Antioxidant strategies in the management of diabetic neuropathy

Ayodeji Babatunde Oyenihi, Ademola Olabode Ayeleso, Emmanuel Mukwevho, Bubuya Masola, Ayodeji Babatunde Oyenihi, Ademola Olabode Ayeleso, Emmanuel Mukwevho, Bubuya Masola

Abstract

Chronic hyperglycaemia (an abnormally high glucose concentration in the blood) resulting from defects in insulin secretion/action, or both, is the major hallmark of diabetes in which it is known to be involved in the progression of the condition to different complications that include diabetic neuropathy. Diabetic neuropathy (diabetes-induced nerve damage) is the most common diabetic complication and can be devastating because it can lead to disability. There is an increasing body of evidence associating diabetic neuropathy with oxidative stress. Oxidative stress results from the production of oxygen free radicals in the body in excess of its ability to eliminate them by antioxidant activity. Antioxidants have different mechanisms and sites of actions by which they exert their biochemical effects and ameliorate nerve dysfunction in diabetes by acting directly against oxidative damage. This review will examine different strategies for managing diabetic neuropathy which rely on exogenous antioxidants.

Figures

Figure 1
Figure 1
A simplified scheme showing the roles of reactive species and antioxidants in the progression of diabetic neuropathy. AGEs: advanced glucose end-products; PKC: protein kinase C; PARP: poly-ADP ribose polymerase; ARIs: aldose reductase inhibitors; ROS: reactive oxygen species; RNS: reactive nitrogen species; •O2 −: superoxide radical; •HO: hydroxyl radical; •RO2 −: peroxyl radical; •HRO2 −: hydroperoxyl radical; H2O2: hydrogen peroxide; HOCl: hydrochlorous acid; •NO−: nitric oxide radical; •NO2 −: nitrogen dioxide radical; ONOO: peroxynitrite; HNO2: nitrous oxide; RONOO: alkyl peroxynitrates.
Figure 2
Figure 2
Polyol pathway of hyperglycaemia-induced neuropathy.
Figure 3
Figure 3
Hyperglycaemia-induced overactivation of protein kinase c leads to nerve dysfunction.

References

    1. Zatalia S. R., Sanusi H. The role of antioxidants in the pathophysiology, complications, and management of diabetes mellitus. The Indonesian Journal of Internal Medicine. 2013;45(2):141–147.
    1. Can A., Akev N., Ozsoy N., et al. Effect of Aloe vera leaf gel and pulp extracts on the liver in type-II diabetic rat models. Biological and Pharmaceutical Bulletin. 2004;27(5):694–698. doi: 10.1248/bpb.27.694.
    1. Algaidi S. The effect of antioxidants on experimentally induced diabetic peripheral neuropathy in adult male albino rats. Journal of American Science. 2011;7(12):671–677.
    1. Aljabri K. S., Bokhari S. A., Khan M. J. Glycemic changes after vitamin D supplementation in patients with type 1 diabetes mellitus and vitamin D deficiency. Annals of Saudi Medicine. 2010;30(6):454–508. doi: 10.4103/0256-4947.72265.
    1. Wang W.-T., Lee P., Yeh H.-W., Smirnova I. V., Choi I.-Y. Effects of acute and chronic hyperglycemia on the neurochemical profiles in the rat brain with streptozotocin-induced diabetes detected using in vivo 1H MR spectroscopy at 9.4 T. Journal of Neurochemistry. 2012;121(3):407–417. doi: 10.1111/j.1471-4159.2012.07698.x.
    1. Yoon J.-W., Jun H.-S. Autoimmune destruction of pancreatic β cells. The American Journal of Therapeutics. 2005;12(6):580–591. doi: 10.1097/01.mjt.0000178767.67857.63.
    1. Pierre W., Gildas A. J. H., Ulrich M. C., Modeste W.-N., Benoît N. T., Albert K. Hypoglycemic and hypolipidemic effects of Bersama engleriana leaves in nicotinamide/streptozotocin-induced type 2 diabetic rats. BMC Complementary & Alternative Medicine. 2012;12, article 264 doi: 10.1186/1472-6882-12-264.
