Oligosaccharide binding proteins from Bifidobacterium longum subsp. infantis reveal a preference for host glycans

Daniel Garrido, Jae Han Kim, J Bruce German, Helen E Raybould, David A Mills, Daniel Garrido, Jae Han Kim, J Bruce German, Helen E Raybould, David A Mills

Abstract

Bifidobacterium longum subsp. infantis (B. infantis) is a common member of the infant intestinal microbiota, and it has been characterized by its foraging capacity for human milk oligosaccharides (HMO). Its genome sequence revealed an overabundance of the Family 1 of solute binding proteins (F1SBPs), part of ABC transporters and associated with the import of oligosaccharides. In this study we have used the Mammalian Glycan Array to determine the specific affinities of these proteins. This was correlated with binding protein expression induced by different prebiotics including HMO. Half of the F1SBPs in B. infantis were determined to bind mammalian oligosaccharides. Their affinities included different blood group structures and mucin oligosaccharides. Related to HMO, other proteins were specific for oligomers of lacto-N-biose (LNB) and polylactosamines with different degrees of fucosylation. Growth on HMO induced the expression of specific binding proteins that import HMO isomers, but also bind blood group and mucin oligosaccharides, suggesting coregulated transport mechanisms. The prebiotic inulin induced other family 1 binding proteins with affinity for intestinal glycans. Most of the host glycan F1SBPs in B. infantis do not have homologs in other bifidobacteria. Finally, some of these proteins were found to be adherent to intestinal epithelial cells in vitro. In conclusion, this study represents further evidence for the particular adaptations of B. infantis to the infant gut environment, and helps to understand the molecular mechanisms involved in this process.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Oligosaccharides recognized by B. infantis…
Figure 1. Oligosaccharides recognized by B. infantis F1SBPs in the Glycan Array v3.1.
Oligosaccharides are attached to the array using different spacer arms. Sp0: -CH2CH2NH2; Sp8: -CH2CH2CH2NH2; Sp10: -NHCOCH2NH; Sp21: -N(CH3)-O-(CH2)2-NH2. RFU: Relative Fluorescence Units. Yellow circles, galactose; blue circles, glucose; yellow squares, N-Acetyl-galactosamine; blue squares, N-Acetyl-glucosamine; red triangles, fucose; pink diamonds, sialic acid. ND: Not detected.
Figure 2. Gene expression of B. infantis…
Figure 2. Gene expression of B. infantis F1SBPs growing under different prebiotics as the sole carbon source.
Numbers in the x-axis represent each F1SBP locus tag (Blon_). A: 2% HMO; B: 2% Inulin; C: 2% FOS; D: 2% GOS. Colored bars indicated F1SBPs with a change in gene expression higher than two fold; E: relative expression levels for some HMO-induced genes in exponential (blue bars) and stationary phase (white bars); F: relative expression levels for some F1SBPs under growth with GNB (purple bars), LNT (green bars) and LNnT (blue bars) as the only carbon source. Levels for growth on lactose (white bars) are shown as a reference.
Figure 3. Genetic landscapes for Blon_2177 (A),…
Figure 3. Genetic landscapes for Blon_2177 (A), Blon_0883 (B) and Blon_0343 (C), and close related homologs available in the Integrated Microbial Genome database .
Percentages represent similarity of homolog genes to those in the B. infantis ATCC 15697 genome. Locus tags are presented above each gene when available.
Figure 4. Oligosaccharide binding profile proposed for…
Figure 4. Oligosaccharide binding profile proposed for B. infantis cells growing on HMO (A) and inulin (B).
Numbers represent each F1SBP locus tag (Blon_).
Figure 5. Binding of F1SBPs to Caco-2…
Figure 5. Binding of F1SBPs to Caco-2 cells in vitro detected by flow cytometry (A–D) and confocal microcopy (E–F).
A: FITC-streptavidin; B and E: UEA-FITC 0.5 µg/ml; C: Blon_0375-FITC 1 µg/ml; D and F: Blon_2347-FITC 1 µg/ml; G: Blon_2347-FITC 1 µg/ml and DAPI (blue); H: fixed Caco-2 cells coincubated with 1 µg/ml Blon_0375-FITC; I: Caco-2 cells incubated for 10 min with 1 µg/ml Blon_0375-FITC and stained with DAPI.

