Significantly greater triglyceridemia in Black African compared to White European men following high added fructose and glucose feeding: a randomized crossover trial

Louise M Goff, Martin B Whyte, Miriam Samuel, Scott V Harding, Louise M Goff, Martin B Whyte, Miriam Samuel, Scott V Harding

Abstract

Background: Black African (BA) populations are losing the cardio-protective lipid profile they historically exhibited, which may be linked with increasing fructose intakes. The metabolic effects of high fructose diets and how they relate to blood lipids are documented for Caucasians, but have not been described in BA individuals.

Objective: The principle objective of this pilot study was to assess the independent impacts of high glucose and fructose feeding in men of BA ancestry compared to men of White European (WE) ancestry on circulating triglyceride (TG) concentrations.

Methods: Healthy males, aged 25-60 years, of BA (n = 9) and WE (n = 11) ethnicity were randomly assigned to 2 feeding days in a crossover design, providing mixed nutrient meals with 20 % total daily caloric requirements from either added glucose or fructose. Circulating TG, non-esterified fatty acids (NEFA), glucose, insulin and C-peptide were measured over two 24-h periods.

Results: Fasting TGs were lower in BAs than WEs on the fructose feeding day (p < 0.05). There was a trend for fasting TG concentrations 24 h following fructose feeding to increase in both BA (baseline median fasting: 0.80, IQR 0.6-1.1 vs 24-h median post-fructose: 1.09, 0.8-1.4 mmol/L; p = 0.06) and WE (baseline median fasting 1.10, IQR 0.9-1.5 vs 24-h median post-fructose: 1.16, IQR 0.96-1.73 mmol/L; p = 0.06). Analysis within ethnic group demonstrated that in TG iAUC was significantly higher in BA compared to WE on both glucose (35, IQR 11-56 vs -4, IQR -10-1 mmol/L/min; p = 0.004) and fructose (48, IQR 15-68 vs 13, IQR -7-38 mmol/L/min; p = 0.04). Greater suppression of postprandial NEFA was evident in WE than BA after glucose feeding (-73, IQR -81- -52 vs -26, IQR -48- -3 nmol/L/min; p = 0.001) but there was no ethnic difference following fructose feeding.

Conclusions: Understanding the metabolic effects of dietary acculturation and Westernisation that occurs in Black communities is important for developing prevention strategies for chronic disease development. These data show postprandial hypertriglyceridemia following acute feeding of high added fructose and glucose in BA men, compared to WE men, may contribute to metabolic changes observed during dietary acculturation and Westernisation.

Trial registration: The study was retrospectively registered on clinicaltrials.gov: NCT02533817 .

Keywords: Ethnicity; Fructose; Insulin; Postprandial; Triglycerides.

Figures

Fig. 1
Fig. 1
Serum glucose (a), TG (b) and NEFA (c) response to glucose-rich meals in BA (light square) and WE (dark diamonds) participants, and serum glucose (d), triglyceride (e) and NEFA (f) response to fructose-rich meals in BA (light square) and WE (dark diamonds) participants. Breakfast meal consumed at 0 min and lunch meal consumed following the 240 min sample. Point estimates are mean ± SEM for glucose and NEFA, and median (IQR) for triglyceride. Light squares: BA; dark diamonds; WE. BA, Black African; NEFA, non-esterified fatty acids; TG, triglyceride; WE, White European
Fig. 2
Fig. 2
Serum insulin (a) and C-peptide (b) response to glucose-rich meals in BA (light square) and WE (dark diamonds) participants, and serum insulin (c) and C-peptide (d) response to fructose-rich meals in BA (light square) and WE (dark diamonds) participants. Breakfast meal consumed at 0 min. Point estimates are mean ± SEM. Light square: BA; dark diamonds: WE. BA, Black African; WE, White European

