Management of dermatologic adverse events from cancer therapies: recommendations of an expert panel

Jade Cury-Martins, Adriana Pessoa Mendes Eris, Cristina Martinez Zugaib Abdalla, Giselle de Barros Silva, Veronica Paula Torel de Moura, Jose Antonio Sanches, Jade Cury-Martins, Adriana Pessoa Mendes Eris, Cristina Martinez Zugaib Abdalla, Giselle de Barros Silva, Veronica Paula Torel de Moura, Jose Antonio Sanches

Abstract

With the development of new cancer therapies, systemic toxicity profile and effects on survival achieved an important improvement. However, a constellation of toxicities has emerged, even more remarkably, cutaneous adverse events. This report, developed by a board of Brazilian experts in oncodermatology, aims to establish a guideline for the dermatological care of oncologic patients. When possible, evidence-based recommendations were made, but in many cases, when strong evidence was not available, a consensus was reached, based on some data supporting therapies combined with personal experiences.

Keywords: Antineoplastic agents; Antineoplastic agents, immunological; Dermatology; Drug-related side effects and adverse reactions; Medical oncology; Molecular targeted therapy.

Copyright © 2020 Sociedade Brasileira de Dermatologia. Published by Elsevier España, S.L.U. All rights reserved.

Figures

Figure 1
Figure 1
Different hyperpigmentation patterns: (A) serpentine supravenous hyperpigmentation after peripheral chemotherapy infusion (fluorouracil); (B) nail plate pigmentation (daunorubicin); (C) acral lentiginoses (doxorubicin).
Figure 2
Figure 2
Flagellate dermatitis associated to bleomycin treatment: (A) pruritic erythematous linear streaks, (B) followed by linear pigmentation.
Figure 3
Figure 3
PATEO syndrome (PeriArticular Thenar Erythema and Onycholysis): docetaxel treated patient presenting with (A) erythematous lesions with a distinct distribution to the dorsal aspects of the hands and (B) associated nail changes – subungual hemorrhage and onycholysis.
Figure 4
Figure 4
EGFR inhibitors related adverse events: (A and B) inflammatory papulopustular rash with associated xerosis (*); (C) trychomegaly and hypertrichosis; (D) periungual fissures and (E) pyogenic granuloma-like lesions. (A, B, D and E on cetuximab treated patients; C on panitumumab treated patient).
Figure 5
Figure 5
Toxic erythema of chemotherapy (TEC): combination of different lesions caused by direct toxicity of chemotherapy agents with (A) lesions on flexural areas (intertriginous eruption associated with chemotherapy) and (B) on palms and soles (Hand-foot syndrome – HFS).
Figure 6
Figure 6
Hand-foot skin reaction (HFSR) associated with antiangiogenic agents (VEGFRi): (A) hyperkeratotic lesions (sorafenib) and (B) bullous lesions (axitinib) on areas of pressure and friction.
Figure 7
Figure 7
BRAF inhibitor related adverse events: multiple keratoachantomas (A) and low grade squamous cell carcinomas (B) after withdrawal of MEK inhibitor and maintenance of BRAF inhibitor; (C) associated keratosis pilaris-like eruption on the lower limbs.

