m-Power Heart Project - a nurse care coordinator led, mHealth enabled intervention to improve the management of hypertension in India: study protocol for a cluster randomized trial

Nikhil Srinivasapura Venkateshmurthy, Vamadevan S Ajay, Sailesh Mohan, Devraj Jindal, Shuchi Anand, Dimple Kondal, Nikhil Tandon, Malipeddi Bhaskara Rao, Dorairaj Prabhakaran, Nikhil Srinivasapura Venkateshmurthy, Vamadevan S Ajay, Sailesh Mohan, Devraj Jindal, Shuchi Anand, Dimple Kondal, Nikhil Tandon, Malipeddi Bhaskara Rao, Dorairaj Prabhakaran

Abstract

Background: The proportion of patients with controlled hypertension (< 140/90 mmHg) is very low in India. Thus, there is a need to improve blood pressure management among patients with uncontrolled hypertension through innovative strategies directed at health system strengthening.

Methods: We designed an intervention consisting of two important components - an electronic decision support system (EDSS) used by a trained nurse care coordinator (NCC). Based on preliminary data, we hypothesized that this intervention will be able to reduce mean systolic blood pressure by 6.5 mmHg among those with uncontrolled blood pressure in the intervention arm compared to the standard treatment arm (paper-based hypertension treatment guidelines). The study will adopt a cluster randomized trial design with the community health center (CHC) as the unit of randomization. The trial will be conducted in Visakhapatnam district (southern India). A total of 1876 participants aged ≥30 years with high blood pressure - systolic blood pressure (SBP) ≥ 160 mmHg or diastolic blood pressure (DBP) ≥ 90 mmHg will be enrolled from 12 CHCs. The intervention consists of trained NCCs equipped with an evidence-based hypertension treatment algorithm in the form of the EDSS with regular SMSs to patients with hypertension to promote hypertension treatment and blood pressure control for 12 months. The primary outcome will be difference in the mean change of SBP, from baseline to 12 months, between the intervention and the standard treatment arm. The secondary outcomes are the difference in mean change of DBP; difference in the proportion of patients with controlled blood pressure (< 140/90 mmHg); difference in mean change of fasting blood sugar, HbA1C, eGFR, and albumin to creatinine ratio; difference in the proportion of patients visiting the CHC regularly (number of actual visits to the CHC/number of visits suggested by the EDSS > 80%); difference in proportion of patients compliant to anti-hypertensive medication/s; cost-effectiveness of intervention versus enhanced care. All the outcomes will be assessed at 12 months.

Discussion: The study is expected to provide evidence on the effectiveness of NCC-led, EDSS-based hypertension management in India and can likely offer an exemplar for improving cardiovascular disease (CVD) management in India within the resource-constrained public healthcare system.

Trial registration: ClinicalTrials.gov, ID: NCT03164317 ). Registered retrospectively on 23 May 2017 (first patient enrolled on 6 April 2017) because the authors did not receive a response to their original registration submission (5 January 2017) to the Clinical Trial Registry - India (CTRI).

Keywords: Chronic kidney disease (CKD); Electronic decision support system (EDSS); Hypertension; India; Nurse care coordinator (NCC); Public health system; Task-sharing.

Conflict of interest statement

Ethics approval and consent to participate

The study has been approved by the IEC of the Center for Chronic Disease Control (CCDC), Gurgaon, India (Reference number: CCDC_IEC_01_2017). Written informed consent will be sought from the participants prior to enrollment in the study by the NCC.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Schema of the m-Power Heart Project. Footnote: EDSS – electronic decision support system
Fig. 2
Fig. 2
Schedule of enrollment, assessments, and intervention