References

    1. Zoratti R, Godsland IF, Chaturvedi N, Crook D, Stevenson JC, McKeigue PM. Relation of plasma lipids to insulin resistance, nonesterified fatty acid levels, and body fat in men from three ethnic groups: relevance to variation in risk of diabetes and coronary disease. Metabolism. 2000;49:245–52. doi: 10.1016/S0026-0495(00)91507-5.
    1. Chaturvedi N, McKeigue PM, Marmot MG. Relationship of glucose intolerance to coronary risk in Afro-Caribbeans compared with Europeans. Diabetologia. 1994;37:765–72. doi: 10.1007/BF00404333.
    1. Singh GK, Siahpush M. Ethnic-immigrant differentials in health behaviors, morbidity, and cause-specific mortality in the United States: an analysis of two national data bases. Hum Biol. 2002;74:83–109. doi: 10.1353/hub.2002.0011.
    1. Tillin T, Forouhi NG, McKeigue PM, Chaturvedi N. The role of diabetes and components of the metabolic syndrome in stroke and coronary heart disease mortality in U.K. white and African-Caribbean populations. Diabetes Care. 2006;29:2127–9. doi: 10.2337/dc06-0779.
    1. Wild S, McKeigue P. Cross sectional analysis of mortality by country of birth in England and Wales, 1970–92. BMJ. 1997;314:705–10. doi: 10.1136/bmj.314.7082.705.
    1. Jolly S, Vittinghoff E, Chattopadhyay A, Bibbins-Domingo K. Higher cardiovascular disease prevalence and mortality among younger blacks compared to whites. Am J Med. 2010;123:811–8. doi: 10.1016/j.amjmed.2010.04.020.
    1. Ferdinand KC. Coronary artery disease in minority racial and ethnic groups in the United States. Am J Cardiol. 2006;97:12A–9. doi: 10.1016/j.amjcard.2005.11.011.
    1. Donin AS, Nightingale CM, Owen CG, Rudnicka AR, McNamara MC, Prynne CJ, Stephen AM, Cook DG, Whincup PH. Ethnic differences in blood lipids and dietary intake between UK children of black African, black Caribbean, South Asian, and white European origin: the Child Heart and Health Study in England (CHASE) Am J Clin Nutr. 2010;92:776–83. doi: 10.3945/ajcn.2010.29533.
    1. Saab KR, Kendrick J, Yracheta JM, Lanaspa MA, Pollard M, Johnson RJ. New insights on the risk for cardiovascular disease in African Americans: the role of added sugars. J Am Soc Nephrol. 2015;26:247–57. doi: 10.1681/ASN.2014040393.
    1. Sharma S, Wilkens LR, Shen L, Kolonel LN. Dietary sources of five nutrients in ethnic groups represented in the Multiethnic Cohort. Br J Nutr. 2013;109:1479–89. doi: 10.1017/S0007114512003388.
    1. Satia JA. Dietary acculturation and the nutrition transition: an overview. Appl Physiol Nutr Metab. 2010;35:219–23. doi: 10.1139/H10-007.
    1. Anderson SG, Younger N, Heald AH, Tulloch-Reid MK, Simukonda WP, Mbanya JC, Jackson MD, Balkau B, Sharma S, Tanya A, et al. Nutrient intakes and dysglycaemia in populations of West African origin. Br J Nutr. 2011;105:297–306. doi: 10.1017/S0007114510003399.
    1. Satia-Abouta J, Patterson RE, Neuhouser ML, Elder J. Dietary acculturation: applications to nutrition research and dietetics. J Am Diet Assoc. 2002;102:1105–18. doi: 10.1016/S0002-8223(02)90247-6.
    1. Goff LM, Timbers L, Style H, Knight A. Dietary intake in Black British adults; an observational assessment of nutritional composition and the role of traditional foods in UK Caribbean and West African diets. Public Health Nutr. 2014;1–11.
    1. Marriott BP, Cole N, Lee E. National estimates of dietary fructose intake increased from 1977 to 2004 in the United States. J Nutr. 2009;139:1228S–35. doi: 10.3945/jn.108.098277.
    1. Gibney M, Sigman-Grant M, Stanton JL, Jr, Keast DR. Consumption of sugars. Am J Clin Nutr. 1995;62:178S–93.
    1. Chong MF, Fielding BA, Frayn KN. Mechanisms for the acute effect of fructose on postprandial lipemia. Am J Clin Nutr. 2007;85:1511–20.
    1. Abraha A, Humphreys SM, Clark ML, Matthews DR, Frayn KN. Acute effect of fructose on postprandial lipaemia in diabetic and non-diabetic subjects. Br J Nutr. 1998;80:169–75.
    1. Faeh D, Minehira K, Schwarz JM, Periasamy R, Park S, Tappy L. Effect of fructose overfeeding and fish oil administration on hepatic de novo lipogenesis and insulin sensitivity in healthy men. Diabetes. 2005;54:1907–13. doi: 10.2337/diabetes.54.7.1907.