References

    1. Bensadoun R.J., Humbert P., Krutman J., Luger T., Triller R., Rougier A. Daily baseline skin care in the prevention, treatment, and supportive care of skin toxicity in oncology patients: recommendations from a multinational expert panel. Cancer Manag Res. 2013;5:401–408.
    1. Balagula Y., Rosen S.T., Lacouture M.E. The emergence of supportive oncodermatology: the study of dermatologic adverse events to cancer therapies. J Am Acad Dermatol. 2011;65:624–635.
    1. Shekelle P.G., Woolf S.H., Eccles M., Grimshaw J. Developing clinical guidelines. West J Med. 1999;170:348–351.
    1. Reyes-Habito C.M., Roh E.K. Cutaneous reactions to chemotherapeutic drugs and targeted therapies for cancer: Part I. Conventional chemotherapeutic drugs. J Am Acad Dermatol. 2014;71:203.
    1. Reyes-Habito C.M., Roh E.K. Cutaneous reactions to chemotherapeutic drugs and targeted therapy for cancer: Part II. Targeted therapy. J Am Acad Dermatol. 2014;71:217.
    1. Macdonald J.B., Macdonald B., Golitz L.E., LoRusso P., Sekulic A. Cutaneous adverse effects of targeted therapies: Part I: Inhibitors of the cellular membrane. J Am Acad Dermatol. 2015;72:203–218.
    1. Macdonald J.B., Macdonald B., Golitz L.E., LoRusso P., Sekulic A. Cutaneous adverse effects of targeted therapies: Part II: Inhibitors of intracellular molecular signaling pathways. J Am Acad Dermatol. 2015;72:221–236.
    1. Tischer B., Huber R., Kraemer M., Lacouture M.E. Dermatologic events from EGFR inhibitors: the issue of the missing patient voice. Support Care Cancer. 2017;25:651–660.
    1. Gerber D.E. Targeted therapies: a new generation of cancer treatments. Am Fam Physician. 2008;77:311–319.
    1. Friedman C.F., Proverbs-Singh T.A., Postow M.A. Treatment of the immune-related adverse effects of immune checkpoint inhibitors: a review. JAMA Oncol. 2016;2:1346–1353.
    1. Puzanov I., Diab A., Abdallah K., Bingham C.O., 3rd, Brogdon C., Dadu R. Society for Immunotherapy of Cancer Toxicity Management Working Group Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. J Immunother Cancer. 2017;5:95.
    1. Rapoport B.L., van Eeden R., Sibaud V., Epstein J.B., Klastersky J., Aapro M. Supportive care for patients undergoing immunotherapy. Support Care Cancer. 2017;25:3017–3030.
    1. Lacouture M.E., Wolchok J.D., Yosipovitch G., Kähler K.C., Busam K.J., Hauschild A. Ipilimumab in patients with cancer and the management of dermatologic adverse events. J Am Acad Dermatol. 2014;71:161–169.
    1. Rosen A.C., Case E.C., Dusza S.W., Balagula Y., Gordon J., West D.P. Impact of dermatologic adverse events on quality of life in 283 cancer patients: a questionnaire study in a dermatology referral clinic. Am J Clin Dermatol. 2013;14:327–333.
    1. Chan A., Cameron M.C., Garden B., Boers-Doets C.B., Schindler K., Epstein J.B. A systematic review of patient-reported outcome instruments of dermatologic adverse events associated with targeted cancer therapies. Support Care Cancer. 2015;23:2231–2244.
    1. Rzepecki A.K., Cheng H., McLellan B.N. Cutaneous toxicity as a predictive biomarker for clinical outcome in patients receiving anticancer therapy. J Am Acad Dermatol. 2018;79:545–555.
    1. Valentine J., Belum V.R., Duran J., Ciccolini K., Schindler K., Wu S. Incidence and risk of xerosis with targeted anticancer therapies. J Am Acad Dermatol. 2015;72:656–667.
    1. Santoni M., Conti A., Andrikou K., Bittoni A., Lanese A., Pistelli M. Risk of pruritus in cancer patients treated with biological therapies: a systematic review and meta-analysis of clinical trials. Crit Rev Oncol Hematol. 2015;96:206–219.
    1. Chan R.J., Webster J., Chung B., Marquart L., Ahmed M., Garantziotis S. Prevention and treatment of acute radiation-induced skin reactions: a systematic review and meta-analysis of randomized controlled trials. BMC Cancer. 2014;14:53.
    1. Sibaud V., Leboeuf N.R., Roche H., Belum V.R., Gladieff L., Deslandres M. Dermatological adverse events with taxane chemotherapy. Eur J Dermatol. 2016;26:427–443.
