi M, Vermeulen JF, van der Wall E, Mali WPTM, Derksen PW, van Diest PJ. Hypoxia-targeting fluorescent nanobodies for optical molecular imaging of pre-invasive breast cancer. Mol Imag Biol. 2016;18(4):535–544. doi: 10.1007/s11307-015-0909-6.
    1. da Silva JL, Nunes NCC, Izetti P, de Mesquita GG, de Melo AC. Triple negative breast cancer: a thorough review of biomarkers. Crit Rev Oncol Hematol. 2020;145:102855. doi: 10.1016/j.critrevonc.2019.102855.
    1. Lyons TG. Targeted therapies for triple-negative breast cancer. Curr Treat Options Oncol. 2019;20(11):1–13. doi: 10.1007/s11864-019-0682-x.
    1. Omidfar K, Moinfar Z, Sohi AN, Tavangar SM, Haghpanah V, Heshmat R, Kashanian S, Larijani B. Expression of EGFRvIII in thyroid carcinoma: immunohistochemical study by camel antibodies. Immunol Invest. 2009;38(2):165–180. doi: 10.1080/08820130902735998.
    1. Aria H, Mahmoodi F, Ghaheh HS, Zare H, Heiat M, Bakherad H. Outlook of therapeutic and diagnostic competency of nanobodies against SARS-CoV-2: a systematic review. Anal Biochem. 2022 doi: 10.1016/j.ab.2022.114546.

Source: PubMed

3
Iratkozz fel