The Low FODMAP Diet and Its Application in East and Southeast Asia

Marina Iacovou, Victoria Tan, Jane G Muir, Peter R Gibson, Marina Iacovou, Victoria Tan, Jane G Muir, Peter R Gibson

Abstract

There is growing interest in using food choice/dietary change to influence clinical outcomes in patients with irritable bowel syndrome (IBS). The low fermentable oligo-, di-, mono-saccharides, and polyols (FODMAPs) diet is an evidence-based approach that is gaining popularity in many Western countries. The low FODMAP diet is based on restricting dietary intake of short chain carbohydrates that are slowly absorbed or indigestible and not absorbed during passage through the small intestine. These are collectively described as "FODMAPs" and comprise oligosaccharides (mostly fructans, galacto-oligosaccharides), sugar polyols, fructose in excess of glucose, and lactose in lactose malabsorbers. The general strategy of the diet is to avoid foods high in FODMAPs and replace them with foods low in FODMAPs, with long-term restriction limited to what is required to control symptoms. The likely mechanism of action is minimisation of the stimulation of mechanoreceptors exerted by distension of the intestinal lumen with water from osmotic effects and gases from bacterial fermentation in those with visceral hypersensitivity. The success of this dietary approach greatly depends on detailed knowledge about the FODMAP composition of food com - monly consumed in that country. While the content of foods associated with East and Southeast Asian cuisines has not been fully explored, major high FODMAP sources are frequently used and include onion, garlic, shallots, legumes/pulses, and wheat-based products. Thus, this dietary approach holds great promise in treating IBS patients in East and Southeast Asia. The aim of this review is to highlight how the diet is implemented, its efficacy, and troublesome ingredients frequently used in Asian dishes.

Keywords: Asia; Diet; FODMAPs; Irritable bowel syndrome.

Figures

Figure 1.
Figure 1.
Relative fermentable oligo-, di-, mono-saccharides, and polyols (FODMAPs) ratings of common cereals and grains (based on a typical serve). A relative FODMAP rating is given to each ingredient tested for its FODMAP content. For each FODMAP sub-unit, fructose, lactose, fructan, galacto-oligosaccharides, and polyols, there is variability of tolerated dose levels and therefore classifying them semi-quantitatively in acceptable serving sizes as low (in green), moderate (in amber), and high (in red) is a practical approach to support the implementation and management of the diet in clinical practice.
Figure 2.
Figure 2.
Relative fermentable oligo-, di-, mono-saccharides, and polyols (FODMAPs) ratings of common Asian fruits (based on a typical serve). For each FODMAP sub-unit, fructose, lactose, fructan, galacto-oligosaccharides, and polyols, there is variability of tolerated dose levels and therefore classifying them semi-quantitatively in acceptable serving sizes as low (in green), moderate (in amber), and high (in red) is a practical approach to support the implementation and management of the diet in clinical practice.
Figure 3.
Figure 3.
Fermentable oligo-, di-, monosaccharides, and polyols (FODMAPs) ratings of common Asian vegetables, tofu, legumes and nuts (based on a typical serve). Two examples where FODMAP content of foods/meals can change 1), although broccoli is rated low (green) for one serve (one-half of a cup or 47 g), if consumed in larger quantities, eg, 1 cup, this increases the FODMAP content in one sitting giving it a high (red) FODMAP rating. 2) As with celery, when the serving size of one-half a medium stalk or 19 g is consumed in larger quantities during one sitting, the FODMAP rating will change to high.
Figure 4.
Figure 4.
Relative fermentable oligo-, di-, mono-saccharides, and polyols (FODMAPs) ratings of commonly used condiments, herbs and spices. For each FODMAP sub-unit, fructose, lactose, fructan, galacto-oligosaccharides, and polyols, there is variability of tolerated dose levels and therefore classifying them semi-quantitatively in acceptable serving sizes as low (in green) and high (in red) is a practical approach to support the implementation and management of the diet in clinical practice.
Figure 5.
Figure 5.
Relative fermentable oligo-, di-, mono-saccharides, and polyols (FODMAPs) ratings of dairy products (based on a typical serve). For each FODMAP sub-unit, fructose, lactose, fructan, galacto-oligosaccharides, and polyols, there is variability of tolerated dose levels and therefore classifying them semi-quantitatively in acceptable serving sizes as low (in green), moderate (in amber), and high (in red) is a practical approach to support the implementation and management of the diet in clinical practice.