    1. Yin E.S., Totonchy M.B., Leventhal J.S. Nivolumab-associated vitiligo-like depigmentation in a patient with acute myeloid leukemia: a novel finding. JAAD Case Rep. 2017;3:90–92.
    1. Robert C., Sibaud V., Mateus C., Verschoore M., Charles C., Lanoy E. Nail toxicities induced by systemic anticancer treatments. Lancet Oncol. 2015;16:e181–e189.
    1. Garden B.C., Wu S., Lacouture M.E. The risk of nail changes with epidermal growth factor receptor inhibitors: a systematic review of the literature and meta-analysis. J Am Acad Dermatol. 2012;67:400–408.
    1. Burtness B., Anadkat M., Basti S., Hughes M., Lacouture M.E., McClure J.S. NCCN Task Force Report: management of dermatologic and other toxicities associated with EGFR inhibition in patients with cancer. J Natl Compr Canc Netw. 2009;7(Suppl. 1):S5–S21.
    1. Melosky B., Leighl N.B., Rothenstein J., Sangha R., Stewart D., Papp K. Management of egfr tki-induced dermatologic adverse events. Curr Oncol. 2015;22:123–132.
    1. Lacouture M.E., Anadkat M., Jatoi A., Garawin T., Bohac C., Mitchell E. Dermatologic toxicity occurring during anti-EGFR monoclonal inhibitor therapy in patients with metastatic colorectal cancer: a systematic review. Clin Colorectal Cancer. 2018;17:85–96.
    1. Dsouza P.C., Kumar S. Role of systemic antibiotics in preventing epidermal growth factor receptor: tyrosine kinase inhibitors-induced skin toxicities. Asia Pac J Oncol Nurs. 2017;4:323–329.
    1. Wnorowski A.M., de Souza A., Chachoua A., Cohen D.E. The management of EGFR inhibitor adverse events: a case series and treatment paradigm. Int J Dermatol. 2012;51:223–232.
    1. Yen C.F., Hsu C.K., Lu C.W. Topical betaxolol for treating relapsing paronychia with pyogenic granuloma-like lesions induced by epidermal growth factor receptor inhibitors. J Am Acad Dermatol. 2018;78:e143–e144.
    1. Lacouture M.E., Wu S., Robert C., Atkins M.B., Kong H.H., Guitart J. Evolving strategies for the management of hand-foot skin reaction associated with the multitargeted kinase inhibitors sorafenib and sunitinib. Oncologist. 2008;13:1001–1011.
    1. Anderson R., Jatoi A., Robert C., Wood L.S., Keating K.N., Lacouture M.E. Search for evidence-based approaches for the prevention and palliation of hand-foot skin reaction (HFSR) caused by the multikinase inhibitors (MKIs) Oncologist. 2009;14:291–302.
    1. Flaherty K.T., Brose M.S. Sorafenib-related hand-foot skin reaction improves not worsens, with continued treatment. Clin Cancer Res. 2009;15:7749.
    1. Macedo L.T., Lima J.P., dos Santos L.V., Sasse A.D. Prevention strategies for chemotherapy-induced hand-foot syndrome: a systematic review and meta-analysis of prospective randomised trials. Support Care Cancer. 2014;22:1585–1593.
    1. Huang X.Z., Chen Y., Chen W.J., Zhang X., Wu C.C., Wang Z.N. Clinical evidence of prevention strategies for capecitabine-induced hand-foot syndrome. Int J Cancer. 2018;142:2567–2577.
    1. Yap Y.S., Kwok L.L., Syn N., Chay W.Y., Chia J.W.K., Tham C.K. Predictors of hand-foot syndrome and pyridoxine for prevention of capecitabine-induced hand-foot syndrome: a randomized clinical trial. JAMA Oncol. 2017;3:1538–1545.
    1. Jung S., Sehouli J., Chekerov R., Kluschke F., Patzelt A., Fuss H. Prevention of palmoplantar erythrodysesthesia in patients treated with pegylated liposomal doxorubicin (Caelyx®) Support Care Cancer. 2017;25:3545–3549.
    1. Ren Z., Zhu K., Kang H., Lu M., Qu Z., Lu L. Randomized controlled trial of the prophylactic effect of urea-based cream on sorafenib-associated hand-foot skin reactions in patients with advanced hepatocellular carcinoma. J Clin Oncol. 2015;33:894–900.
    1. Negri F.V., Porta C. Urea-based cream to prevent sorafenib-induced hand-and-foot skin reaction: which evidence? J Clin Oncol. 2015;33:3219–3220.
    1. Kamimura K., Shinagawa-Kobayashi Y., Goto R., Ogawa K., Yokoo T., Sakamaki A. Effective prevention of sorafenib-induced hand-foot syndrome by dried-bonito broth. Cancer Manag Res. 2018;10:805–813.
    1. Demirkan S., Gündüz Ö., Devrim T. Sorafenib-asssociated hand-foot syndrome treated with topical calcipotriol. JAAD Case Rep. 2017;3:354–357.