References

    1. Schell MA, Karmirantzou M, Snel B, Vilanova D, Berger B, et al. The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci U S A. 2002;99:14422–14427.
    1. Xu J, Bjursell MK, Himrod J, Deng S, Carmichael LK, et al. A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science. 2003;299:2074–2076.
    1. Tam R, Saier MH., Jr Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol Rev. 1993;57:320–346.
    1. Haarman M, Knol J. Quantitative real-time PCR assays to identify and quantify fecal Bifidobacterium species in infants receiving a prebiotic infant formula. Appl Environ Microbiol. 2005;71:2318–2324.
    1. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, et al. Diversity of the human intestinal microbial flora. Science. 2005;308:1635–1638.
    1. Gibson GR, Probert HM, Loo JV, Rastall RA, Roberfroid MB. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev. 2004;17:259–275.
    1. Bouhnik Y, Raskine L, Simoneau G, Paineau D, Bornet F. The capacity of short-chain fructo-oligosaccharides to stimulate faecal bifidobacteria: a dose-response relationship study in healthy humans. Nutr J. 2006;5:8.
    1. Barboza M, Sela DA, Pirim C, Locascio RG, Freeman SL, et al. Glycoprofiling bifidobacterial consumption of galacto-oligosaccharides by mass spectrometry reveals strain-specific, preferential consumption of glycans. Appl Environ Microbiol. 2009;75:7319–7325.
    1. Ramirez-Farias C, Slezak K, Fuller Z, Duncan A, Holtrop G, et al. Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br J Nutr. 2009;101:541–550.
    1. Favier CF, de Vos WM, Akkermans AD. Development of bacterial and bifidobacterial communities in feces of newborn babies. Anaerobe. 2003;9:219–229.
    1. Kleessen B, Bunke H, Tovar K, Noack J, Sawatzki G. Influence of two infant formulas and human milk on the development of the faecal flora in newborn infants. Acta Paediatr. 1995;84:1347–1356.
    1. Adlerberth I, Wold AE. Establishment of the gut microbiota in Western infants. Acta Paediatr. 2009;98:229–238.
    1. Ventura M, Elli M, Reniero R, Zink R. Molecular microbial analysis of Bifidobacterium isolates from different environments by the species-specific amplified ribosomal DNA restriction analysis (ARDRA). FEMS Microbiol Ecol. 2001;36:113–121.
    1. Ventura M, O'Connell-Motherway M, Leahy S, Moreno-Munoz JA, Fitzgerald GF, et al. From bacterial genome to functionality; case bifidobacteria. Int J Food Microbiol. 2007;120:2–12.
    1. Kunz C, Rudloff S, Baier W, Klein N, Strobel S. Oligosaccharides in human milk: structural, functional, and metabolic aspects. Annu Rev Nutr. 2000;20:699–722.
    1. Ninonuevo MR, Park Y, Yin H, Zhang J, Ward RE, et al. A strategy for annotating the human milk glycome. J Agric Food Chem. 2006;54:7471–7480.
    1. Finne J, Breimer ME, Hansson GC, Karlsson KA, Leffler H, et al. Novel polyfucosylated N-linked glycopeptides with blood group A, H, X, and Y determinants from human small intestinal epithelial cells. J Biol Chem. 1989;264:5720–5735.
    1. Wu AM. Carbohydrate structural units in glycoproteins and polysaccharides as important ligands for Gal and GalNAc reactive lectins. J Biomed Sci. 2003;10:676–688.
    1. Podolsky DK. Oligosaccharide structures of isolated human colonic mucin species. J Biol Chem. 1985;260:15510–15515.
    1. Ward RE, Ninonuevo M, Mills DA, Lebrilla CB, German JB. In vitro fermentability of human milk oligosaccharides by several strains of bifidobacteria. Mol Nutr Food Res. 2007;51:1398–1405.
