Relationship between plaque composition by virtual histology intravascular ultrasound and clinical outcomes after percutaneous coronary intervention in saphenous vein graft disease patients: study protocol of a prospective cohort study

Yin Liu, Hai-Bo Wang, Xiang Li, Jian-Yong Xiao, Ji-Xiang Wang, Kathleen H Reilly, Bo Sun, Jing Gao, Yin Liu, Hai-Bo Wang, Xiang Li, Jian-Yong Xiao, Ji-Xiang Wang, Kathleen H Reilly, Bo Sun, Jing Gao

Abstract

Background: Plaque composition and morphologic characteristics identified by virtual histology intravascular ultrasound (VH-IVUS) can determine plaques at increased risk of clinical events following percutaneous coronary intervention (PCI) among coronary artery disease (CAD) patients. However, there have been few studies to investigate the relationship between plaque composition of saphenous vein graft (SVG) by VH-IVUS and clinical outcomes in patients with saphenous vein graft disease (SVGD) undergoing PCI. The purpose of this study is to determine whether plaque components and characteristics by VH-IVUS can predict major adverse cardiac events (MACEs) among SVGD patients undergoing PCI.

Methods/design: This is a prospective cohort study conducted in Tianjin Chest Hospital, China. Participants with SVGD referred for PCI will be invited to participate in this study, and will be followed up at 1, 6, 12, 24 and 36 months post-PCI to assess clinical outcomes. The planned sample size is 175 subjects. We will recruit subjects with SVGD scheduled to receive PCI, aged 18-80 years, with a history of previous coronary artery bypass graft (CABG) surgery more than 1 year ago, and willing to participate in the study and sign informed consent. The composite primary study endpoint is the incidence of MACEs after PCI for SVGD, including death from cardiac causes, non-fatal myocardial infarction, unplanned target lesion revascularization (TLR) and target vessel revascularization (TVR). The primary outcome analysis will be presented as Kaplan-Meier estimates and the primary outcome analysis will be carried out using a Cox proportional hazards regression model.

Discussion: Once the predictive values of plaque components and characteristics by VH-IVUS on subsequent clinical outcomes are determined among SVGD patients undergoing PCI, an innovative prediction tool of clinical outcomes for SVGD patients undergoing PCI will be created, which may lead to the development of new methods of risk stratification and intervention guidance.

Trial registration: The study is registered to ClinicalTrials.gov (NCT03175952).

Keywords: Major adverse cardiac events; Percutaneous coronary intervention; Saphenous vein graft disease; Virtual histology intravascular ultrasound.

Conflict of interest statement

Ethics approval and consent to participate

The study protocol has been approved by the Institutional Review Boards of Tianjin Chest Hospital and the study will be conducted in accordance with Declaration of Helsinki. Written informed consent is signed by all the participants. The study is also registered at www.clinicaltrials.gov (NCT03175952) on June 5, 2017.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Study flow chart

