Clinical Laboratory Experience of Blood CRIM Testing in Infantile Pompe Disease

Deeksha S Bali, Jennifer L Goldstein, Catherine Rehder, Zoheb B Kazi, Kathryn L Berrier, Jian Dai, Priya S Kishnani, Deeksha S Bali, Jennifer L Goldstein, Catherine Rehder, Zoheb B Kazi, Kathryn L Berrier, Jian Dai, Priya S Kishnani

Abstract

Cross-reactive immunological material (CRIM) status is an important prognostic factor in patients with infantile Pompe disease (IPD) being treated with enzyme replacement therapy. Western blot analysis of cultured skin fibroblast lysates has been the gold standard for determining CRIM status. Here, we evaluated CRIM status using peripheral blood mononuclear cell (PBMC) protein. For 6 of 33 patients (18%) CRIM status determination using PBMC was either indeterminate or discordant with GAA genotype or fibroblast CRIM analysis results. While the use of PBMCs for CRIM determination has the advantage of a faster turnaround time, further evaluation is needed to ensure the accuracy of CRIM results.

Keywords: Pompe disease; Western blot analysis; acid alpha-glucosidase; cross reactive immunological material; enzyme replacement therapy.

Figures

Supplementary Fig. S1
Supplementary Fig. S1
Representative Western blot showing GAA binding patterns in PBMCs and fibroblasts. The arrow marks the 90 kDa band seen in Western blots of PBMC protein from Patients 1–5. Bands migrating above 110 kDa and below 70 kDa – outside the expected size range for GAA processing forms – were seen in some samples. We do not know the identity of these bands.

