Current and future applications of liquid biopsy in nonsmall cell lung cancer from early to advanced stages

Nicolas Guibert, Anne Pradines, Gilles Favre, Julien Mazieres, Nicolas Guibert, Anne Pradines, Gilles Favre, Julien Mazieres

Abstract

Liquid biopsy refers to the analysis of any tumour-derived material circulating in the blood or any other body fluid. This concept is particularly relevant in lung cancer as the tumour is often difficult to reach and may need an invasive and potentially harmful procedure. Moreover, the multitude of anticancer drugs and their sequential use underline the importance of conducting an iterative assessment of tumour biology. Liquid biopsies can noninvasively detect any targetable genomic alteration and guide corresponding targeted therapy, in addition to monitoring response to treatment and exploring the genetic changes at resistance, overcoming spatial and temporal heterogeneity.In this article, we review the available data in the field, which suggest the potential of liquid biopsy in the area of lung cancer, with a particular focus on cell-free DNA and circulating tumour cells. We discuss their respective applications in patient selection and monitoring through targeted therapy, as well as immune checkpoint inhibitors. The current data and future applications of liquid biopsy in the early stage setting are also investigated.Liquid biopsy has the potential to help manage nonsmall cell lung cancer throughout all stages of lung cancer: screening, minimal residual disease detection to guide adjuvant treatment, early detection of relapse, systemic treatment initiation and monitoring of response (targeted or immune therapy), and resistance genotyping.

Conflict of interest statement

Conflict of interest: N. Guibert reports non-financial support from BMS, MSD and Pfizer, and personal fees from AstraZeneca, BMS, and MSD, outside the submitted work. Conflict of interest: A. Pradines has nothing to disclose. Conflict of interest: G. Favre has nothing to disclose. Conflict of interest: J. Mazieres has nothing to disclose.

Copyright ©ERS 2020.

Figures

FIGURE 1
FIGURE 1
Liquid biopsy compared to tissue biopsy can capture both spatial (a versus b) and temporal (c) tumour heterogeneity and noninvasively follow the subclonal evolution of the disease through treatment.
FIGURE 2
FIGURE 2
Summary of the technical properties and performances of the four main plasma genotyping platforms studied for early stage nonsmall cell lung cancer detection. #: early stages: hybrid capture, plasma next-generation sequencing (NGS) (16 genes) and 8 protein markers. ¶: minimal residual disease (MRD): plasma NGS, patient-specific multiplex PCR (10 to 22 single-nucleotide variations), subclonal evolution. +: early stage MRD: hybrid capture, plasma NGS (139 genes). §: early stage MRD: hybrid capture, plasma NGS (58 genes).
FIGURE 3
FIGURE 3
Potential applications of liquid biopsy in nonsmall cell lung cancer throughout treatment. In early stage disease, screening requires plasma next-generation sequencing (NGS) using large panels, with both high sensitivity (limited by low tumour shed) and perfect specificity, or highly specific circulating tumour cell (CTC) detection platforms. To discriminate benign from malignant nodules, plasma NGS could be useful and avoid invasive biopsies. Circulating tumour (ct)DNA or CTCs burden before surgery have the potential to help guide neoadjuvant therapy, while minimal residual disease detection after surgery (large or patient-specific NGS panels) may guide adjuvant therapy. In advanced stage disease, plasma genotyping is well established in the epidermal growth factor receptor (EGFR) setting, and NGS platforms allow for a wider genotyping at both diagnosis (including other oncogenic drivers detection and blood tumour mutation burden (b-TMB) estimation) and resistance. MAF: mutant allele frequency; ICI: immune checkpoint inhibitor; PD-L1: programmed-death ligand 1.

References

    1. Malapelle U, Bellevicine C, De Luca C, et al. . EGFR mutations detected on cytology samples by a centralized laboratory reliably predict response to gefitinib in non-small cell lung carcinoma patients. Cancer Cytopathol 2013; 121: 552–560. doi:10.1002/cncy.21322
    1. Folch E, Yamaguchi N, VanderLaan PA, et al. . Adequacy of lymph node transbronchial needle aspirates using convex probe endobronchial ultrasound for multiple tumor genotyping techniques in non-small-cell lung cancer. J Thorac Oncol 2013; 8: 1438–1444.
