HIV-2 protease is inactivated after oxidation at the dimer interface and activity can be partly restored with methionine sulphoxide reductase

D A Davis, F M Newcomb, J Moskovitz, P T Wingfield, S J Stahl, J Kaufman, H M Fales, R L Levine, R Yarchoan, D A Davis, F M Newcomb, J Moskovitz, P T Wingfield, S J Stahl, J Kaufman, H M Fales, R L Levine, R Yarchoan

Abstract

Human immunodeficiency viruses encode a homodimeric protease that is essential for the production of infectious virus. Previous studies have shown that HIV-1 protease is susceptible to oxidative inactivation at the dimer interface at Cys-95, a process that can be reversed both chemically and enzymically. Here we demonstrate a related yet distinct mechanism of reversible inactivation of the HIV-2 protease. Exposure of the HIV-2 protease to H(2)O(2) resulted in conversion of the two methionine residues (Met-76 and Met-95) to methionine sulphoxide as determined by amino acid analysis and mass spectrometry. This oxidation completely inactivated protease activity. However, the activity could be restored (up to 40%) after exposure of the oxidized protease to methionine sulphoxide reductase. This treatment resulted in the reduction of methionine sulphoxide 95 but not methionine sulphoxide 76 to methionine, as determined by peptide mapping/mass spectrometry. We also found that exposure of immature HIV-2 particles to H(2)O(2) led to the inhibition of polyprotein processing in maturing virus particles comparable to that demonstrated for HIV-1 particles. Thus oxidative inactivation of the HIV protease in vitro and in maturing viral particles is not restricted to the type 1 proteases. These studies indicate that two distinct retroviral proteases are susceptible to inactivation after a very minor modification at residue 95 of the dimer interface and suggest that the dimer interface might be a viable target for the development of novel protease inhibitors.

References

    1. Arch Biochem Biophys. 1983 May;223(1):271-81
    1. FEBS Lett. 1999 Jul 23;455(3):247-50
    1. J Biol Chem. 1990 Aug 25;265(24):14209-19
    1. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5552-6
    1. Biofactors. 1991 Jun;3(2):91-6
    1. Biochemistry. 1993 Apr 6;32(13):3368-76
    1. Biochem Mol Biol Int. 1993 Apr;29(6):1009-14
    1. Am J Physiol. 1994 Feb;266(2 Pt 1):G247-54
    1. Arch Biochem Biophys. 1994 Apr;310(1):273-81
    1. J Biol Chem. 1994 Oct 7;269(40):25010-5
    1. J Biochem. 1994 Jul;116(1):42-6
    1. Free Radic Biol Med. 1995 Jan;18(1):93-105
    1. Arch Biochem Biophys. 1995 Sep 10;322(1):127-34
    1. Trends Biochem Sci. 1995 Sep;20(9):374
    1. J Chromatogr A. 1995 Sep 29;712(1):177-90
    1. Biochemistry. 1996 Feb 20;35(7):2482-8
    1. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):2095-9
    1. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7985-90
    1. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15036-40
    1. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9585-9
    1. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9932-7
    1. J Biol Chem. 1997 Oct 10;272(41):25935-40
    1. Int J Biochem Cell Biol. 1997 Jul;29(7):985-92
    1. J Biol Chem. 1998 Jan 2;273(1):392-7
    1. Exp Eye Res. 1998 Apr;66(4):477-85
    1. J Virol. 1999 Feb;73(2):1156-64
    1. Methods Enzymol. 1999;300:239-44
    1. Exp Eye Res. 1999 Jun;68(6):715-24
    1. Nature. 1988 Jun 2;333(6172):457-61

Source: PubMed

3
Iratkozz fel