    1. von Moos R., Thuerlimann B.J., Aapro M., Rayson D., Harrold K., Sehouli J. Pegylated liposomal doxorubicin-associated hand-foot syndrome: recommendations of an international panel of experts. Eur J Cancer. 2008;44:781–790.
    1. Fabbrocini G., Cristaudo A., Ionescu M.A., Panariello L., Robert G., Pellicano M. Topical non-occlusive polymers in hand-foot syndrome. G Ital Dermatol Venereol. 2018;153:165–171.
    1. Shinohara N., Nonomura N., Eto M., Kimura G., Minami H., Tokunaga S. A randomized multicenter phase II trial on the efficacy of a hydrocolloid dressing containing ceramide with a low-friction external surface for hand-foot skin reaction caused by sorafenib in patients with renal cell carcinoma. Ann Oncol. 2014;25:472–476.
    1. Deng B., Sun W. Herbal medicine for hand-foot syndrome induced by fluoropyrimidines: a systematic review and meta-analysis. Phytother Res. 2018;32:1211–1228.
    1. Tian A., Zhou A., Bi X., Hu S., Jiang Z., Zhang W. Efficacy of topical compound danxiong granules for treatment of dermatologic toxicities induced by targeted anticancer therapy: a randomized, double-blind placebo-controlled trial. Evid Based Complement Alternat Med. 2017;2017:3970601.
    1. Yucel I., Guzin G. Topical henna for capecitabine induced hand-foot syndrome. Invest New Drugs. 2008;26:189–192.
    1. Ilyas S., Wasif K., Saif M.W. Topical henna ameliorated capecitabine-induced hand-foot syndrome. Cutan Ocul Toxicol. 2014;33:253–255.
    1. Harding J.J., Pulitzer M., Chapman P.B. Vemurafenib sensitivity skin reaction after ipilimumab. N Engl J Med. 2012;366:866–868.
    1. Johnson D.B., Wallender E.K., Cohen D.N., Likhari S.S., Zwerner J.P., Powers J.G. Severe cutaneous and neurologic toxicity in melanoma patients during vemurafenib administration following anti-PD-1 therapy. Cancer Immunol Res. 2013;1:373–377.
    1. Ludlow S.P., Pasikhova Y. Cumulative dermatologic toxicity with ipilimumab and vemurafenib responsive to corticosteroids. Melanoma Res. 2013;23:496–497.
    1. Bolognia J.L., Cooper D.L., Glusac E.J. Toxic erythema of chemotherapy: a useful clinical term. J Am Acad Dermatol. 2008;59:524–529.
    1. Chanprapaph K., Vachiramon V., Rattanakaemakorn P. Epidermal growth factor receptor inhibitors: a review of cutaneous adverse events and management. Dermatol Res Pract. 2014;2014:734249.
    1. Lacouture M.E., Keefe D.M., Sonis S., Jatoi A., Gernhardt D., Wang T. A phase II study (ARCHER 1042) to evaluate prophylactic treatment of dacomitinib-induced dermatologic and gastrointestinal adverse events in advanced non-small-cell lung cancer. Ann Oncol. 2016;27:1712–1718.
    1. Kripp M., Prasnikar N., Vehling-Kaiser U., Quidde J., Al-Batran S.E., Stein A. AIO LQ-0110: a randomized phase II trial comparing oral doxycycline versus local administration of erythromycin as preemptive treatment strategies of panitumumab-mediated skin toxicity in patients with metastatic colorectal cancer. Oncotarget. 2017;8:105061–105071.
    1. Requena C., Llombart B., Sanmartín O. Acneiform eruptions induced by epidermal growth factor receptor inhibitors: treatment with oral isotretinoin. Cutis. 2012;90:77–80.
    1. Woods J.A., Ferguson J.S., Kalra S., Degabriele A., Gardner J., Logan P. The phototoxicity of vemurafenib: an investigation of clinical monochromator phototesting and in vitro phototoxicity testing. J Photochem Photobiol B. 2015;151:233–238.
    1. Zimmer L., Vaubel J., Livingstone E., Schadendorf D. Side effects of systemic oncological therapies in dermatology. J Dtsch Dermatol Ges. 2012;10:475–486.
    1. Shin H., Jo S.J., Kim D.H., Kwon O., Myung S.K. Efficacy of interventions for prevention of chemotherapy-induced alopecia: a systematic review and meta-analysis. Int J Cancer. 2015;136:E442–E454.
    1. Vasconcelos I., Wiesske A., Schoenegg W. Scalp cooling successfully prevents alopecia in breast cancer patients undergoing anthracycline/taxane-based chemotherapy. Breast. 2018;40:1–3.