    1. Negi G., Kumar A., Joshi R. P., Ruby P. K., Sharma S. S. Oxidative stress and diabetic neuropathy: current status of antioxidants. Institute of Integrative Omics and Applied Biotechnology Journal. 2011;2(6):71–78.
    1. Al-Faris N. A., Al-sawadi A. D., Alokail M. S. Effect of samh seeds supplementation (Mesembryanthemum forsskalei Hochst) on liver enzymes and lipid profiles of streptozotocin (STZ)-induced diabetic Wistar rats. Saudi Journal of Biological Sciences. 2010;17(1):23–28. doi: 10.1016/j.sjbs.2009.12.004.
    1. Bandeira S. D. M., da Fonseca L. J. S., Guedes G. D. S., Rabelo L. A., Goulart M. O. F., Vasconcelos S. M. L. Oxidative stress as an underlying contributor in the development of chronic complications in diabetes mellitus. International Journal of Molecular Sciences. 2013;14(2):3265–3284. doi: 10.3390/ijms14023265.
    1. Negre-Salvayre A., Coatrieux C., Ingueneau C., Salvayre R. Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. British Journal of Pharmacology. 2008;153(1):6–20. doi: 10.1038/sj.bjp.0707395.
    1. Ayepola O. R., Chegou N. N., Brooks N. L., Oguntibeju O. O. Kolaviron, a Garcinia biflavonoid complex ameliorates hyperglycemia-mediated hepatic injury in rats via suppression of inflammatory responses. BMC Complementary and Alternative Medicine. 2013;13, article 363 doi: 10.1186/1472-6882-13-363.
    1. Graves D. T., Liu R., Oates T. W. Diabetes-enhanced inflammation and apoptosis—impact on periodontal pathosis. Periodontology 2000. 2007;45(1):128–137. doi: 10.1111/j.1600-0757.2007.00219.x.
    1. Callaghan B. C., Cheng H. T., Stables C. L., Smith A. L., Feldman E. L. Diabetic neuropathy: clinical manifestations and current treatments. The Lancet Neurology. 2012;11(6):521–534. doi: 10.1016/S1474-4422(12)70065-0.
    1. Kasznicki J., Kosmalski M., Sliwinska A., et al. Evaluation of oxidative stress markers in pathogenesis of diabetic neuropathy. Molecular Biology Reports. 2012;39(9):8669–8678. doi: 10.1007/s11033-012-1722-9.
    1. Boulton A. J. M., Vinik A. I., Arezzo J. C., et al. Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care. 2005;28(4):956–962. doi: 10.2337/diacare.28.4.956.
    1. Shaikh A. S., Somani R. S. Animal models and biomarkers of neuropathy in diabetic rodents. Indian Journal of Pharmacology. 2010;42(3):129–134. doi: 10.4103/0253-7613.66833.
    1. Ziegler D., Sohr C. G. H., Nourooz-Zadeh J. Oxidative stress and antioxidant defense in relation to the severity of diabetic polyneuropathy and cardiovascular autonomic neuropathy. Diabetes Care. 2004;27(9):2178–2183. doi: 10.2337/diacare.27.9.2178.
    1. Valko M., Leibfritz D., Moncol J., Cronin M. T. D., Mazur M., Telser J. Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry and Cell Biology. 2007;39(1):44–84. doi: 10.1016/j.biocel.2006.07.001.
    1. Ayeleso A. O., Oguntibeju O. O., Brooks N. Bioactive Phytochemicals: Perspectives for Modern Medicine. Vol. 1. New Delhi, India: Daya Publishing House; 2012. Flavonoids and their antidiabetic potentials; pp. 79–106.
    1. Rahman I., Biswas S. K., Kode A. Oxidant and antioxidant balance in the airways and airway diseases. European Journal of Pharmacology. 2006;533(1–3):222–239. doi: 10.1016/j.ejphar.2005.12.087.
    1. Inoguchi T., Li P., Umeda F., et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes. 2000;49(11):1939–1945. doi: 10.2337/diabetes.49.11.1939.
    1. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–820. doi: 10.1038/414813a.
    1. Cederberg J., Basu S., Eriksson U. J. Increased rate of lipid peroxidation and protein carbonylation in experimental diabetic pregnancy. Diabetologia. 2001;44(6):766–774. doi: 10.1007/s001250051686.