References

    1. WHO . Noncommunicable diseases progress monitor 2015. Geneva: World Health Organization; 2015.
    1. Anchala R, Kannuri NK, Pant H, Khan H, Franco OH, Di Angelantonio E, Prabhakaran D. Hypertension in India: a systematic review and meta-analysis of prevalence, awareness, and control of hypertension. J Hypertens. 2014;32(6):1170–1177. doi: 10.1097/HJH.0000000000000146.
    1. WHO . Task shifting: rational redistribution of tasks among health workforce teams: global recommendations and guidelines. Geneva: World Health Organization; 2008.
    1. WHO . mHealth: new horizons for health through mobile technologies: second global survey on eHealth. Geneva: World Health Organization; 2011.
    1. Stephani V, Opoku D, Quentin W. A systematic review of randomized controlled trials of mHealth interventions against non-communicable diseases in developing countries. BMC Public Health. 2016;16:572. doi: 10.1186/s12889-016-3226-3.
    1. Muller AM, Alley S, Schoeppe S, Vandelanotte C. The effectiveness of e-& mHealth interventions to promote physical activity and healthy diets in developing countries: a systematic review. Int J Behav Nutr Phys Act. 2016;13(1):109. doi: 10.1186/s12966-016-0434-2.
    1. Ajay VS, Jindal D, Roy A, Venugopal V, Sharma R, Pawar A, Kinra S, Tandon N, Prabhakaran D. Development of a Smartphone-enabled hypertension and diabetes mellitus management package to facilitate evidence-based care delivery in primary healthcare facilities in India: the mPower Heart Project. J Am Heart Assoc. 2016;5(12) 10.1161/JAHA.116.004343.
    1. Chan AW, Tetzlaff JM, Gotzsche PC, Altman DG, Mann H, Berlin JA, Dickersin K, Hrobjartsson A, Schulz KF, Parulekar WR, et al. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013;346:e7586. doi: 10.1136/bmj.e7586.
    1. Pronovost PJ, Berenholtz SM, Goeschel CA, Needham DM, Sexton JB, Thompson DA, Lubomski LH, Marsteller JA, Makary MA, Hunt E. Creating high reliability in health care organizations. Health Serv Res. 2006;41(4 Pt 2):1599–1617. doi: 10.1111/j.1475-6773.2006.00567.x.
    1. Indian Guidelines on Hypertension (IGH) 3 Management of hypertension. J Assoc Phys Ind. 2013;61(Special Issue):17–21.
    1. WHO . Guidelines for assessment and management of cardiovascular risk. Geneva: World Health Organization; 2007.
    1. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, Christiaens T, Cifkova R, De Backer G, Dominiczak A, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC) Eur Heart J. 2013;34(28):2159–2219. doi: 10.1093/eurheartj/eht151.
    1. James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, Lackland DT, LeFevre ML, MacKenzie TD, Ogedegbe O, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8) JAMA. 2014;311(5):507–520. doi: 10.1001/jama.2013.284427.
    1. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–612. doi: 10.7326/0003-4819-150-9-200905050-00006.
    1. Dickinson LM, Beaty B, Fox C, Pace W, Dickinson WP, Emsermann C, Kempe A. Pragmatic cluster randomized trials using covariate constrained randomization: a method for practice-based research networks (PBRNs) J Am Board Fam Med. 2015;28(5):663–672. doi: 10.3122/jabfm.2015.05.150001.
    1. Li F, Turner EL, Heagerty PJ, Murray DM, Vollmer WM, DeLong ER. An evaluation of constrained randomization for the design and analysis of group-randomized trials with binary outcomes. Stat Med. 2017;36(24):3791–3806. doi: 10.1002/sim.7410.
    1. Campbell MK, Piaggio G, Elbourne DR, Altman DG, Group C CONSORT 2010 Statement: extension to cluster randomised trials. BMJ. 2012;345:e5661. doi: 10.1136/bmj.e5661.
    1. Damschroder LJ, Aron DC, Keith RE, Kirsh SR, Alexander JA, Lowery JC. Fostering implementation of health services research findings into practice: a consolidated framework for advancing implementation science. Implement Sci. 2009;4:50. doi: 10.1186/1748-5908-4-50.
    1. Tong A, Sainsbury P, Craig J. Consolidated criteria for reporting qualitative research (COREQ): a 32-item checklist for interviews and focus groups. Int J Qual Health Care. 2007;19(6):349–357. doi: 10.1093/intqhc/mzm042.
    1. Anchala R, Kaptoge S, Pant H, Di Angelantonio E, Franco OH, Prabhakaran D. Evaluation of effectiveness and cost-effectiveness of a clinical decision support system in managing hypertension in resource constrained primary health care settings: results from a cluster randomized trial. J Am Heart Assoc. 2015;4(1):e001213. doi: 10.1161/JAHA.114.001213.
    1. Tian M, Ajay VS, Dunzhu D, Hameed SS, Li X, Liu Z, Li C, Chen H, Cho K, Li R, et al. A cluster-randomized, controlled trial of a simplified multifaceted management program for individuals at high cardiovascular risk (SimCard trial) in rural Tibet, China, and Haryana, India. Circulation. 2015;132(9):815–824. doi: 10.1161/CIRCULATIONAHA.115.015373.
    1. Operational guidelines. Prevention, screening and control of common non-communicable diseases: Hypertension, diabetes and common cancers (Oral, Breast, Cervix). New Delhi: Ministry of Health and Family Welfare, Government of India; 2017.

Source: PubMed

3
Iratkozz fel