References

    1. Hirschhorn R. The Metabolic and Molecular Bases of INherited Disease. 8th ed. McGraw-Hill; New York: 2000. Glycogen Storage Disease type II: acid alpha-glucosidae (acid maltase) deficiency; pp. 3389–3420.
    1. Kishnani P.S., Steiner R.D., Bali D., Berger K., Byrne B.J., Case L.E., Crowley J.F., Downs S., Howell R.R., Kravitz R.M., Mackey J., Marsden D., Martins A.M., Millington D.S., Nicolino M., O'Grady G., Patterson M.C., Rapoport D.M., Slonim A., Spencer C.T., Tifft C.J., Watson M.S. Pompe disease diagnosis and management guideline. Genet Med. 2006;8:267–288.
    1. Gungor D., Reuser A.J. How to describe the clinical spectrum in Pompe disease? Am. J. Med. Genet. A. 2013;161A:399–400.
    1. Banugaria S.G., Prater S.N., Ng Y.K., Kobori J.A., Finkel R.S., Ladda R.L., Chen Y.T., Rosenberg A.S., Kishnani P.S. The impact of antibodies on clinical outcomes in diseases treated with therapeutic protein: lessons learned from infantile Pompe disease. Genet. Med. 2011;13:729–736.
    1. Kishnani P.S., Goldenberg P.C., DeArmey S.L., Heller J., Benjamin D., Young S., Bali D., Smith S.A., Li J.S., Mandel H., Koeberl D., Rosenberg A., Chen Y.T. Cross-reactive immunologic material status affects treatment outcomes in Pompe disease infants. Mol. Genet. Metab. 2010;99:26–33.
    1. Berrier K.L., Kazi Z.B., Prater S.N., Bali D.S., Goldstein J., Stefanescu M.C., Rehder C.W., Botha E.G., Ellaway C., Bhattacharya K., Tylki-Szymanska A., Karabul N., Rosenburg A.S., Kishnani P.S. CRIM-negative infantile Pompe disease: characterization of immune responses in patients treated with ERT monotherapy. Genet. Med. 2015
    1. Messinger Y.H., Mendelsohn N.J., Rhead W., Dimmock D., Hershkovitz E., Champion M., Jones S.A., Olson R., White A., Wells C., Bali D., Case L.E., Young S.P., Rosenberg A.S., Kishnani P.S. Successful immune tolerance induction to enzyme replacement therapy in CRIM-negative infantile Pompe disease. Genet. Med. 2012;14:135–142.
    1. Moreland R.J., Jin X., Zhang X.K., Decker R.W., Albee K.L., Lee K.L., Cauthron R.D., Brewer K., Edmunds T., Canfield W.M. Lysosomal acid alpha-glucosidase consists of four different peptides processed from a single chain precursor. J. Biol. Chem. 2005;280:6780–6791.
    1. Hasilik A., Neufeld E.F. Biosynthesis of lysosomal enzymes in fibroblasts. Synthesis as precursors of higher molecular weight. J. Biol. Chem. 1980;255:4937–4945.
    1. Reuser A.J., Kroos M., Oude Elferink R.P., Tager J.M. Defects in synthesis, phosphorylation, and maturation of acid alpha-glucosidase in glycogenosis type II. J. Biol. Chem. 1985;260:8336–8341.
    1. Wisselaar H.A., Kroos M.A., Hermans M.M., van Beeumen J., Reuser A.J. Structural and functional changes of lysosomal acid alpha-glucosidase during intracellular transport and maturation. J. Biol. Chem. 1993;268:2223–2231.
    1. Bali D.S., Goldstein J.L., Banugaria S., Dai J., Mackey J., Rehder C., Kishnani P.S. Predicting cross-reactive immunological material (CRIM) status in Pompe disease using GAA mutations: lessons learned from 10 years of clinical laboratory testing experience. Am. J. Med. Genet. C Semin. Med. Genet. 2012;160C:40–49.
    1. Wang Z., Okamoto P., Keutzer J. A new assay for fast, reliable CRIM status determination in infantile-onset Pompe disease. Mol. Genet. Metab. 2014;111:92–100.
    1. Miller J.N., Pearce D.A. Nonsense-mediated decay in genetic disease: friend or foe? Mutat. Res. Rev. Mutat. Res. 2014;762:52–64.
    1. Beesley C.E., Child A.H., Yacoub M.H. The identification of five novel mutations in the lysosomal acid a-(1-4) glucosidase gene from patients with glycogen storage disease type II. Mutations in brief no. 134. Hum. Mutat. 1998;11:413. Online.
    1. Kroos M., Pomponio R.J., van Vliet L., Palmer R.E., Phipps M., Van der Helm R., Halley D., Reuser A. Update of the Pompe disease mutation database with 107 sequence variants and a format for severity rating. Hum. Mutat. 2008;29:E13–E26.
    1. Adams E.M., Becker J.A., Griffith L., Segal A., Plotz P.H., Raben N. Glycogenosis type II: a juvenile-specific mutation with an unusual splicing pattern and a shared mutation in African Americans. Hum. Mutat. 1997;10:128–134.
    1. Becker J.A., Vlach J., Raben N., Nagaraju K., Adams E.M., Hermans M.M., Reuser A.J., Brooks S.S., Tifft C.J., Hirschhorn R., Huie M.L., Nicolino M., Plotz P.H. The African origin of the common mutation in African American patients with glycogen-storage disease type II. Am. J. Hum. Genet. 1998;62:991–994.
    1. Oba-Shinjo S.M., da Silva R., Andrade F.G., Palmer R.E., Pomponio R.J., Ciociola K.M., Gutierrez S.C.M.P.S., Porta G., Marrone C.D., Munoz V., Grzesiuk A.K., Llerena J.C., Jr., Berditchevsky C.R., Sobreira C., Horovitz D., Hatem T.P., Frota E.R., Pecchini R., Kouyoumdjian J.A., Werneck L., Amado V.M., Camelo J.S., Jr., Mattaliano R.J., Marie S.K. Pompe disease in a Brazilian series: clinical and molecular analyses with identification of nine new mutations. J. Neurol. 2009;256:1881–1890.
    1. Nino M.Y., Mateus H.E., Fonseca D.J., Kroos M.A., Ospina S.Y., Mejia J.F., Uribe J.A., Reuser A.J., Laissue P. Identification and functional characterization of GAA mutations in Colombian patients affected by pompe disease. JIMD Rep. 2013;7:39–48.
    1. Hermans M.M., de Graaff E., Kroos M.A., Wisselaar H.A., Willemsen R., Oostra B.A., Reuser A.J. The conservative substitution Asp-645–>Glu in lysosomal alpha-glucosidase affects transport and phosphorylation of the enzyme in an adult patient with glycogen-storage disease type II. Biochem. J. 1993;289(Pt 3):687–693.
    1. Kishnani P.S., Nicolino M., Voit T., Rogers R.C., Tsai A.C., Waterson J., Herman G.E., Amalfitano A., Thurberg B.L., Richards S., Davison M., Corzo D., Chen Y.T. Chinese hamster ovary cell-derived recombinant human acid alpha-glucosidase in infantile-onset Pompe disease. J. Pediatr. 2006;149:89–97.
    1. Elder M.E., Nayak S., Collins S.W., Lawson L.A., Kelley J.S., Herzog R.W., Modica R.F., Lew J., Lawrence R.M., Byrne B.J. B-cell depletion and immunomodulation before initiation of enzyme replacement therapy blocks the immune response to acid alpha-glucosidase in infantile-onset Pompe disease. J. Pediatr. 2013;163:847–854. e841.
    1. Hermans M.M., van Leenen D., Kroos M.A., Beesley C.E., Van Der Ploeg A.T., Sakuraba H., Wevers R., Kleijer W., Michelakakis H., Kirk E.P., Fletcher J., Bosshard N., Basel-Vanagaite L., Besley G., Reuser A.J. Twenty-two novel mutations in the lysosomal alpha glucosidase gene (GAA) underscore the genotype-phenotype correlation in glycogen storage disease type II. Hum. Mutat. 2004;23:47–56.
    1. Dagnino F., Stroppiano M., Regis S., Bonuccelli G., Filocamo M. Evidence for a founder effect in Sicilian patients with glycogen storage disease type II. Hum. Hered. 2000;50:331–333.
    1. Montalvo A.L., Bembi B., Donnarumma M., Filocamo M., Parenti G., Rossi M., Merlini L., Buratti E., De Filippi P., Dardis A., Stroppiano M., Ciana G., Pittis M.G. Mutation profile of the GAA gene in 40 Italian patients with late onset glycogen storage disease type II. Hum. Mutat. 2006;27:999–1006.
    1. Huie M.L., Chen A.S., Brooks S.S., Grix A., Hirschhorn R. A de novo 13 nt deletion, a newly identified C647W missense mutation and a deletion of exon 18 in infantile onset glycogen storage disease type II (GSDII) Hum. Mol. Genet. 1994;3:1081–1087.
    1. Van der Kraan M., Kroos M.A., Joosse M., Bijvoet A.G., Verbeet M.P., Kleijer W.J., Reuser A.J. Deletion of exon 18 is a frequent mutation in glycogen storage disease type II. Biochem. Biophys. Res. Commun. 1994;203:1535–1541.
    1. Boerkoel C.F., Exelbert R., Nicastri C., Nichols R.C., Miller F.W., Plotz P.H., Raben N. Leaky splicing mutation in the acid maltase gene is associated with delayed onset of glycogenosis type II. Am. J. Hum. Genet. 1995;56:887–897.
    1. Hirschhorn R., Huie M.L. Frequency of mutations for glycogen storage disease type II in different populations: the delta525T and delta exon 18 mutations are not generally “common” in white populations. J. Med. Genet. 1999;36:85–86.

Source: PubMed

3
Iratkozz fel