References

    1. Canavan C, West J, Card T. Review article: the economic impact of the irritable bowel syndrome. Aliment Pharmacol Ther. 2014;40:1023–1034. doi: 10.1111/apt.12938.
    1. Nam KC, Jo C, Lee M. Meat products and consumption culture in the East. Meat Sci. 2010;86:95–102. doi: 10.1016/j.meatsci.2010.04.026.
    1. Lovell RM, Ford AC. Global prevalence of and risk factors for irritable bowel syndrome: a meta-analysis. Clin Gastroenterol Hepatol. 2012;10:712–721. e4. doi: 10.1016/j.cgh.2012.02.029.
    1. Kim M, Park H. The process of symptom control in korean women with irritable bowel syndrome. Gastroenterol Nurs. 2011;34:424–432. doi: 10.1097/SGA.0b013e318237cfdd.
    1. Han SH, Lee OY, Bae SC, et al. Prevalence of irritable bowel syndrome in Korea: population-based survey using the Rome II criteria. J Gastroenterol Hepatol. 2006;21:1687–1692. doi: 10.1111/j.1440-1746.2006.04269.x.
    1. Gwee KA, Bak YT, Ghoshal UC, et al. Asian consensus on irritable bowel syndrome. J Gastroenterol Hepatol. 2010;25:1189–1205. doi: 10.1111/j.1440-1746.2010.06353.x.
    1. Lee YY, Waid A, Tan HJ, Chua AS, Whitehead WE. Rome III survey of irritable bowel syndrome among ethnic Malays. World J Gastroenterol. 2012;18:6475–6480. doi: 10.3748/wjg.v18.i44.6475.
    1. Gwee KA, Lu CL, Ghoshal UC. Epidemiology of irritable bowel syndrome in Asia: something old, something new, something borrowed. J Gastroenterol Hepatol. 2009;24:1601–1607. doi: 10.1111/j.1440-1746.2009.05984.x.
    1. Ong DK, Mitchell SB, Barrett JS, et al. Manipulation of dietary short chain carbohydrates alters the pattern of gas production and genesis of symptoms in irritable bowel syndrome. J Gastroenterol Hepatol. 2010;25:1366–1373. doi: 10.1111/j.1440-1746.2010.06370.x.
    1. Halmos EP, Power VA, Shepherd SJ, Gibson PR, Muir JG. A diet low in FODMAPs reduces symptoms of irritable bowel syndrome. Gastroenterology. 2014;146:67–75. e5. doi: 10.1053/j.gastro.2013.09.046.
    1. Staudacher HM, Whelan K, Irving PM, Lomer MC. Comparison of symptom response following advice for a diet low in fermentable carbohydrates (FODMAPs) versus standard dietary advice in patients with irritable bowel syndrome. J Hum Nutr Diet. 2011;24:487–495. doi: 10.1111/j.1365-277X.2011.01162.x.
    1. Staudacher HM, Lomer MC, Anderson JL, et al. Fermentable carbohydrate restriction reduces luminal bifidobacteria and gastrointestinal symptoms in patients with irritable bowel syndrome. J Nutr. 2012;142:1510–1518. doi: 10.3945/jn.112.159285.
    1. Tuck CJ, Muir JG, Barrett JS, Gibson PR. Fermentable oligosaccharides, disaccharides, monosaccharides and polyols: role in irritable bowel syndrome. Expert Rev Gastroenterol Hepatol. 2014;8:819–834. doi: 10.1586/17474124.2014.917956.
    1. Chen HL, Lu YH, Lin JJ, Ko LY. Effects of isomaltooligosaccharides on bowel functions and indicators of nutritional status in constipated elderly men. J Am Coll Nutr. 2001;20:44–49. doi: 10.1080/07315724.2001.10719013.
    1. Kohmoto T, Tsuji K, Kaneko T, et al. Metabolism of 13C-isomaltooligosaccharides in healthy men. Biosci Biotechnol Biochem. 1992;56:937–940. doi: 10.1271/bbb.56.937.
    1. White JW, Jr, Hoban N. Composition of honey. IV. Identification of the disaccharides. Arch Biochem Biophys. 1959;80:386–392. doi: 10.1016/0003-9861(59)90267-X.
    1. Murray K, Wilkinson-Smith V, Hoad C, et al. Differential effects of FODMAPs (fermentable oligo-, di-, mono-saccharides and polyols) on small and large intestinal contents in healthy subjects shown by MRI. Am J Gastroenterol. 2014;109:110–119. doi: 10.1038/ajg.2013.386.
    1. Marciani L, Cox EF, Hoad CL, et al. Postprandial changes in small bowel water content in healthy subjects and patients with irritable bowel syndrome. Gastroenterology. 2010;138:469–477. e1. doi: 10.1053/j.gastro.2009.10.055.
    1. Barrett JS, Ng PS, Muir JG, Gibson PR. Letter: oral fructose - breath hydrogen response, symptoms, both or neither? Aliment Pharmacol Ther. 2013;38:442–443. doi: 10.1111/apt.12392.
    1. Gibson GR, Probert HM, Van Loo J, Rastall RA, Roberfroid MB. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nut Res Rev. 2004;17:259–275. doi: 10.1079/NRR200479.