    1. Siravegna G, Marsoni S, Siena S, et al. . Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol 2017; 14: 531–548. doi:10.1038/nrclinonc.2017.14
    1. Inamura K. Diagnostic and therapeutic potential of microRNAs in lung cancer. Cancers 2017; 9: E49.
    1. Best MG, Wesseling P, Wurdinger T. Tumor-educated platelets as a noninvasive biomarker source for cancer detection and progression monitoring. Cancer Res 2018; 78: 3407–3412.
    1. Reckamp KL, Melnikova VO, Karlovich C, et al. . A highly sensitive and quantitative test platform for detection of NSCLC EGFR mutations in urine and plasma. J Thorac Oncol 2016; 11: 1690–1700.
    1. Guibert N, Tsukada H, Hwang DH, et al. . Liquid biopsy of fine-needle aspiration supernatant for lung cancer genotyping. Lung Cancer 2018; 122: 72–75.
    1. De Mattos-Arruda L, Mayor R, Ng CKY, et al. . Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat Commun 2015; 6: 8839. doi:10.1038/ncomms9839
    1. Kimura H, Fujiwara Y, Sone T, et al. . EGFR mutation status in tumour-derived DNA from pleural effusion fluid is a practical basis for predicting the response to gefitinib. Br J Cancer 2006; 95: 1390–1395. doi:10.1038/sj.bjc.6603428
    1. Mandel P, Metais P. Les acides nucléiques du plasma sanguin chez l'homme. C R Seances Soc Biol Fil 1948; 142: 241–243.
    1. Crowley E, Di Nicolantonio F, Loupakis F, et al. . Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol 2013; 10: 472–484. doi:10.1038/nrclinonc.2013.110
    1. Jahr S, Hentze H, Englisch S, et al. . DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 2001; 61: 1659–1665.
    1. Mouliere F, Chandrananda D, Piskorz AM, et al. . Enhanced detection of circulating tumor DNA by fragment size analysis. Sci Transl Med 2018; 10: eaat4921. doi:10.1126/scitranslmed.aat4921
    1. Mouliere F, El Messaoudi S, Gongora C, et al. . Circulating cell-free DNA from colorectal cancer patients may reveal high KRAS or BRAF mutation load. Transl Oncol 2013; 6: 319–328. doi:10.1593/tlo.12445
    1. Thierry AR, El Messaoudi S, Gahan PB, et al. . Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev 2016; 35: 347–376. doi:10.1007/s10555-016-9629-x
    1. Rykova EY, Morozkin ES, Ponomaryova AA, et al. . Cell-free and cell-bound circulating nucleic acid complexes: mechanisms of generation, concentration and content. Expert Opin Biol Ther 2012; 12: Suppl. 1, S141–S153. doi:10.1517/14712598.2012.673577
    1. Gahan PB, Stroun M. The virtosome – novel cytosolic informative entity and intercellular messenger. Cell Biochem Funct 2010; 28: 529–538. doi:10.1002/cbf.1690
    1. Anker P, Lyautey J, Lefort F, et al. . Transformation de cellules NIH/3T3 et cellules SW 480 porteuses d'une mutation K-ras [Transformation of NIH/3T3 cells and SW 480 cells displaying K-ras mutation]. C R Acad Sci III 1994; 317: 869–874.
    1. Leon SA, Shapiro B, Sklaroff DM, et al. . Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 1977; 37: 646–650.
    1. Gautschi O, Bigosch C, Huegli B, et al. . Circulating deoxyribonucleic acid as prognostic marker in non-small-cell lung cancer patients undergoing chemotherapy. J Clin Oncol 2004; 22: 4157–4164. doi:10.1200/JCO.2004.11.123
    1. Tissot C, Toffart A-C, Villar S, et al. . Circulating free DNA concentration is an independent prognostic biomarker in lung cancer. Eur Respir J 2015; 46: 1773–1780. doi:10.1183/13993003.00676-2015
    1. Rainer TH, Lam NYL. Circulating nucleic acids and critical illness. Ann NY Acad Sci 2006; 1075: 271–277. doi:10.1196/annals.1368.035
    1. Diehl F, Li M, He Y, et al. . BEAMing: single-molecule PCR on microparticles in water-in-oil emulsions. Nat Methods 2006; 3: 551–559. doi:10.1038/nmeth898
    1. Oxnard GR, Paweletz CP, Kuang Y, et al. . Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA. Clin Cancer Res 2014; 20: 1698–1705. doi:10.1158/1078-0432.CCR-13-2482
    1. Guibert N, Pradines A, Casanova A, et al. . Detection and monitoring of the BRAF mutation in circulating tumor cells and circulating tumor DNA in BRAF-mutated lung adenocarcinoma. J Thorac Oncol 2016; 11: e109–e112.