References

    1. Parang P, Arora R. Coronary vein graft disease: pathogenesis and prevention. Can J Cardiol. 2009;25(2):e57–e62. doi: 10.1016/S0828-282X(09)70486-6.
    1. Yayla C, Canpolat U, Akyel A, Yayla KG, Yilmaz S, Acikgoz SK, Ozcan F, Turak O, Dogan M, Yeter E, et al. Association between platelet to lymphocyte ratio and saphenous vein graft disease. Angiology. 2016;67(2):133–138. doi: 10.1177/0003319715578258.
    1. Gaudino M, Puskas JD, Di Franco A, Ohmes LB, Iannaccone M, Barbero U, Glineur D, Grau JB, Benedetto U, D'Ascenzo F, et al. Three arterial grafts improve late survival: a meta-analysis of propensity-matched studies. Circulation. 2017;135(11):1036–1044. doi: 10.1161/CIRCULATIONAHA.116.025453.
    1. Owens CD. Adaptive changes in autogenous vein grafts for arterial reconstruction: clinical implications. J Vasc Surg. 2010;51(3):736–746. doi: 10.1016/j.jvs.2009.07.102.
    1. Barbero U, Iannaccone M, d’Ascenzo F, Barbero C, Mohamed A, Annone U, Benedetto S, Celentani D, Gagliardi M, Moretti C, et al. 64 slice-coronary computed tomography sensitivity and specificity in the evaluation of coronary artery bypass graft stenosis: a meta-analysis. Int J Cardiol. 2016;216:52–57. doi: 10.1016/j.ijcard.2016.04.156.
    1. Demircelik B, Cakmak M, Nazli Y, Gurel OM, Akkaya N, Cetin M, Cetin Z, Selcoki Y, Kurtul A, Eryonucu B. Adropin: a new marker for predicting late saphenous vein graft disease after coronary artery bypass grafting. Clin Invest Med. 2014;37(5):E338–E344. doi: 10.25011/cim.v37i5.22014.
    1. Akpinar I, Sayin MR, Gursoy YC, Karabag T, Kucuk E, Buyukuysal MC, Aydin M, Haznedaroglu IC. Plateletcrit. A platelet marker associated with saphenous vein graft disease. Herz. 2014;39(1):142–148. doi: 10.1007/s00059-013-3798-y.
    1. Harskamp RE, Lopes RD, Baisden CE, de Winter RJ, Alexander JH. Saphenous vein graft failure after coronary artery bypass surgery: pathophysiology, management, and future directions. Ann Surg. 2013;257(5):824–833. doi: 10.1097/SLA.0b013e318288c38d.
    1. Levine GN, Bates ER, Blankenship JC, Bailey SR, Bittl JA, Cercek B, Chambers CE, Ellis SG, Guyton RA, Hollenberg SM, et al. 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention: executive summary: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines and the Society for Cardiovascular Angiography and Interventions. Circulation. 2011;124(23):2574–2609. doi: 10.1161/CIR.0b013e31823a5596.
    1. D'Ascenzo F, Barbero U, Moretti C, Palmerini T, Della Riva D, Mariani A, Omede P, DiNicolantonio JJ, Biondi-Zoccai G, Gaita F. Percutaneous coronary intervention versus coronary artery bypass graft for stable angina: meta-regression of randomized trials. Contemp Clin Trials. 2014;38(1):51–58. doi: 10.1016/j.cct.2014.03.002.
    1. Lee MS, Park SJ, Kandzari DE, Kirtane AJ, Fearon WF, Brilakis ES, Vermeersch P, Kim YH, Waksman R, Mehilli J, et al. Saphenous vein graft intervention. JACC Cardiovasc Interv. 2011;4(8):831–843. doi: 10.1016/j.jcin.2011.05.014.
    1. Yap CH, Sposato L, Akowuah E, Theodore S, Dinh DT, Shardey GC, Skillington PD, Tatoulis J, Yii M, Smith JA, et al. Contemporary results show repeat coronary artery bypass grafting remains a risk factor for operative mortality. Ann Thorac Surg. 2009;87(5):1386–1391. doi: 10.1016/j.athoracsur.2009.02.006.
    1. Morrison DA, Sethi G, Sacks J, Henderson WG, Grover F, Sedlis S, Esposito R. Investigators of the Department of Veterans Affairs Cooperative Study AWESOME: percutaneous coronary intervention versus repeat bypass surgery for patients with medically refractory myocardial ischemia: AWESOME randomized trial and registry experience with post-CABG patients. J Am Coll Cardiol. 2002;40(11):1951–1954. doi: 10.1016/S0735-1097(02)02560-3.
    1. Brilakis ES, Rao SV, Banerjee S, Goldman S, Shunk KA, Holmes DR, Jr, Honeycutt E, Roe MT. Percutaneous coronary intervention in native arteries versus bypass grafts in prior coronary artery bypass grafting patients: a report from the National Cardiovascular Data Registry. JACC Cardiovasc Interv. 2011;4(8):844–850. doi: 10.1016/j.jcin.2011.03.018.
