ELN risk stratification and outcomes in secondary and therapy-related AML patients consolidated with allogeneic stem cell transplantation

Madlen Jentzsch, Juliane Grimm, Marius Bill, Dominic Brauer, Donata Backhaus, Karoline Goldmann, Julia Schulz, Dietger Niederwieser, Uwe Platzbecker, Sebastian Schwind, Madlen Jentzsch, Juliane Grimm, Marius Bill, Dominic Brauer, Donata Backhaus, Karoline Goldmann, Julia Schulz, Dietger Niederwieser, Uwe Platzbecker, Sebastian Schwind

Abstract

Secondary or therapy-related acute myeloid leukemia (s/tAML) differs biologically from de novo disease. In general s/tAML patients have inferior outcomes after chemotherapy, compared to de novo cases and often receive allogeneic stem cell transplantation (HSCT) for consolidation. The European LeukemiaNet (ELN) risk stratification system is commonly applied in AML but the clinical significance is unknown in s/tAML. We analyzed 644 s/tAML or de novo AML patients receiving HSCT. s/tAML associated with older age and adverse risk, including higher ELN risk. Overall, s/tAML patients had similar cumulative incidence of relapse (CIR), but higher non-relapse mortality (NRM) and shorter overall survival (OS). In multivariate analyses, after adjustment for ELN risk and pre-HSCT measurable residual disease status, disease origin did not impact outcomes. Within the ELN favorable risk group, CIR was higher in s/tAML compared to de novo AML patients likely due to a different distribution of genetic aberrations, which did not translate into shorter OS. Within the ELN intermediate and adverse group outcomes were similar in de novo and s/tAML patients. Thus, not all s/tAML have a dismal prognosis and outcomes of s/tAML after allogeneic HSCT in remission are comparable to de novo patients when considering ELN risk.

Trial registration: ClinicalTrials.gov NCT03904251 NCT04128748.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Fig. 1. AML patients in the association…
Fig. 1. AML patients in the association set (n = 644).
a Distribution of disease origin and b distribution of the ELN risk groups according to disease origin.
Fig. 2. Outcome according to disease origin…
Fig. 2. Outcome according to disease origin (de novo vs secondary or treatment-related AML) for patients in the outcome set (n = 534).
a Cumulative incidence of relapse, b non-relapse mortality, and c overall survival in all patients.
Fig. 3. Outcome according to disease origin…
Fig. 3. Outcome according to disease origin (de novo vs secondary or treatment-related AML) for patients in the outcome set (n = 534) given separately for both conditioning regimens.
a Cumulative incidence of relapse, b non-relapse mortality, and c overall survival for patients receiving NMA-HSCT (n = 379) and d cumulative incidence of relapse, e non-relapse mortality, and f overall survival for patients receiving RIC- or MAC-HSCT (n = 155).
Fig. 4. Outcome and disease characteristics according…
Fig. 4. Outcome and disease characteristics according to disease origin (de novo vs secondary or treatment-related AML) within the separate ELN risk groups.
a Distribution of primary disease, b cumulative incidence of relapse, c overall survival, and d genetic associations in patients with favorable ELN risk, e distribution of primary disease, f cumulative incidence of relapse, g overall survival, and h genetic associations in patients with intermediate ELN risk and i distribution of primary disease, j cumulative incidence of relapse, k overall survival, and l genetic associations in patients with adverse ELN risk.