    1. Guibert N, Pradines A, Farella M, et al. . Monitoring KRAS mutations in circulating DNA and tumor cells using digital droplet PCR during treatment of KRAS-mutated lung adenocarcinoma. Lung Cancer 2016; 100: 1–4. doi:10.1016/j.lungcan.2016.07.021
    1. Oxnard GR, Thress KS, Alden RS, et al. . Association between plasma genotyping and outcomes of treatment with osimertinib (AZD9291) in advanced non-small-cell lung cancer. J Clin Oncol 2016; 34: 3375–3382. doi:10.1200/JCO.2016.66.7162
    1. Sacher AG, Alden RS, Oxnard GR. Early intervention in lung cancers with rapid plasma genotyping for EGFR and KRAS mutations-reply. JAMA Oncol 2016; 2: 1096–1097. doi:10.1001/jamaoncol.2016.1963
    1. Gagan J, Van Allen EM. Next-generation sequencing to guide cancer therapy. Genome Med 2015; 7: 80. doi:10.1186/s13073-015-0203-x
    1. Thompson JC, Yee SS, Troxel AB, et al. . Detection of therapeutically targetable driver and resistance mutations in lung cancer patients by next-generation sequencing of cell-free circulating tumor DNA. Clin Cancer Res 2016; 22: 5772–5782. doi:10.1158/1078-0432.CCR-16-1231
    1. Schwaederlé MC, Patel SP, Husain H, et al. . Utility of genomic assessment of blood-derived circulating tumor DNA (ctDNA) in patients with advanced lung adenocarcinoma. Clin Cancer Res 2017; 23: 5101–5111. doi:10.1158/1078-0432.CCR-16-2497
    1. Paweletz CP, Sacher AG, Raymond CK, et al. . Bias-corrected targeted next-generation sequencing for rapid, multiplexed detection of actionable alterations in cell-free DNA from advanced lung cancer patients. Clin Cancer Res 2016; 22: 915–922. doi:10.1158/1078-0432.CCR-15-1627-T
    1. Chang F, Li MM. Clinical application of amplicon-based next-generation sequencing in cancer. Cancer Genet 2013; 206: 413–419. doi:10.1016/j.cancergen.2013.10.003
    1. Remon J, Caramella C, Jovelet C, et al. . Osimertinib benefit in EGFR-mutant NSCLC patients with T790M-mutation detected by circulating tumour DNA. Ann Oncol 2017; 28: 784–790.
    1. Couraud S, Vaca-Paniagua F, Villar S, et al. . Noninvasive diagnosis of actionable mutations by deep sequencing of circulating free DNA in lung cancer from never-smokers: a proof-of-concept study from BioCAST/IFCT-1002. Clin Cancer Res 2014; 20: 4613–4624. doi:10.1158/1078-0432.CCR-13-3063
    1. Guibert N, Hu Y, Feeney N, et al. . Amplicon-based next-generation sequencing of plasma cell-free DNA for detection of driver and resistance mutations in advanced non-small cell lung cancer. Ann Oncol 2018; 29: 1049–1055. doi:10.1093/annonc/mdy005
    1. Van Allen EM, Wagle N, Levy MA. Clinical analysis and interpretation of cancer genome data. J Clin Oncol 2013; 31: 1825–1833. doi:10.1200/JCO.2013.48.7215
    1. Abbosh C, Birkbak NJ, Swanton C. Early stage NSCLC – challenges to implementing ctDNA-based screening and MRD detection. Nat Rev Clin Oncol 2018; 15: 577–586.
    1. Hata AN, Niederst MJ, Archibald HL, et al. . Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat Med 2016; 22: 262–269. doi:10.1038/nm.4040
    1. Ramirez M, Rajaram S, Steininger RJ, et al. . Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persistent cells. Nat Commun 2016; 7: 10690. doi:10.1038/ncomms10690
    1. Hu Y, Ulrich BC, Supplee J, et al. . False-positive plasma genotyping due to clonal hematopoiesis. Clin Cancer Res 2018; 24: 4437–4443.