    1. de Vries MR, Simons KH, Jukema JW, Braun J, Quax PH. Vein graft failure: from pathophysiology to clinical outcomes. Nat Rev Cardiol. 2016;13(8):451–470. doi: 10.1038/nrcardio.2016.76.
    1. Brilakis ES, O'Donnell CI, Penny W, Armstrong EJ, Tsai T, Maddox TM, Plomondon ME, Banerjee S, Rao SV, Garcia S, et al. Percutaneous coronary intervention in native coronary arteries versus bypass grafts in patients with prior coronary artery bypass graft surgery: Insights From the Veterans Affairs Clinical Assessment, Reporting, and Tracking Program. JACC Cardiovasc Interv. 2016;9(9):884–893. doi: 10.1016/j.jcin.2016.01.034.
    1. Roffi M, Mukherjee D, Chew DP, Bhatt DL, Cho L, Robbins MA, Ziada KM, Brennan DM, Ellis SG, Topol EJ. Lack of benefit from intravenous platelet glycoprotein IIb/IIIa receptor inhibition as adjunctive treatment for percutaneous interventions of aortocoronary bypass grafts: a pooled analysis of five randomized clinical trials. Circulation. 2002;106(24):3063–3067. doi: 10.1161/01.CIR.0000041250.89627.A9.
    1. Redfors B, Genereux P, Witzenbichler B, McAndrew T, Diamond J, Huang X, Maehara A, Weisz G, Mehran R, Kirtane AJ, et al. Percutaneous coronary intervention of saphenous vein graft. Circ Cardiovasc Interv. 2017;10(5).
    1. Ohshima K, Ikeda S, Kadota H, Yamane K, Izumi N, Ohshima K, Hamada M. Impact of culprit plaque volume and composition on myocardial microcirculation following primary angioplasty in patients with ST-segment elevation myocardial infarction: virtual histology intravascular ultrasound analysis. Int J Cardiol. 2013;167(3):1000–1005. doi: 10.1016/j.ijcard.2012.03.079.
    1. Iijima R, Shinji H, Ikeda N, Itaya H, Makino K, Funatsu A, Yokouchi I, Komatsu H, Ito N, Nuruki H, et al. Comparison of coronary arterial finding by intravascular ultrasound in patients with "transient no-reflow" versus "reflow" during percutaneous coronary intervention in acute coronary syndrome. Am J Cardiol. 2006;97(1):29–33. doi: 10.1016/j.amjcard.2005.07.104.
    1. Tanaka A, Kawarabayashi T, Nishibori Y, Sano T, Nishida Y, Fukuda D, Shimada K, Yoshikawa J. No-reflow phenomenon and lesion morphology in patients with acute myocardial infarction. Circulation. 2002;105(18):2148–2152. doi: 10.1161/01.CIR.0000015697.59592.07.
    1. Hong YJ, Jeong MH, Ahn Y, Kang JC, Mintz GS, Kim SW, Lee SY, Kim SY, Pichard AD, Satler LF, et al. Intravascular ultrasound findings that are predictive of no reflow after percutaneous coronary intervention for saphenous vein graft disease. Am J Cardiol. 2012;109(11):1576–1581. doi: 10.1016/j.amjcard.2012.01.383.
    1. Zhao XY, Wang XF, Li L, Zhang JY, Du YY, Yao HM. Plaque characteristics and serum pregnancy-associated plasma protein a levels predict the no-reflow phenomenon after percutaneous coronary intervention. J Int Med Res. 2013;41(2):307–316. doi: 10.1177/0300060513476423.
    1. Raichlin E, Bae JH, Kushwaha SS, Lennon RJ, Prasad A, Rihal CS, Lerman A. Inflammatory burden of cardiac allograft coronary atherosclerotic plaque is associated with early recurrent cellular rejection and predicts a higher risk of vasculopathy progression. J Am Coll Cardiol. 2009;53(15):1279–1286. doi: 10.1016/j.jacc.2008.12.041.
    1. Yun KH, Mintz GS, Farhat N, Marso SP, Taglieri N, Verheye S, Foster MC, Margolis MP, Templin B, Xu K, et al. Relation between angiographic lesion severity, vulnerable plaque morphology and future adverse cardiac events (from the providing regional observations to study predictors of events in the coronary tree study) Am J Cardiol. 2012;110(4):471–477. doi: 10.1016/j.amjcard.2012.04.018.
    1. Calvert PA, Obaid DR, O'Sullivan M, Shapiro LM, McNab D, Densem CG, Schofield PM, Braganza D, Clarke SC, Ray KK, et al. Association between IVUS findings and adverse outcomes in patients with coronary artery disease: the VIVA (VH-IVUS in vulnerable atherosclerosis) study. JACC Cardiovasc Imaging. 2011;4(8):894–901. doi: 10.1016/j.jcmg.2011.05.005.