    1. Brownlee M. A radical explanation for glucose-induced β cell dysfunction. Journal of Clinical Investigation. 2003;112(12):1788–1790. doi: 10.1172/JCI200320501.
    1. Lepore D. A., Shinkel T. A., Fisicaro N., et al. Enhanced expression of glutathione peroxidase protects islet β cells from hypoxia-reoxygenation. Xenotransplantation. 2004;11(1):53–59. doi: 10.1111/j.1399-3089.2004.00082.x.
    1. Chen B.-H., Jiang D.-Y., Tang L.-S. Advanced glycation end-products induce apoptosis involving the signaling pathways of oxidative stress in bovine retinal pericytes. Life Sciences. 2006;79(11):1040–1048. doi: 10.1016/j.lfs.2006.03.020.
    1. Rhodes C. J. Type 2 diabetes—a matter of β-cell life and death? Science. 2005;307(5708):380–384. doi: 10.1126/science.1104345.
    1. Lazo-de-la-Vega-Monroy M., Fernández-Mejía C. Oxidative Stress and Chronic Degenerative Diseases-A Role for Antioxidants. Hampshire, UK: InTech; 2013. Oxidative stress in diabetes mellitus and the role of vitamins with antioxidant actions; pp. 209–231.
    1. Robertson R. P., Zhang H.-J., Pyzdrowski K. L., Walseth T. F. Preservation of insulin mRNA levels and insulin secretion in HIT cells by avoidance of chronic exposure to high glucose concentrations. Journal of Clinical Investigation. 1992;90(2):320–325. doi: 10.1172/JCI115865.
    1. Saltiel A. R., Kahn C. R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001;414(6865):799–806. doi: 10.1038/414799a.
    1. Bloch-Damti A., Bashan N. Proposed mechanisms for the induction of insulin resistance by oxidative stress. Antioxidants and Redox Signaling. 2005;7(11-12):1553–1567. doi: 10.1089/ars.2005.7.1553.
    1. Rains J. L., Jain S. K. Oxidative stress, insulin signaling, and diabetes. Free Radical Biology and Medicine. 2011;50(5):567–575. doi: 10.1016/j.freeradbiomed.2010.12.006.
    1. Pitocco D., Zaccardi F., di Stasio E., et al. Oxidative stress, nitric oxide, and diabetes. The Review of Diabetic Studies. 2010;7(1):15–25. doi: 10.1900/RDS.2010.7.15.
    1. Higaki Y., Mikami T., Fujii N., et al. Oxidative stress stimulates skeletal muscle glucose uptake through a phosphatidylinositol 3-kinase-dependent pathway. The American Journal of Physiology: Endocrinology and Metabolism. 2008;294(5):E889–E897. doi: 10.1152/ajpendo.00150.2007.
    1. Ceriello A., Mercuri F., Quagliaro L., et al. Detection of nitrotyrosine in the diabetic plasma: evidence of oxidative stress. Diabetologia. 2001;44(7):834–838. doi: 10.1007/s001250100529.
    1. Atabek M. E., Vatansev H., Erkul I. Oxidative stress in childhood obesity. Journal of Pediatric Endocrinology and Metabolism. 2004;17(8):1063–1068.
    1. Furukawa S., Fujita T., Shimabukuro M., et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. Journal of Clinical Investigation. 2004;114(12):1752–1761. doi: 10.1172/JCI200421625.
    1. Poitout V., Robertson R. P. Glucolipotoxicity: fuel excess and β-cell dysfunction. Endocrine Reviews. 2008;29(3):351–366. doi: 10.1210/er.2007-0023.
    1. Rachek L. I., Thornley N. P., Grishko V. I., LeDoux S. P., Wilson G. L. Protection of INS-1 cells from free fatty acid-induced apoptosis by targeting hOGG1 to mitochondria. Diabetes. 2006;55(4):1022–1028. doi: 10.2337/diabetes.55.04.06.db05-0865.
    1. Ceriello A., Testa R. Antioxidant anti-inflammatory treatment in type 2 diabetes. Diabetes care. 2009;32:S232–S236. doi: 10.2337/dc09-S316.
    1. Johansen J. S., Harris A. K., Rychly D. J., Ergul A. Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical pratice. Cardiovascular Diabetology. 2005;4, article 5 doi: 10.1186/1475-2840-4-5.