    1. Kitaoka M, Tian J, Nishimoto M. Novel putative galactose operon involving lacto-N-biose phosphorylase in Bifidobacterium longum. Appl Environ Microbiol. 2005;71:3158–3162.
    1. Ashida H, Miyake A, Kiyohara M, Wada J, Yoshida E, et al. Two distinct alpha-L-fucosidases from Bifidobacterium bifidum are essential for the utilization of fucosylated milk oligosaccharides and glycoconjugates. Glycobiology. 2009;19:1010–1017.
    1. Nishimoto M, Kitaoka M. Identification of N-acetylhexosamine 1-kinase in the complete lacto-N-biose I/galacto-N-biose metabolic pathway in Bifidobacterium longum. Appl Environ Microbiol. 2007;73:6444–6449.
    1. LoCascio RG, Ninonuevo MR, Freeman SL, Sela DA, Grimm R, et al. Glycoprofiling of bifidobacterial consumption of human milk oligosaccharides demonstrates strain specific, preferential consumption of small chain glycans secreted in early human lactation. J Agric Food Chem. 2007;55:8914–8919.
    1. Turroni F, Bottacini F, Foroni E, Mulder I, Kim JH, et al. Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging. Proc Natl Acad Sci U S A. 2010;107:19514–19519.
    1. Zivkovic AM, German JB, Lebrilla CB, Mills DA. Microbes and Health Sackler Colloquium: Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc Natl Acad Sci U S A. 2010 in press.
    1. Sela DA, Chapman J, Adeuya A, Kim JH, Chen F, et al. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci U S A. 2008;105:18964–18969.
    1. Blixt O, Head S, Mondala T, Scanlan C, Huflejt ME, et al. Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc Natl Acad Sci U S A. 2004;101:17033–17038.
    1. Hakomori SI. Structure and function of glycosphingolipids and sphingolipids: recollections and future trends. Biochim Biophys Acta. 2008;1780:325–346.
    1. Holgersson J, Jovall PA, Breimer ME. Glycosphingolipids of human large intestine: detailed structural characterization with special reference to blood group compounds and bacterial receptor structures. J Biochem. 1991;110:120–131.
    1. Morgan WT, Watkins WM. Genetic and biochemical aspects of human blood-group A-, B-, H-, Le-a- and Le-b-specificity. Br Med Bull. 1969;25:30–34.
    1. Kogelberg H, Piskarev VE, Zhang Y, Lawson AM, Chai W. Determination by electrospray mass spectrometry and 1H-NMR spectroscopy of primary structures of variously fucosylated neutral oligosaccharides based on the iso-lacto-N-octaose core. Eur J Biochem. 2004;271:1172–1186.
    1. Keranen A. Gangliosides of the human gastrointestinal mucosa. Biochim Biophys Acta. 1975;409:320–328.
    1. Krivan HC, Clark GF, Smith DF, Wilkins TD. Cell surface binding site for Clostridium difficile enterotoxin: evidence for a glycoconjugate containing the sequence Gal alpha 1–3 Gal beta 1-4GlcNAc. Infect Immun. 1986;53:573–581.
    1. Asakuma S, Akahori M, Kimura K, Watanabe Y, Nakamura T, et al. Sialyl oligosaccharides of human colostrum: changes in concentration during the first three days of lactation. Biosci Biotechnol Biochem. 2007;71:1447–1451.
    1. Hakomori S. Antigen structure and genetic basis of histo-blood groups A, B and O: their changes associated with human cancer. Biochim Biophys Acta. 1999;1473:247–266.
    1. Parche S, Amon J, Jankovic I, Rezzonico E, Beleut M, et al. Sugar transport systems of Bifidobacterium longum NCC2705. J Mol Microbiol Biotechnol. 2007;12:9–19.
    1. Larson G, Watsfeldt P, Falk P, Leffler H, Koprowski H. Fecal excretion of intestinal glycosphingolipids by newborns and young children. FEBS Lett. 1987;214:41–44.
    1. Ruas-Madiedo P, Gueimonde M, Fernandez-Garcia M, de los Reyes-Gavilan CG, Margolles A. Mucin degradation by Bifidobacterium strains isolated from the human intestinal microbiota. Appl Environ Microbiol. 2008;74:1936–1940.