    1. D’Argenio G, Cosenza V, Delle Cave M, et al. Butyrate enemas in experimental colitis and protection against large bowel cancer in a rat model. Gastroenterology. 1996;110:1727–1734. doi: 10.1053/gast.1996.v110.pm8964397.
    1. Jain I, Kumar V, Satyanarayana T. Xylooligosaccharides: an economical prebiotic from agroresidues and their health benefits. Indian J Exp Biol. 2015;53:131–142.
    1. Antalis TM, Reeder JA. Butyrate regulates gene expression of the plasminogen activating system in colon cancer cells. Int J Cancer. 1995;62:619–626. doi: 10.1002/ijc.2910620521.
    1. Halmos EP, Christophersen CT, Bird AR, Shepherd SJ, Gibson PR, Muir JG. Diets that differ in their FODMAP content alter the colonic luminal microenvironment. Gut. 2014;64:93–100. doi: 10.1136/gutjnl-2014-307264.
    1. Whigham L, Joyce T, Harper G, et al. Clinical effectiveness and economic costs of group versus one-to-one education for short-chain fermentable carbohydrate restriction (low FODMAP diet) in the management of irritable bowel syndrome. J Hum Nutr Diet. Published Onlie First: 14 Apr 2015.
    1. Monash University, Department of Gastroenterology. The Monash University low FODMAP diet app. Melbourne Australia: Central Clinical School 2015 [updated 28 May 2015; cited 2015 4 June]. Available from URL: (accessed 9 Sep 2015).
    1. Monash University . The Monash University Low FODMAP diet booklet. 5 ed. Melbourne, Australia: Department of Gastroenterology, Central Clinical School; 2015. Available from URL: (accessed 9 Sep 2015).
    1. Marsh A, Eslick EM, Eslick GD. Does a diet low in FODMAPs reduce symptoms associated with functional gastrointestinal disorders? A comprehensive systematic review and meta-analysis. Eur J Nutr. Published Online First: 17 May 2015.
    1. Biesiekierski JR, Peters SL, Newnham ED, Rosella O, Muir JG, Gibson PR. No effects of gluten in patients with self-reported non-celiac gluten sensitivity after dietary reduction of fermentable, poorly absorbed, short-chain carbohydrates. Gastroenterology. 2013;145:320–328. e1–e3. doi: 10.1053/j.gastro.2013.04.051.
    1. Chumpitazi BP, Cope JL, Hollister EB, et al. Randomised clincial trial: gut microbiome biomarkers are associated with clinical response to a ow FODMAP diet in children with irritable bowel syndrome. Aliment Pharmacol Ther. 2015;42:418–427. doi: 10.1111/apt.13286.
    1. De Roest RH, Dobbs BR, Chapman BA, et al. The low FODMAP diet improves gastrointestinal symptoms in patients with irritable bowel syndrome: a prospective study. Int J Clin Pract. 2013;67:895–903. doi: 10.1111/ijcp.12128.
    1. American College of Gastroenterology Task Force on Irritable Bowel Syndrome. Brandt LJ, Chey WD, et al. An evidence-based position statement on the management of irritable bowel syndrome. Am J Gastroenterol. 2008;104(suppl 1):S1–S35. doi: 10.1038/ajg.2008.122.
    1. Heizer WD, Southern S, McGovern S. The role of diet in symptoms of irritable bowel syndrome in adults: a narrative review. J Am Diet Assoc. 2009;109:1204–1214. doi: 10.1016/j.jada.2009.04.012.
    1. Halpert A, Dalton CB, Palsson O, et al. What patients know about irritable bowel syndrome (IBS) and what they would like to know. National survey on patient educational needs in IBS and development and validation of the patient educational needs questionnaire (PEQ) Am J Gastroenterol. 2007;102:1972–1982. doi: 10.1111/j.1572-0241.2007.01254.x.
    1. Muir JG, Rose R, Rosella O, et al. Measurement of short-chain carbohydrates in common Australian vegetables and fruits by high-performance liquid chromatography (HPLC) J Agric Food Chem. 2009;57:554–565. doi: 10.1021/jf802700e.
    1. Muir JG, Shepherd SJ, Rosella O, Rose M, Barrett JS, Gibson PR. Fructan and free fructose content of common Australian vegetables and fruit. J Agric Food Chem. 2007;55:6619–6627. doi: 10.1021/jf070623x.
    1. Pedersen N, Andersen NN, Végh Z, et al. Ehealth: low FODMAP diet vs Lactobacillus rhamnosus GG in irritable bowel syndrome. World J Gastroenterol. 2014;20:16215–16226.
    1. Pedersen N, Vegh Z, Burisch J, et al. Ehealth monitoring in irritable bowel syndrome patients treated with low fermentable oligo-, di-, mono-saccharides and polyols diet. World J Gastroenterol. 2014;20:6680–6684. doi: 10.3748/wjg.v20.i21.6680.

Source: PubMed

3
Iratkozz fel