    1. Kiritoshi S., Nishikawa T., Sonoda K., et al. Reactive oxygen species from mitochondria induce cyclooxygenase-2 gene expression in human mesangial cells: potential role in diabetic nephropathy. Diabetes. 2003;52(10):2570–2577. doi: 10.2337/diabetes.52.10.2570.
    1. Fernyhough P., Roy Chowdhury S. K., Schmidt R. E. Mitochondrial stress and the pathogenesis of diabetic neuropathy. Expert Review of Endocrinology and Metabolism. 2010;5(1):39–49. doi: 10.1586/eem.09.55.
    1. Casellini C. M., Vinik A. I. Recent advances in the treatment of diabetic neuropathy. Current Opinion in Endocrinology and Diabetes. 2006;13(2):147–153. doi: 10.1097/.
    1. Hosseini A., Abdollahi M. Diabetic neuropathy and oxidative stress: therapeutic perspectives. Oxidative Medicine and Cellular Longevity. 2013;2013:15. doi: 10.1155/2013/168039.168039
    1. Coppey L. J., Gellett J. S., Davidson E. P., Dunlap J. A., Lund D. D., Yorek M. A. Effect of antioxidant treatment of streptozotocin-induced diabetic rats on endoneurial blood flow, motor nerve conduction velocity, and vascular reactivity of epineurial arterioles of the sciatic nerve. Diabetes. 2001;50(8):1927–1937. doi: 10.2337/diabetes.50.8.1927.
    1. Obrosova I. G., van Huysen C., Fathallah L., Cao X. C., Greene D. A., Stevens M. J. An aldose reductase inhibitor reverses early diabetes-induced changes in peripheral nerve function, metabolism, and antioxidative defense. The FASEB Journal. 2002;16(1):123–125.
    1. Russell J. W., Golovoy D., Vincent A. M., et al. High glucose-induced oxidative stress and mitochondrial dysfunction in nuerons. The FASEB Journal. 2002;16(13):1738–1748. doi: 10.1096/fj.01-1027com.
    1. Yorek M. A. The role of oxidative stress in diabetic vascular and neural disease. Free Radical Research. 2003;37(5):471–480. doi: 10.1080/1071576031000083161.
    1. Feldman E. L., Vincent A. The prevalence, impact, and multifactorial pathogenesis of diabetic peripheral neuropathy. Advanced Studies in Medicine. 2004;4(8A):S642–S649.
    1. Drel V. R., Mashtalir N., Ilnytska O., et al. The leptin-deficient (ob/ob) mouse: a new animal model of peripheral neuropathy of type 2 diabetes and obesity. Diabetes. 2006;55(12):3335–3343. doi: 10.2337/db06-0885.
    1. Obrosova I. G., Ilnytska O., Lyzogubov V. V., et al. High-fat diet-induced neuropathy of pre-diabetes and obesity: effects of “healthy” diet and aldose reductase inhibition. Diabetes. 2007;56(10):2598–2608. doi: 10.2337/db06-1176.
    1. Ho E. C. M., Lam K. S. L., Yuk S. C., et al. Aldose reductase-deficient mice are protected from delayed motor nerve conduction velocity, increased c-Jun NH2-terminal kinase activation, depletion of reduced glutathione, increased superoxide accumulation, and DNA damage. Diabetes. 2006;55(7):1946–1953. doi: 10.2337/db05-1497.
    1. Ko S.-H., Cha B.-Y. Diabetic peripheral neuropathy in type 2 diabetes mellitus in Korea. Diabetes and Metabolism Journal. 2012;36(1):6–12. doi: 10.4093/dmj.2012.36.1.6.
    1. Vincent A. M., Russell J. W., Low P., Feldman E. L. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocrine Reviews. 2004;25(4):612–628. doi: 10.1210/er.2003-0019.
    1. Jakus V. The role of free radicals, oxidative stress and antioxidant systems in diabetic vascular disease. Bratislavske Lekarske Listy. 2000;101(10):541–551.
    1. Edwards J. L., Vincent A. M., Cheng H. T., Feldman E. L. Diabetic neuropathy: mechanisms to management. Pharmacology and Therapeutics. 2008;120(1):1–34. doi: 10.1016/j.pharmthera.2008.05.005.