    1. Paweletz CP, Lau CJ, Oxnard GR. Does testing error underlie liquid biopsy discordance? JCO Precis Oncol 2019: 1–3.
    1. Luo J, Shen L, Zheng D. Diagnostic value of circulating free DNA for the detection of EGFR mutation status in NSCLC: a systematic review and meta-analysis. Sci Rep 2014; 4: 6269. doi:10.1038/srep06269
    1. Yeow K-M, Su I-H, Pan K-T, et al. . Risk factors of pneumothorax and bleeding: multivariate analysis of 660 CT-guided coaxial cutting needle lung biopsies. Chest 2004; 126: 748–754. doi:10.1378/chest.126.3.748
    1. Steinfort DP, Khor YH, Manser RL, et al. . Radial probe endobronchial ultrasound for the diagnosis of peripheral lung cancer: systematic review and meta-analysis. Eur Respir J 2011; 37: 902–910. doi:10.1183/09031936.00075310
    1. Asano F, Eberhardt R, Herth FJF. Virtual bronchoscopic navigation for peripheral pulmonary lesions. Respir Int Rev Thorac Dis 2014; 88: 430–440.
    1. Oxnard GR. The cellular origins of drug resistance in cancer. Nat Med 2016; 22: 232–234. doi:10.1038/nm.4058
    1. Blakely CM, Watkins TBK, Wu W, et al. . Evolution and clinical impact of co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancers. Nat Genet 2017; 49: 1693–1704. doi:10.1038/ng.3990
    1. Gainor JF, Dardaei L, Yoda S, et al. . Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov 2016; 6: 1118–1133. doi:10.1158/-16-0596
    1. Aggarwal C, Thompson JC, Black TA, et al. . Clinical implications of plasma-based genotyping with the delivery of personalized therapy in metastatic non-small cell lung cancer. JAMA Oncol 2019; 5: 173–180.
    1. Li BT, Janku F, Jung B, et al. . Ultra-deep next-generation sequencing of plasma cell-free DNA in patients with advanced lung cancers: results from the Actionable Genome Consortium. Ann Oncol 2019; 30: 597–603.
    1. Leighl NB, Page RD, Raymond VM, et al. . Clinical utility of comprehensive cell-free DNA analysis to identify genomic biomarkers in patients with newly diagnosed metastatic non-small cell lung cancer. Clin Cancer Res 2019; 25: 4691–4700.
    1. Cabel L, Proudhon C, Romano E, et al. . Clinical potential of circulating tumour DNA in patients receiving anticancer immunotherapy. Nat Rev Clin Oncol 2018; 15: 639–650. doi:10.1038/s41571-018-0074-3
    1. Fabrizio D, Lieber D, Malboeuf C, et al. . Abstract 5706: a blood-based next-generation sequencing assay to determine tumor mutational burden (bTMB) is associated with benefit to an anti-PD-L1 inhibitor, atezolizumab. Cancer Res 2018; 78: 13 Suppl., 5706––5717..
    1. Koeppel F, Blanchard S, Jovelet C, et al. . Whole exome sequencing for determination of tumor mutation load in liquid biopsy from advanced cancer patients. PLoS One 2017; 12: e0188174. doi:10.1371/journal.pone.0188174
    1. Davis AA, Chae YK, Agte S, et al. . Comparison of tumor mutational burden (TMB) across tumor tissue and circulating tumor DNA (ctDNA). J Clin Oncol 2017; 35: Suppl. 15, e23028. doi:10.1200/JCO.2017.35.15_suppl.e23028
    1. Khagi Y, Goodman AM, Daniels GA, et al. . Hypermutated circulating tumor DNA: correlation with response to checkpoint inhibitor-based immunotherapy. Clin Cancer Res 2017; 23: 5729–5736. doi:10.1158/1078-0432.CCR-17-1439
    1. Gandara DR, Kowanetz M, Mok TSK, et al. . Blood-based biomarkers for cancer immunotherapy: tumor mutational burden in blood (bTMB) is associated with improved atezolizumab (atezo) efficacy in 2L+ NSCLC (POPLAR and OAK). Ann Oncol 2017; 28: Suppl. 5, v460–v496. doi:10.1093/annonc/mdx380
    1. Yang N, Li Y, Liu Z, et al. . The characteristics of ctDNA reveal the high complexity in matching the corresponding tumor tissues. BMC Cancer 2018; 18: 319. doi:10.1186/s12885-018-4199-7
    1. Skoulidis F, Goldberg ME, Greenawalt DM, et al. . STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discov 2018; 8: 822–835. doi:10.1158/-18-0099
    1. Koyama S, Akbay EA, Li YY, et al. . STK11/LKB1 deficiency promotes neutrophil recruitment and proinflammatory cytokine production to suppress T-cell activity in the lung tumor microenvironment. Cancer Res 2016; 76: 999–1008. doi:10.1158/0008-5472.CAN-15-1439