References

    1. Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Ebert BL, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129:424–47. doi: 10.1182/blood-2016-08-733196.
    1. Herold T, Rothenberg-Thurley M, Grunwald VV, Janke H, Goerlich D, Sauerland MC et al. Validation and refinement of the revised 2017 European LeukemiaNet genetic risk stratification of acute myeloid leukemia. Leukemia. 2020. 10.1038/s41375-020-0806-0.
    1. Grimm J, Jentzsch M, Bill M, Goldmann K, Schulz J, Niederwieser D et al. Prognostic Impact of the European LeukemiaNet 2017 Risk classification in acute myeloid leukemia patients receiving allogeneic transplantation. Blood Adv. 2020;4:3864–74.
    1. Schuurhuis GJ, Heuser M, Freeman S, Béne MC, Buccisano F, Cloos J, et al. Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party. Blood. 2018;131:1275–91. doi: 10.1182/blood-2017-09-801498.
    1. Larson RA. Cytogenetics, not just previous therapy, determines the course of therapy-related myeloid neoplasms. J Clin Oncol. 2012;30:2300–2. doi: 10.1200/JCO.2011.41.1215.
    1. Morton LM, Dores GM, Tucker MA, Kim CJ, Onel K, Gilbert ES, et al. Evolving risk of therapy-related acute myeloid leukemia following cancer chemotherapy among adults in the United States, 1975–2008. Blood. 2013;121:2996–3004. doi: 10.1182/blood-2012-08-448068.
    1. Kayser S, Do K, Ko C, Horst HA, Held G, Lilienfeld-toal MVon, et al. The impact of therapy-related acute myeloid leukemia (AML) on outcome in 2853 adult patients with newly diagnosed AML. Blood. 2011;117:2137–46. doi: 10.1182/blood-2010-08-301713.
    1. Granfeldt Østgård LS, Medeiros BC, Sengeløv H, Nørgaard M, Andersen MK, Dufva I, et al. Epidemiology and clinical significance of secondary and therapy-related acute myeloid leukemia: a national population-based cohort study. J Clin Oncol. 2015;33:3641–9. doi: 10.1200/JCO.2014.60.0890.
    1. Hulegårdh E, Nilsson C, Lazarevic V, Garelius H, Antunovic P, Rangert Derolf Å, et al. Characterization and prognostic features of secondary acute myeloid leukemia in a population-based setting: a report from the Swedish Acute Leukemia Registry. Am J Hematol. 2015;90:208–14. doi: 10.1002/ajh.23908.
    1. Mesa RA, Li CY, Ketterling RP, Schroeder GS, Knudson RA, Tefferi A. Leukemic transformation in myelofibrosis with myeloid metaplasia: A single-institution experience with 91 cases. Blood. 2005;105:973–7. doi: 10.1182/blood-2004-07-2864.
    1. Rogers HJ, Wang X, Xie Y, Davis AR, Thakral B, Wang SA, et al. Comparison of therapy-related and de novo core binding factor acute myeloid leukemia: a bone marrow pathology group study. Am J Hematol. 2020;95:799–808. doi: 10.1002/ajh.25814.
    1. Schoch C, Kern W, Schnittger S, Hiddemann W, Haferlach T. Karyotype is an independent prognostic parameter in therapy-related acute myeloid leukemia (t-AML): An analysis of 93 patients with t-AML in comparison to 1091 patients with de novo AML. Leukemia. 2004;18:120–5. doi: 10.1038/sj.leu.2403187.
    1. Kröger N, Eikema D, Köster L, Beelen D, de Wreede LC, Finke J, et al. Impact of primary disease on outcome after allogeneic stem cell transplantation for transformed secondary acute leukaemia. Br J Haematol. 2019;185:725–32. doi: 10.1111/bjh.15819.
    1. Kröger N, Brand R, Van Biezen A, Zander A, Dierlamm J, Niederwieser D, et al. Risk factors for therapy-related myelodysplastic syndrome and acute myeloid leukemia treated with allogeneic stem cell transplantation. Haematologica. 2009;94:542–9. doi: 10.3324/haematol.2008.000927.
    1. Lee CJ, Labopin M, Beelen D, Finke J, Blaise D, Ganser A, et al. Comparative outcomes of myeloablative and reduced-intensity conditioning allogeneic hematopoietic cell transplantation for therapy-related acute myeloid leukemia with prior solid tumor: a report from the acute leukemia working party of the European societ. Am J Hematol. 2019;94:431–8. doi: 10.1002/ajh.25395.
    1. Finke J, Schmoor C, Bertz H, Marks R, Wasch R, Zeiser R, et al. Long-term follow-up of therapy-related myelodysplasia and AML patients treated with allogeneic hematopoietic cell transplantation. Bone Marrow Transpl. 2016;51:771–7. doi: 10.1038/bmt.2015.338.
    1. Litzow MR, Tarima S, Pérez WS, Bolwell BJ, Cairo MS, Camitta BM, et al. Allogeneic transplantation for therapy-related myelodysplastic syndrome and acute myeloid leukemia. Blood. 2010;115:1850–7. doi: 10.1182/blood-2009-10-249128.
    1. Sengsayadeth S, Gatwood KS, Boumendil A, Labopin M, Finke J, Ganser A, et al. Conditioning intensity in secondary AML with prior myelodysplastic syndrome/myeloproliferative disorders: An EBMT ALWP study. Blood Adv. 2018;2:2127–35. doi: 10.1182/bloodadvances.2018019976.