    1. Le KA, Faeh D, Stettler R, Ith M, Kreis R, Vermathen P, Boesch C, Ravussin E, Tappy L. A 4-wk high-fructose diet alters lipid metabolism without affecting insulin sensitivity or ectopic lipids in healthy humans. Am J Clin Nutr. 2006;84:1374–9.
    1. Abdel-Sayed A, Binnert C, Le KA, Bortolotti M, Schneiter P, Tappy L. A high-fructose diet impairs basal and stress-mediated lipid metabolism in healthy male subjects. Br J Nutr. 2008;100:393–9. doi: 10.1017/S000711450789547X.
    1. Stanhope KL, Griffen SC, Bair BR, Swarbrick MM, Keim NL, Havel PJ. Twenty-four-hour endocrine and metabolic profiles following consumption of high-fructose corn syrup-, sucrose-, fructose-, and glucose-sweetened beverages with meals. Am J Clin Nutr. 2008;87:1194–203.
    1. Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, Hatcher B, Cox CL, Dyachenko A, Zhang W, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest. 2009;119:1322–34. doi: 10.1172/JCI37385.
    1. Tran C, Jacot-Descombes D, Lecoultre V, Fielding BA, Carrel G, Le KA, Schneiter P, Bortolotti M, Frayn KN, Tappy L. Sex differences in lipid and glucose kinetics after ingestion of an acute oral fructose load. Br J Nutr. 2010;104:1139–47. doi: 10.1017/S000711451000190X.
    1. Yang Q, Zhang Z, Gregg EW, Flanders WD, Merritt R, Hu FB. Added sugar intake and cardiovascular diseases mortality among US adults. JAMA Intern Med. 2014;174:516–24. doi: 10.1001/jamainternmed.2013.13563.
    1. Henry CJ. Basal metabolic rate studies in humans: measurement and development of new equations. Public Health Nutr. 2005;8:1133–52. doi: 10.1079/PHN2005801.
    1. Le Floch JP, Escuyer P, Baudin E, Baudon D, Perlemuter L. Blood glucose area under the curve. Methodological aspects. Diabetes Care. 1990;13:172–5. doi: 10.2337/diacare.13.2.172.
    1. Carstensen M, Thomsen C, Hermansen K. Incremental area under response curve more accurately describes the triglyceride response to an oral fat load in both healthy and type 2 diabetic subjects. Metabolism. 2003;52:1034–7. doi: 10.1016/S0026-0495(03)00155-0.
    1. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9. doi: 10.1007/BF00280883.
    1. Global Database on Body Mass Index []. Accessed 27 May 2016.
    1. Sumner AE, Cowie CC. Ethnic differences in the ability of triglyceride levels to identify insulin resistance. Atherosclerosis. 2008;196:696–703. doi: 10.1016/j.atherosclerosis.2006.12.018.
    1. Goff LM, Griffin BA, Lovegrove JA, Sanders TA, Jebb SA, Bluck LJ, Frost GS. Ethnic differences in beta-cell function, dietary intake and expression of the metabolic syndrome among UK adults of South Asian, black African-Caribbean and white-European origin at high risk of metabolic syndrome. Diab Vasc Dis Res. 2013;10:315–23. doi: 10.1177/1479164112467545.
    1. Sharma S, Cade J, Jackson M, Mbanya JC, Chungong S, Forrester T, Bennett F, Wilks R, Balkau B, Cruickshank JK. Development of food frequency questionnaires in three population samples of African origin from Cameroon, Jamaica and Caribbean migrants to the UK. Eur J Clin Nutr. 1996;50:479–86.
    1. Stalenhoef AF, de Graaf J. Association of fasting and nonfasting serum triglycerides with cardiovascular disease and the role of remnant-like lipoproteins and small dense LDL. Curr Opin Lipidol. 2008;19:355–61. doi: 10.1097/MOL.0b013e328304b63c.
    1. Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA. 2007;298:299–308. doi: 10.1001/jama.298.3.299.
    1. Shojaee-Moradie F, Ma Y, Lou S, Hovorka R, Umpleby AM. Prandial hypertriglyceridemia in metabolic syndrome is due to an overproduction of both chylomicron and VLDL triacylglycerol. Diabetes. 2013;62:4063–9. doi: 10.2337/db13-0935.
    1. Chaturvedi N, Marmot MG, McKeigue PM. Racial differences and hypertension. BMJ. 1994;308:1634–5. doi: 10.1136/bmj.308.6944.1634b.
    1. Chaturvedi N, McKeigue PM, Marmot MG. Resting and ambulatory blood pressure differences in Afro-Caribbeans and Europeans. Hypertension. 1993;22:90–6. doi: 10.1161/01.HYP.22.1.90.
    1. Stanhope KL, Griffen SC, Bremer AA, Vink RG, Schaefer EJ, Nakajima K, Schwarz JM, Beysen C, Berglund L, Keim NL, Havel PJ. Metabolic responses to prolonged consumption of glucose- and fructose-sweetened beverages are not associated with postprandial or 24-h glucose and insulin excursions. Am J Clin Nutr. 2011;94:112–9. doi: 10.3945/ajcn.110.002246.

Source: PubMed

3
Iratkozz fel