    1. Peng W, Chen JQ, Liu C, et al. . Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov 2016; 6: 202–216. doi:10.1158/-15-0283
    1. Mazieres J, Drilon AE, Mhanna L, et al. . Efficacy of immune-checkpoint inhibitors (ICI) in non-small cell lung cancer (NSCLC) patients harboring activating molecular alterations (ImmunoTarget). J Clin Oncol 2018; 36: Suppl. 15, 9010. doi:10.1200/JCO.2018.36.15_suppl.9010
    1. Guibert N, Jones G, Beeler JF, et al. . Early prediction of outcomes to PD1 inhibitors in non-small cell lung cancer (NSCLC) using next generation sequencing (NGS) of plasma circulating tumor DNA (ctDNA). J Clin Oncol 2018; 36: Suppl. 15, 9078. doi:10.1200/JCO.2018.36.15_suppl.9078
    1. Anagnostou V, Forde PM, White JR, et al. . Dynamics of tumor and immune responses during immune checkpoint blockade in non-small cell lung cancer. Cancer Res 2019; 79: 1214–1225. doi:10.1158/0008-5472.CAN-18-1127
    1. Cabel L, Riva F, Servois V, et al. . Circulating tumor DNA changes for early monitoring of anti-PD1 immunotherapy: a proof-of-concept study. Ann Oncol 2017; 28: 1996–2001. doi:10.1093/annonc/mdx212
    1. Guibert N, Mazieres J, Delaunay M, et al. . Monitoring of KRAS-mutated ctDNA to discriminate pseudo-progression from true progression during anti-PD-1 treatment of lung adenocarcinoma. Oncotarget 2017; 8: 38056–38060. doi:10.18632/oncotarget.16935
    1. National Lung Screening Trial Research Team, Aberle DR, Adams AM, et al. . Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 2011; 365: 395–409. doi:10.1056/NEJMoa1102873
    1. De Koning H, Van Der Aalst C, Ten Haaf K, et al. . PL02.05 Effects of volume CT lung cancer screening: mortality results of the NELSON randomised-controlled population-based trial. J Thorac Oncol 2018; 13: Suppl., S185. doi:10.1016/j.jtho.2018.08.012
    1. Newman AM, Bratman SV, To J, et al. . An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med 2014; 20: 548–554. doi:10.1038/nm.3519
    1. Cohen JD, Li L, Wang Y, et al. . Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 2018; 359: 926–930. doi:10.1126/science.aar3247
    1. Chaudhuri AA, Chabon JJ, Lovejoy AF, et al. . Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling. Cancer Discov 2017; 7: 1394–1403. doi:10.1158/-17-0716
    1. Garcia-Murillas I, Schiavon G, Weigelt B, et al. . Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci Transl Med 2015; 7: 302ra133. doi:10.1126/scitranslmed.aab0021
    1. Tie J, Wang Y, Tomasetti C, et al. . Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Transl Med 2016; 8: 346ra92. doi:10.1126/scitranslmed.aaf6219
    1. Pignon J-P, Tribodet H, Scagliotti GV, et al. . Lung adjuvant cisplatin evaluation: a pooled analysis by the LACE collaborative group. J Clin Oncol 2008; 26: 3552–3559. doi:10.1200/JCO.2007.13.9030
    1. Jamal-Hanjani M, Wilson GA, McGranahan N, et al. . Tracking the evolution of non-small-cell lung cancer. N Engl J Med 2017; 376: 2109–2121. doi:10.1056/NEJMoa1616288
    1. Abbosh C, Birkbak NJ, Wilson GA, et al. . Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 2017; 545: 446–451. doi:10.1038/nature22364
    1. Ulrich BC, Guibert N. Towards a comprehensive framework for cell-free DNA analysis: lessons from TRACERx. Ann Transl Med 2017; 5: 428. doi:10.21037/atm.2017.08.12
    1. Yanagita M, Redig AJ, Paweletz CP, et al. . A prospective evaluation of circulating tumor cells and cell-free DNA in EGFR-mutant non-small cell lung cancer patients treated with erlotinib on a phase II trial. Clin Cancer Res 2016; 22: 6010–6020. doi:10.1158/1078-0432.CCR-16-0909
    1. Ooki A, Maleki Z, Tsay J-CJ, et al. . A panel of novel detection and prognostic methylated DNA markers in primary non-small cell lung cancer and serum DNA. Clin Cancer Res 2017; 23: 7141–7152. doi:10.1158/1078-0432.CCR-17-1222
    1. Kang G, Chen K, Yang F, et al. . Monitoring of circulating tumor DNA and its aberrant methylation in the surveillance of surgical lung cancer patients: protocol for a prospective observational study. BMC Cancer 2019; 19: 579. doi:10.1186/s12885-019-5751-9
    1. Mani SA, Guo W, Liao M-J, et al. . The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133: 704–715. doi:10.1016/j.cell.2008.03.027