    1. Wada J, Ando T, Kiyohara M, Ashida H, Kitaoka M, et al. Bifidobacterium bifidum lacto-N-biosidase, a critical enzyme for the degradation of human milk oligosaccharides with a type 1 structure. Appl Environ Microbiol. 2008;74:3996–4004.
    1. Sela DA, Mills DA. Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol. 2010;18:298–307.
    1. Locascio RG, Desai P, Sela DA, Weimer B, Mills DA. Broad conservation of milk utilization genes in Bifidobacterium longum subsp. infantis as revealed by comparative genomic hybridization. Appl Environ Microbiol. 2010;76:7373–7381.
    1. Suzuki R, Wada J, Katayama T, Fushinobu S, Wakagi T, et al. Structural and thermodynamic analyses of solute-binding Protein from Bifidobacterium longum specific for core 1 disaccharide and lacto-N-biose I. J Biol Chem. 2008;283:13165–13173.
    1. Gonzalez R, Klaassens ES, Malinen E, de Vos WM, Vaughan EE. Differential transcriptional response of Bifidobacterium longum to human milk, formula milk, and galactooligosaccharide. Appl Environ Microbiol. 2008;74:4686–4694.
    1. Xiao JZ, Takahashi S, Nishimoto M, Odamaki T, Yaeshima T, et al. Distribution of in vitro fermentation ability of lacto-N-biose I, a major building block of human milk oligosaccharides, in bifidobacterial strains. Appl Environ Microbiol. 2010;76:54–59.
    1. Miwa M, Horimoto T, Kiyohara M, Katayama T, Kitaoka M, et al. Cooperation of {beta}-galactosidase and {beta}-N-acetylhexosaminidase from bifidobacteria in assimilation of human milk oligosaccharides with type 2 structure. Glycobiology. 2010;20:1402–1409.
    1. Coppa GV, Zampini L, Galeazzi T, Facinelli B, Ferrante L, et al. Human milk oligosaccharides inhibit the adhesion to Caco-2 cells of diarrheal pathogens: Escherichia coli, Vibrio cholerae, and Salmonella fyris. Pediatr Res. 2006;59:377–382.
    1. Ruiz-Palacios GM, Cervantes LE, Ramos P, Chavez-Munguia B, Newburg DS. Campylobacter jejuni binds intestinal H(O) antigen (Fuc alpha 1, 2 Gal beta 1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J Biol Chem. 2003;278:14112–14120.
    1. Chaturvedi P, Warren CD, Altaye M, Morrow AL, Ruiz-Palacios G, et al. Fucosylated human milk oligosaccharides vary between individuals and over the course of lactation. Glycobiology. 2001;11:365–372.
    1. Guglielmetti S, Tamagnini I, Mora D, Minuzzo M, Scarafoni A, et al. Implication of an outer surface lipoprotein in adhesion of Bifidobacterium bifidum to Caco-2 cells. Appl Environ Microbiol. 2008;74:4695–4702.
    1. Higgins MA, Abbott DW, Boulanger MJ, Boraston AB. Blood group antigen recognition by a solute-binding protein from a serotype 3 strain of Streptococcus pneumoniae. J Mol Biol. 2009;388:299–309.
    1. O'Hara AM, O'Regan P, Fanning A, O'Mahony C, Macsharry J, et al. Functional modulation of human intestinal epithelial cell responses by Bifidobacterium infantis and Lactobacillus salivarius. Immunology. 2006;118:202–215.
    1. Candela M, Perna F, Carnevali P, Vitali B, Ciati R, et al. Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production. Int J Food Microbiol. 2008;125:286–292.
    1. Ewaschuk JB, Diaz H, Meddings L, Diederichs B, Dmytrash A, et al. Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function. Am J Physiol Gastrointest Liver Physiol. 2008;295:G1025–1034.
    1. Holgersson J, Stromberg N, Breimer ME. Glycolipids of human large intestine: difference in glycolipid expression related to anatomical localization, epithelial/non-epithelial tissue and the ABO, Le and Se phenotypes of the donors. Biochimie. 1988;70:1565–1574.