    1. Schmaelter AK, Labopin M, Socié G, Itälä-Remes M, Blaise D, Yakoub-Agha I, et al. Inferior outcome of allogeneic stem cell transplantation for secondary acute myeloid leukemia in first complete remission as compared to de novo acute myeloid leukemia. Blood Cancer J. 2020;10:10–26.. doi: 10.1038/s41408-020-0296-3.
    1. Michelis FV, Atenafu EG, Gupta V, Kim DD, Kuruvilla J, Lipton JH, et al. Comparable outcomes post allogeneic hematopoietic cell transplant for patients with de novo or secondary acute myeloid leukemia in first remission. Bone Marrow Transpl. 2015;50:907–13. doi: 10.1038/bmt.2015.59.
    1. Zeijlemaker W, Grob T, Meijer R, Hanekamp D, Kelder A, Carbaat-Ham JC, et al. CD34+CD38− leukemic stem cell frequency to predict outcome in acute myeloid leukemia. Leukemia. 2019;33:1102–12. doi: 10.1038/s41375-018-0326-3.
    1. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.
    1. Bill M, Jentzsch M, Grimm J, Schubert K, Lange T, Cross M, et al. Prognostic impact of the European LeukemiaNet standardized reporting system in older AML patients receiving stem cell transplantation after non-myeloablative conditioning. Bone Marrow Transpl. 2017;52:932–5. doi: 10.1038/bmt.2017.42.
    1. Jentzsch M, Bill M, Grimm J, Schulz J, Schuhmann L, Brauer D et al. High expression of the stem cell marker GPR56 at diagnosis identifies acute myeloid leukemia patients at higher relapse risk after allogeneic stem cell transplantation in context with the CD34+/CD38− population. Haematologica. 2020;105:229260.
    1. Grimm J, Bill M, Jentzsch M, Beinicke S, Häntschel J, Goldmann K et al. Clinical impact of clonal hematopoiesis in acute myeloid leukemia patients receiving allogeneic transplantation. Bone Marrow Transplant. 2019;54. 10.1038/s41409-018-0413-0.
    1. Jentzsch M, Bill M, Grimm J, Schulz J, Beinicke S, Häntschel J, et al. Prognostic impact of blood MN1 copy numbers before allogeneic stem cell transplantation in patients with acute myeloid leukemia. HemaSphere. 2019;3:e167. doi: 10.1097/HS9.0000000000000167.
    1. Bill M, Grimm J, Jentzsch M, Kloss L, Goldmann K, Schulz J et al. Digital droplet PCR-based absolute quantification of pre-transplant NPM1 mutation burden predicts relapse in acute myeloid leukemia patients. Ann Hematol. 2018;97. 10.1007/s00277-018-3373-y.
    1. Jentzsch M, Bill M, Grimm J, Schulz J, Goldmann K, Beinicke S et al. High BAALC copy numbers in peripheral blood prior to allogeneic transplantation predict early relapse in acute myeloid leukemia patients. Oncotarget 2017;8. 10.18632/oncotarget.21322.
    1. R Development Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria: R Development Core Team; 2017. ISBN 3-900051-07-0. .
    1. Breems DA, Van Putten WLJ, De Greef GE, Van Zelderen-Bhola SL, Gerssen-Schoorl KBJ, Mellink CHM, et al. Monosomal karyotype in acute myeloid leukemia: a better indicator of poor prognosis than a complex karyotype. J Clin Oncol. 2008;26:4791–7. doi: 10.1200/JCO.2008.16.0259.
    1. Harada Y, Nagata Y, Kihara R, Ishikawa Y, Asou N, Ohtake S, et al. Prognostic analysis according to the 2017 ELN risk stratification by genetics in adult acute myeloid leukemia patients treated in the Japan Adult Leukemia Study Group (JALSG) AML201 study. Leuk Res. 2018;66:20–27. doi: 10.1016/j.leukres.2018.01.008.
    1. Koh Y, Kim I, Bae JY, Song EY, Kim HK, Yoon SS, et al. Prognosis of secondary acute myeloid leukemia is affected by the type of the preceding hematologic disorders and the presence of trisomy 8. Jpn J Clin Oncol. 2010;40:1037–45. doi: 10.1093/jjco/hyq097.
    1. Lindsley RC, Mar BG, Mazzola E, Grauman PV, Shareef S, Allen SL, et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 2015;125:1367–76. doi: 10.1182/blood-2014-11-610543.
    1. Lancet JE, Uy GL, Cortes JE, Newell LF, Lin TL, Ritchie EK, et al. Cpx-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. J Clin Oncol. 2018;36:2684–92. doi: 10.1200/JCO.2017.77.6112.
    1. Stone RM, Mandrekar SJ, Sanford BL, Laumann K, Geyer S, Bloomfield CD, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 Mutation. N. Engl J Med. 2017;377:454–64. doi: 10.1056/NEJMoa1614359.
    1. Hills RK, Castaigne S, Appelbaum FR, Delaunay J, Petersdorf S, Othus M, et al. The addition of gemtuzumab ozogamicin to induction chemotherapy in acute myeloid leukaemia: an individualpatient data meta-analysis of randomised trials in adults. Lancet Oncol. 2014;15:986–96. doi: 10.1016/S1470-2045(14)70281-5.

Source: PubMed

3
Iratkozz fel