    1. Wood FO, Badhey N, Garcia B, Abdel-karim AR, Maini B, Banerjee S, Brilakis ES. Analysis of saphenous vein graft lesion composition using near-infrared spectroscopy and intravascular ultrasonography with virtual histology. Atherosclerosis. 2010;212(2):528–533. doi: 10.1016/j.atherosclerosis.2010.07.001.
    1. Maehara A, Cristea E, Mintz GS, Lansky AJ, Dressler O, Biro S, Templin B, Virmani R, de Bruyne B, Serruys PW, et al. Definitions and methodology for the grayscale and radiofrequency intravascular ultrasound and coronary angiographic analyses. JACC Cardiovasc Imaging. 2012;5(3 Suppl):S1–S9. doi: 10.1016/j.jcmg.2011.11.019.
    1. Iannaccone M, Quadri G, Taha S, D'Ascenzo F, Montefusco A, Omede P, Jang IK, Niccoli G, Souteyrand G, Yundai C, et al. Prevalence and predictors of culprit plaque rupture at OCT in patients with coronary artery disease: a meta-analysis. Eur Heart J Cardiovasc Imaging. 2016;17(10):1128–1137. doi: 10.1093/ehjci/jev283.
    1. Obaid DR, Calvert PA, Gopalan D, Parker RA, Hoole SP, West NE, Goddard M, Rudd JH, Bennett MR. Atherosclerotic plaque composition and classification identified by coronary computed tomography: assessment of computed tomography-generated plaque maps compared with virtual histology intravascular ultrasound and histology. Circ Cardiovasc Imaging. 2013;6(5):655–664. doi: 10.1161/CIRCIMAGING.112.000250.
    1. Pu J, Mintz GS, Brilakis ES, Banerjee S, Abdel-Karim AR, Maini B, Biro S, Lee JB, Stone GW, Weisz G, et al. In vivo characterization of coronary plaques: novel findings from comparing greyscale and virtual histology intravascular ultrasound and near-infrared spectroscopy. Eur Heart J. 2012;33(3):372–383. doi: 10.1093/eurheartj/ehr387.
    1. Niccoli G, Giubilato S, Di Vito L, Leo A, Cosentino N, Pitocco D, Marco V, Ghirlanda G, Prati F, Crea F. Severity of coronary atherosclerosis in patients with a first acute coronary event: a diabetes paradox. Eur Heart J. 2013;34(10):729–741. doi: 10.1093/eurheartj/ehs393.
    1. Brown AJ, Obaid DR, Costopoulos C, Parker RA, Calvert PA, Teng Z, Hoole SP, West NE, Goddard M, Bennett MR. Direct comparison of virtual-histology intravascular ultrasound and optical coherence tomography imaging for identification of thin-cap Fibroatheroma. Circ Cardiovasc Imaging. 2015;8(10):e003487. doi: 10.1161/CIRCIMAGING.115.003487.
    1. Mintz GS. Optical coherence tomography and virtual-histology intravascular ultrasound: strange bedfellows? ... Or not? Circ Cardiovasc Imaging. 2015;8(10):e004045. doi: 10.1161/CIRCIMAGING.115.004045.
    1. Ding S, Xu L, Yang F, Kong L, Zhao Y, Gao L, Wang W, Xu R, Ge H, Jiang M, et al. Association between tissue characteristics of coronary plaque and distal embolization after coronary intervention in acute coronary syndrome patients: insights from a meta-analysis of virtual histology-intravascular ultrasound studies. PLoS One. 2014;9(11):e106583. doi: 10.1371/journal.pone.0106583.
    1. Vince DG, Dixon KJ, Cothren RM, Cornhill JF. Comparison of texture analysis methods for the characterization of coronary plaques in intravascular ultrasound images. Comput Med Imaging Graph. 2000;24(4):221–229. doi: 10.1016/S0895-6111(00)00011-2.
    1. Kawasaki M, Takatsu H, Noda T, Ito Y, Kunishima A, Arai M, Nishigaki K, Takemura G, Morita N, Minatoguchi S, et al. Noninvasive quantitative tissue characterization and two-dimensional color-coded map of human atherosclerotic lesions using ultrasound integrated backscatter: comparison between histology and integrated backscatter images. J Am Coll Cardiol. 2001;38(2):486–492. doi: 10.1016/S0735-1097(01)01393-6.
    1. Claessen BE, Maehara A, Fahy M, Xu K, Stone GW, Mintz GS. Plaque composition by intravascular ultrasound and distal embolization after percutaneous coronary intervention. JACC Cardiovasc Imaging. 2012;5(3 Suppl):S111–S118. doi: 10.1016/j.jcmg.2011.11.018.
    1. Jim MH, Hau WK, Ko RL, Siu CW, Ho HH, Yiu KH, Lau CP, Chow WH. Virtual histology by intravascular ultrasound study on degenerative aortocoronary saphenous vein grafts. Heart Vessel. 2010;25(3):175–181. doi: 10.1007/s00380-009-1185-7.

Source: PubMed

3
Iratkozz fel