    1. Macher BA, Klock JC. Isolation and chemical characterization of neutral glycosphingolipids of human neutrophils. J Biol Chem. 1980;255:2092–2096.
    1. Miller-Podraza H, Lanne B, Angstrom J, Teneberg S, Milh MA, et al. Novel binding epitope for Helicobacter pylori found in neolacto carbohydrate chains: structure and cross-binding properties. J Biol Chem. 2005;280:19695–19703.
    1. Orlandi PA, Critchley DR, Fishman PH. The heat-labile enterotoxin of Escherichia coli binds to polylactosaminoglycan-containing receptors in CaCo-2 human intestinal epithelial cells. Biochemistry. 1994;33:12886–12895.
    1. Newburg DS, Ashkenazi S, Cleary TG. Human milk contains the Shiga toxin and Shiga-like toxin receptor glycolipid Gb3. J Infect Dis. 1992;166:832–836.
    1. Stromberg N, Marklund BI, Lund B, Ilver D, Hamers A, et al. Host-specificity of uropathogenic Escherichia coli depends on differences in binding specificity to Gal alpha 1–4 Gal-containing isoreceptors. EMBO J. 1990;9:2001–2010.
    1. Karlsson KA, Larson G. Molecular characterization of cell surface antigens of fetal tissue. Detailed analysis of glycosphingolipids of meconium of a human O Le(a– –b+) secretor. J Biol Chem. 1981;256:3512–3524.
    1. Lindberg AA, Brown JE, Stromberg N, Westling-Ryd M, Schultz JE, et al. Identification of the carbohydrate receptor for Shiga toxin produced by Shigella dysenteriae type 1. J Biol Chem. 1987;262:1779–1785.
    1. Falguieres T, Maak M, von Weyhern C, Sarr M, Sastre X, et al. Human colorectal tumors and metastases express Gb3 and can be targeted by an intestinal pathogen-based delivery tool. Mol Cancer Ther. 2008;7:2498–2508.
    1. Kovbasnjuk O, Mourtazina R, Baibakov B, Wang T, Elowsky C, et al. The glycosphingolipid globotriaosylceramide in the metastatic transformation of colon cancer. Proc Natl Acad Sci U S A. 2005;102:19087–19092.
    1. McCarthy J, O'Mahony L, O'Callaghan L, Sheil B, Vaughan EE, et al. Double blind, placebo controlled trial of two probiotic strains in interleukin 10 knockout mice and mechanistic link with cytokine balance. Gut. 2003;52:975–980.
    1. O'Mahony L, McCarthy J, Kelly P, Hurley G, Luo F, et al. Lactobacillus and bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology. 2005;128:541–551.
    1. Crociani F, Alessandrini A, Mucci MM, Biavati B. Degradation of complex carbohydrates by Bifidobacterium spp. Int J Food Microbiol. 1994;24:199–210.
    1. Lee JH, O'Sullivan DJ. Genomic insights into bifidobacteria. Microbiol Mol Biol Rev. 2010;74:378–416.
    1. Zhang G, Mills DA, Block DE. Development of chemically defined media supporting high-cell-density growth of lactococci, enterococci, and streptococci. Appl Environ Microbiol. 2009;75:1080–1087.
    1. Ward RE, Ninonuevo M, Mills DA, Lebrilla CB, German JB. In vitro fermentation of breast milk oligosaccharides by Bifidobacterium infantis and Lactobacillus gasseri. Appl Environ Microbiol. 2006;72:4497–4499.
    1. Parche S, Beleut M, Rezzonico E, Jacobs D, Arigoni F, et al. Lactose-over-glucose preference in Bifidobacterium longum NCC2705: glcP, encoding a glucose transporter, is subject to lactose repression. J Bacteriol. 2006;188:1260–1265.
    1. Markowitz VM, Korzeniewski F, Palaniappan K, Szeto E, Werner G, et al. The integrated microbial genomes (IMG) system. Nucleic Acids Res. 2006;34:D344–348.

Source: PubMed

3
Iratkozz fel