    1. Mahmood D., Singh B. K., Akhtar M. Diabetic neuropathy: therapies on the horizon. Journal of Pharmacy and Pharmacology. 2009;61(9):1137–1145. doi: 10.1211/jpp/61.09.0002.
    1. Francis G., Martinez J., Liu W., et al. Intranasal insulin ameliorates experimental diabetic neuropathy. Diabetes. 2009;58(4):934–945. doi: 10.2337/db08-1287.
    1. Miyata T., Wada Y., Cai Z., et al. Implication of an increased oxidative stress in the formation of advanced glycation end products in patients with end-stage renal failure. Kidney International. 1997;51(4):1170–1181. doi: 10.1038/ki.1997.160.
    1. Kalousová M., Skrha J., Zima T. Advanced glycation end-products and advanced oxidation protein products in patients with diabetes mellitus. Physiological Research. 2002;51(6):597–604.
    1. Lal M. A., Brismar H., Eklöf A.-C., Aperia A. Role of oxidative stress in advanced glycation end product-induced mesangial cell activation. Kidney International. 2002;61(6):2006–2014. doi: 10.1046/j.1523-1755.2002.00367.x.
    1. King R. H. M. The role of glycation in the pathogenesis of diabetic polyneuropathy. Journal of Clinical Pathology—Molecular Pathology. 2001;54(6):400–408.
    1. Toth C., Rong L. L., Yang C., et al. Receptor for advanced glycation end products (RAGEs) and experimental diabetic neuropathy. Diabetes. 2008;57:1002–1017.
    1. Wolff S. P., Dean R. T. Glucose autoxidation and protein modification: the potential role of autoxidative glycosylation in diabetes. Biochemical Journal. 1987;245(1):243–250.
    1. Turko I. V., Marcondes S., Murad F. Diabetes-associated nitration of tyrosine and inactivation of succinyl-CoA:3-oxoacid CoA-transferase. American Journal of Physiology—Heart and Circulatory Physiology. 2001;281(6):H2289–H2294.
    1. Evans J. L., Goldfine I. D., Maddux B. A., Grodsky G. M. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocrine Reviews. 2002;23(5):599–622. doi: 10.1210/er.2001-0039.
    1. Buse M. G. Hexosamines, insulin resistance, and the complications of diabetes: current status. The American Journal of Physiology—Endocrinology and Metabolism. 2006;290(1):1–8. doi: 10.1152/ajpendo.00329.2005.
    1. Leinninger G. M., Vincent A. M., Feldman E. L. The role of growth factors in diabetic peripheral neuropathy. Journal of the Peripheral Nervous System. 2004;9(1):26–53. doi: 10.1111/j.1085-9489.2004.09105.x.
    1. Scivittaro V., Ganz M. B., Weiss M. F. AGEs induce oxidative stress and activate protein kinase C-β(II) in neonatal mesangial cells. American Journal of Physiology: Renal Physiology. 2000;278(4):F676–F683.
    1. Rajbhandari S. M., Piya M. K. A brief review on the pathogenesis of human diabetic neuropathy: observations and postulations. International Journal of Diabetes and Metabolism. 2005;13(3):135–140.
    1. Ceriello A. Oxidative stress and diabetes-associated complications. Endocrine Practice. 2006;12(1):60–62. doi: 10.4158/EP.12.S1.60.
    1. He Z., Rask-Madsen C., King G. L. Managing heart disease mechanisms of cardiovascular complications in diabetes and potential new pharmacological therapies. European Heart Journal, Supplement. 2003;5:B51–B57. doi: 10.1016/S1520-765X(03)90041-1.
    1. Li F., Drel V. R., Szabó C., Stevens M. J., Obrosova I. G. Low-dose poly(ADP-ribose) polymerase inhibitor-containing combination therapies reverse early peripheral diabetic neuropathy. Diabetes. 2005;54(5):1514–1522. doi: 10.2337/diabetes.54.5.1514.
    1. Obrosova I. G., Xu W., Lyzogubov V. V., et al. PARP inhibition or gene deficiency counteracts intraepidermal nerve fiber loss and neuropathic pain in advanced diabetic neuropathy. Free Radical Biology and Medicine. 2008;44(6):972–981. doi: 10.1016/j.freeradbiomed.2007.09.013.