    1. Alix-Panabières C, Pantel K. Challenges in circulating tumour cell research. Nat Rev Cancer 2014; 14: 623–631. doi:10.1038/nrc3820
    1. Hofman V, Ilie M, Long E, et al. . Detection of circulating tumor cells from lung cancer patients in the era of targeted therapy: promises, drawbacks and pitfalls. Curr Mol Med 2014; 14: 440–456. doi:10.2174/1566524014666140414205455
    1. Duda DG, Duyverman AMMJ, Kohno M, et al. . Malignant cells facilitate lung metastasis by bringing their own soil. Proc Natl Acad Sci USA 2010; 107: 21677–21682. doi:10.1073/pnas.1016234107
    1. Friedl P, Gilmour D. Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 2009; 10: 445–457. doi:10.1038/nrm2720
    1. Paterlini-Brechot P, Benali NL. Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Lett 2007; 253: 180–204. doi:10.1016/j.canlet.2006.12.014
    1. Barrière G, Tartary M, Rigaud M. Epithelial mesenchymal transition: a new insight into the detection of circulating tumor cells. ISRN Oncol 2012; 2012: 382010.
    1. Hofman V, Ilie MI, Long E, et al. . Detection of circulating tumor cells as a prognostic factor in patients undergoing radical surgery for non-small cell lung carcinoma: comparison of the efficacy of the CellSearch AssayTM and the isolation by size of epithelial tumor cell method. Int J Cancer 2011; 129: 1651–1660. doi:10.1002/ijc.25819
    1. Krebs MG, Hou J-M, Sloane R, et al. . Analysis of circulating tumor cells in patients with non-small cell lung cancer using epithelial marker-dependent and -independent approaches. J Thorac Oncol 2012; 7: 306–315.
    1. Hofman V, Long E, Ilie M, et al. . Morphological analysis of circulating tumour cells in patients undergoing surgery for non-small cell lung carcinoma using the isolation by size of epithelial tumour cell (ISET) method. Cytopathol 2012; 23: 30–38. doi:10.1111/j.1365-2303.2010.00835.x
    1. Vona G, Sabile A, Louha M, et al. . Isolation by size of epithelial tumor cells: a new method for the immunomorphological and molecular characterization of circulating tumor cells. Am J Pathol 2000; 156: 57–63. doi:10.1016/S0002-9440(10)64706-2
    1. Ilie M, Long E, Butori C, et al. . ALK-gene rearrangement: a comparative analysis on circulating tumour cells and tumour tissue from patients with lung adenocarcinoma. Ann Oncol 2012; 23: 2907–2913. doi:10.1093/annonc/mds137
    1. Ilié M, Szafer-Glusman E, Hofman V, et al. . Detection of PD-L1 in circulating tumor cells and white blood cells from patients with advanced non-small cell lung cancer. Ann Oncol 2018; 29: 193–199. doi:10.1093/annonc/mdx636
    1. Nagrath S, Sequist LV, Maheswaran S, et al. . Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 2007; 450: 1235–1239. doi:10.1038/nature06385
    1. Gorges TM, Kuske A, Röck K, et al. . Accession of tumor heterogeneity by multiplex transcriptome profiling of single circulating tumor cells. Clin Chem 2016; 62: 1504–1515. doi:10.1373/clinchem.2016.260299
    1. Khamenehfar A, Li PCH. Microfluidic devices for circulating tumor cells isolation and subsequent analysis. Curr Pharm Biotechnol 2016; 17: 810–821. doi:10.2174/1389201017666160301103509
    1. Sollier-Christen E, Renier C, Kaplan T, et al. . VTX-1 liquid biopsy system for fully-automated and label-free isolation of circulating tumor cells with automated enumeration by BioView platform. Cytom Part J Int Soc Anal Cytol 2018; 93: 1240–1245. doi:10.1002/cyto.a.23592
    1. Sun Y, Haglund TA, Rogers AJ, et al. . Review: microfluidics technologies for blood-based cancer liquid biopsies. Anal Chim Acta 2018; 1012: 10–29. doi:10.1016/j.aca.2017.12.050
    1. Pierga J-Y, Bidard F-C, Mathiot C, et al. . Circulating tumor cell detection predicts early metastatic relapse after neoadjuvant chemotherapy in large operable and locally advanced breast cancer in a phase II randomized trial. Clin Cancer Res 2008; 14: 7004–7010. doi:10.1158/1078-0432.CCR-08-0030
    1. van Dalum G, Stam G-J, Scholten LFA, et al. . Importance of circulating tumor cells in newly diagnosed colorectal cancer. Int J Oncol 2015; 46: 1361–1368.