    1. Shah V.V., Wikramanayake T.C., DelCanto G.M., van den Hurk C., Wu S., Lacouture M.E. Scalp hypothermia as a preventative measure for chemotherapy-induced alopecia: a review of controlled clinical trials. J Eur Acad Dermatol Venereol. 2018;32:720–734.
    1. Nangia J., Wang T., Osborne C., Niravath P., Otte K., Papish S. Effect of a scalp cooling device on alopecia in women undergoing chemotherapy for breast cancer: the SCALP randomized clinical trial. JAMA. 2017;317:596–605.
    1. Kruse M., Abraham J. Management of chemotherapy-induced alopecia with scalp cooling. J Oncol Pract. 2018;14:149–154.
    1. Rugo H.S., Klein P., Melin S.A., Hurvitz S.A., Melisko M.E., Moore A. Association between use of a scalp cooling device and alopecia after chemotherapy for breast cancer. JAMA. 2017;317:606–614.
    1. Rugo H.S., Voigt J. Scalp hypothermia for preventing alopecia during chemotherapy. A systematic review and meta-analysis of randomized controlled trials. Clin Breast Cancer. 2018;18:19–28.
    1. Witman G., Cadman E., Chen M. Misuse of scalp hypothermia. Cancer Treat Rep. 1981;65:507–508.
    1. Forsberg S.A. Scalp cooling therapy and cytotoxic treatment. Lancet. 2001;357:1134.
    1. Rubio-Gonzalez B., Juhász M., Fortman J., Mesinkovska N.A. Pathogenesis and treatment options for chemotherapy-induced alopecia: a systematic review. Int J Dermatol. 2018;57:1417–1424.
    1. Yeager C.E., Olsen E.A. Treatment of chemotherapy-induced alopecia. Dermatol Ther. 2011;24:432–442.
    1. Freites-Martinez A., Shapiro J., Goldfarb S., Nangia J., Jimenez J.J. CME. Part 1: Hair disorders in cancer patients. J Am Acad Dermatol. 2019;80:1179–1196.
    1. Glaser D.A., Hossain P., Perkins W., Griffiths T., Ahluwalia G., Weng E. Long-term safety and efficacy of bimatoprost solution 0.03% application to the eyelid margin for the treatment of idiopathic and chemotherapy-induced eyelash hypotrichosis: a randomized controlled trial. Br J Dermatol. 2015;172:1384–1394.
    1. Freites-Martinez A., Shapiro J., van den Hurk C., Goldfarb S., Jimenez J., Rossi A.M. CME Part 2: Hair disorders in cancer survivors. Persistent chemotherapy-induced alopecia, persistent radiotherapy-induced alopecia, and hair growth disorders related to endocrine therapy or cancer surgery. J Am Acad Dermatol. 2018;S0190:9622.
    1. Göppner D., Müller J., Krüger S., Franke I., Gollnick H., Quist S.R. High incidence of naevi-associated BRAF wild-type melanoma and dysplastic naevi under treatment with the class I BRAF inhibitor vemurafenib. Acta Derm Venereol. 2014;94:517–520.
    1. Perier-Muzet M., Thomas L., Poulalhon N., Debarbieux S., Bringuier P.P., Duru G. Melanoma patients under vemurafenib: prospective follow-up of melanocytic lesions by digital dermoscopy. J Invest Dermatol. 2014;134:1351–1358.
    1. Chen F.W., Tseng D., Reddy S., Daud A.I., Swetter S.M. Involution of eruptive melanocytic nevi on combination BRAF and MEK inhibitor therapy. JAMA Dermatol. 2014;150:1209–1212.
    1. Libon F., Arrese J.E., Rorive A., Nikkels A.F. Ipilimumab induces simultaneous regression of melanocytic naevi and melanoma metastases. Clin Exp Dermatol. 2013;38:276–279.
    1. Burillo-Martinez S., Morales-Raya C., Prieto-Barrios M., Rodriguez-Peralto J.L., Ortiz-Romero P.L. Pembrolizumab-induced extensive panniculitis and nevus regression: two novel cutaneous manifestations of the post-immunotherapy granulomatous reactions spectrum. JAMA Dermatol. 2017;153:721–722.
    1. Garant A., Guilbault C., Ekmekjian T., Greenwald Z., Murgoi P., Vuong T. Concomitant use of corticosteroids and immune checkpoint inhibitors in patients with hematologic or solid neoplasms: a systematic review. Crit Rev Oncol Hematol. 2017;120:86–92.
    1. Arbour K.C., Mezquita L., Long N., Rizvi H., Auclin E., Ni A. Impact of baseline steroids on efficacy of programmed cell death-1 and programmed death-ligand 1 blockade in patients with non-small-cell lung cancer. J Clin Oncol. 2018;36:2872–2878.
    1. Scott S.C., Pennell N.A. Early use of systemic corticosteroids in patients with advanced NSCLC treated with nivolumab. J Thorac Oncol. 2018;13:1771–1775.

Source: PubMed

3
Iratkozz fel