    1. Ilie M, Hofman V, Long-Mira E, et al. . “Sentinel” circulating tumor cells allow early diagnosis of lung cancer in patients with chronic obstructive pulmonary disease. PLoS One 2014; 9: e111597. doi:10.1371/journal.pone.0111597
    1. Leroy S, Benzaquen J, Mazzetta A, et al. . Circulating tumour cells as a potential screening tool for lung cancer (the AIR study): protocol of a prospective multicentre cohort study in France. BMJ Open 2017; 7: e018884. doi:10.1136/bmjopen-2017-018884
    1. Cristofanilli M, Budd GT, Ellis MJ, et al. . Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 2004; 351: 781–791. doi:10.1056/NEJMoa040766
    1. Bidard F-C, Peeters DJ, Fehm T, et al. . Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data. Lancet Oncol 2014; 15: 406–414. doi:10.1016/S1470-2045(14)70069-5
    1. Huang X, Gao P, Song Y, et al. . Meta-analysis of the prognostic value of circulating tumor cells detected with the CellSearch System in colorectal cancer. BMC Cancer 2015; 15: 202. doi:10.1186/s12885-015-1218-9
    1. Lindsay CR, Faugeroux V, Michiels S, et al. . A prospective examination of circulating tumor cell profiles in non-small-cell lung cancer molecular subgroups. Ann Oncol 2017; 28: 1523–1531. doi:10.1093/annonc/mdx156
    1. Hofman V, Bonnetaud C, Ilie MI, et al. . Preoperative circulating tumor cell detection using the isolation by size of epithelial tumor cell method for patients with lung cancer is a new prognostic biomarker. Clin Cancer Res 2011; 17: 827–835. doi:10.1158/1078-0432.CCR-10-0445
    1. Hou J-M, Krebs MG, Lancashire L, et al. . Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer. J Clin Oncol 2012; 30: 525–532. doi:10.1200/JCO.2010.33.3716
    1. Sher Y-P, Shih J-Y, Yang P-C, et al. . Prognosis of non-small cell lung cancer patients by detecting circulating cancer cells in the peripheral blood with multiple marker genes. Clin Cancer Res 2005; 11: 173–179.
    1. Wu C, Hao H, Li L, et al. . Preliminary investigation of the clinical significance of detecting circulating tumor cells enriched from lung cancer patients. J Thorac Oncol 2009; 4: 30–36.
    1. Massard C, Borget I, Farace F, et al. . RECIST response and variation of circulating tumour cells in phase 1 trials: a prospective multicentric study. Eur J Cancer Oxf Engl 2017; 83: 185–193.
    1. Maheswaran S, Sequist LV, Nagrath S, et al. . Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med 2008; 359: 366–377. doi:10.1056/NEJMoa0800668
    1. Sundaresan TK, Sequist LV, Heymach JV, et al. . Detection of T790M, the acquired resistance EGFR mutation, by tumor biopsy versus noninvasive blood-based analyses. Clin Cancer Res 2016; 22: 1103–1110. doi:10.1158/1078-0432.CCR-15-1031
    1. Pailler E, Adam J, Barthélémy A, et al. . Detection of circulating tumor cells harboring a unique ALK rearrangement in ALK-positive non-small-cell lung cancer. J Clin Oncol 2013; 31: 2273–2281. doi:10.1200/JCO.2012.44.5932
    1. Ilie M, Szafer-Glusman E, Hofman V, et al. . Expression of MET in circulating tumor cells correlates with expression in tumor tissue from advanced-stage lung cancer patients. Oncotarget 2017; 8: 26112–26121. doi:10.18632/oncotarget.15345
    1. Cui S, Zhang W, Xiong L, et al. . Use of capture-based next-generation sequencing to detect ALK fusion in plasma cell-free DNA of patients with non-small-cell lung cancer. Oncotarget 2017; 8: 2771–2780.
    1. Alix-Panabières C, Pantel K. Characterization of single circulating tumor cells. FEBS Lett 2017; 591: 2241–2250. doi:10.1002/1873-3468.12662
    1. Pawlikowska P, Faugeroux V, Oulhen M, et al. . Circulating tumor cells (CTCs) for the noninvasive monitoring and personalization of non-small cell lung cancer (NSCLC) therapies. J Thorac Dis 2019; 11: Suppl. 1, S45–S56. doi:10.21037/jtd.2018.12.80
    1. Pailler E, Mezquita L, Faugeroux V, et al. . Analysis of single circulating tumor cells (CTCs) to identify resistance mutations to ALK-inhibitors in both ALK-gene and bypass oncogenic pathways. J Clin Oncol 2018; 36: 15 Suppl., 12038. doi:10.1200/JCO.2018.36.15_suppl.12038
    1. Dhar M, Wong J, Che J, et al. . Evaluation of PD-L1 expression on vortex-isolated circulating tumor cells in metastatic lung cancer. Sci Rep 2018; 8: 2592. doi:10.1038/s41598-018-19245-w
    1. Guibert N, Delaunay M, Lusque A, et al. . PD-L1 expression in circulating tumor cells of advanced non-small cell lung cancer patients treated with nivolumab. Lung Cancer 2018; 120: 108–112. doi:10.1016/j.lungcan.2018.04.001
    1. Kallergi G, Vetsika E-K, Aggouraki D, et al. . Evaluation of PD-L1/PD-1 on circulating tumor cells in patients with advanced non-small cell lung cancer. Ther Adv Med Oncol 2018; 10: 1758834017750121.
    1. Koh Y, Yagi S, Akamatsu H, et al. . Comparison of PD-L1 expression between tumor tissues and circulating tumor cells in patients with lung cancer. Eur J Cancer 2016; 69: S14. doi:10.1016/S0959-8049(16)32629-6
    1. Mazel M, Jacot W, Pantel K, et al. . Frequent expression of PD-L1 on circulating breast cancer cells. Mol Oncol 2015; 9: 1773–1782. doi:10.1016/j.molonc.2015.05.009
    1. Nicolazzo C, Raimondi C, Mancini M, et al. . Monitoring PD-L1 positive circulating tumor cells in non-small cell lung cancer patients treated with the PD-1 inhibitor nivolumab. Sci Rep 2016; 6: 31726. doi:10.1038/srep31726
    1. Skibinski DA. Noninvasive detection of PD-L1 on circulating tumor cells in patient blood samples. Future Oncol 2018; 14: 1237–1240. doi:10.2217/fon-2018-0150
    1. Ulrich BC, Guibert N. Non-invasive assessment of tumor PD-L1 status with circulating tumor cells. Ann Transl Med 2018; 6: Suppl. 1, S48. doi:10.21037/atm.2018.10.09
    1. Leone K, Poggiana C, Zamarchi R, et al. . The interplay between circulating tumor cells and the immune system: from immune escape to cancer immunotherapy. Diagnostics 2018; 8: 59. doi:10.3390/diagnostics8030059
    1. Hodgkinson CL, Morrow C, Li Y, et al. . Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat Med 2014; 20: 897–903.
    1. Lallo A, Schenk MW, Frese KK, et al. . Circulating tumor cells and CDX models as a tool for preclinical drug development. Transl Lung Cancer Res 2017; 6: 397–408. doi:10.21037/tlcr.2017.08.01
    1. Shin DS, Zaretsky JM, Escuin-Ordinas H, et al. . Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov 2017; 7: 188–201. doi:10.1158/-16-1223
    1. Zaretsky JM, Garcia-Diaz A, Shin DS, et al. . Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 2016; 375: 819–829. doi:10.1056/NEJMoa1604958
    1. Remon J, Menis J, Hasan B, et al. . The APPLE trial: feasibility and activity of AZD9291 (osimertinib) treatment on positive plasma T790M in EGFR-mutant NSCLC patients. EORTC 1613. Clin Lung Cancer 2017; 18: 583–588. doi:10.1016/j.cllc.2017.02.005
    1. Alix-Panabières C, Pantel K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov 2016; 6: 479–491. doi:10.1158/-15-1483

Source: PubMed

3
Iratkozz fel