    1. Price S. A., Agthong S., Middlemas A. B., Tomlinson D. R. Mitogen-activated protein kinase p38 mediates reduced nerve conduction in experimental diabetic neuropathy: interactions with aldose reductase. Diabetes. 2004;53(7):1851–1856. doi: 10.2337/diabetes.53.7.1851.
    1. Stavniichuk R., Shevalye H., Hirooka H., Nadler J. L., Obrosova I. G. Interplay of sorbitol pathway of glucose metabolism, 12/15-lipoxygenase, and mitogen-activated protein kinases in the pathogenesis of diabetic peripheral neuropathy. Biochemical Pharmacology. 2012;83(7):932–940. doi: 10.1016/j.bcp.2012.01.015.
    1. Hall K. E., Anders A. A. F., Wiley J. W. Voltage-dependent calcium currents are enhanced in dorsal root ganglion neurones from the Bio Bred/Worchester diabetic rat. Journal of Physiology. 1995;486(2):313–322.
    1. Kellogg A. P., Wiggin T. D., Larkin D. D., Hayes J. M., Stevens M. J., Pop-Busui R. Protective effects of cyclooxygenase-2 gene inactivation against peripheral nerve dysfunction and intraepidermal nerve fiber loss in experimental diabetes. Diabetes. 2007;56(12):2997–3005. doi: 10.2337/db07-0740.
    1. Stavniichuk R., Drel V. R., Shevalye H., et al. Role of 12/15-lipoxygenase in nitrosative stress and peripheral prediabetic and diabetic neuropathies. Free Radical Biology and Medicine. 2010;49(6):1036–1045. doi: 10.1016/j.freeradbiomed.2010.06.016.
    1. Obrosova I. G., Stavniichuk R., Drel V. R., et al. Different roles of 12/15-lipoxygenase in diabetic large and small fiber peripheral and autonomic neuropathies. The American Journal of Pathology. 2010;177(3):1436–1447. doi: 10.2353/ajpath.2010.100178.
    1. Cameron N. E., Cotter M. A., Archibald V., Dines K. C., Maxfield E. K. Anti-oxidant and pro-oxidant effects on nerve conduction velocity, endoneurial blood flow and oxygen tension in non-diabetic and streptozotocin-diabetic rats. Diabetologia. 1994;37(5):449–459. doi: 10.1007/s001250050131.
    1. Cameron N. E., Cotter M. A. Effects of antioxidants on nerve and vascular dysfunction in experimental diabetes. Diabetes Research and Clinical Practice. 1999;45(2-3):137–146. doi: 10.1016/S0168-8227(99)00043-1.
    1. van Dam P. S. Oxidative stress and diabetic neuropathy: pathophysiological mechanisms and treatment perspectives. Diabetes/Metabolism Research and Reviews. 2002;18(3):176–184. doi: 10.1002/dmrr.287.
    1. Coppey L. J., Gellett J. S., Davidson E. P., Yorek M. A. Preventing superoxide formation in epineurial arterioles of the sciatic nerve from diabetic rats restores endothelium-dependent vasodilation. Free Radical Research. 2003;37(1):33–40. doi: 10.1080/1071576021000028442.
    1. Sayyed S. G., Kumar A., Sharma S. S. Effects of U83836E on nerve functions, hyperalgesia and oxidative stress in experimental diabetic neuropathy. Life Sciences. 2006;79(8):777–783. doi: 10.1016/j.lfs.2006.02.033.
    1. Kumar A., Kaundal R. K., Iyer S., Sharma S. S. Effects of resveratrol on nerve functions, oxidative stress and DNA fragmentation in experimental diabetic neuropathy. Life Sciences. 2007;80(13):1236–1244. doi: 10.1016/j.lfs.2006.12.036.
    1. Negi G., Kumar A., Sharma S. S. Melatonin modulates neuroinflammation and oxidative stress in experimental diabetic neuropathy: effects on NF-κB and Nrf2 cascades. Journal of Pineal Research. 2011;50(2):124–131. doi: 10.1111/j.1600-079X.2010.00821.x.
    1. Ametov A. S., Barinov A., Dyck P. J., et al. The sensory symptoms of diabetic polyneuropathy are improved with α-lipoic acid: The Sydney trial. Diabetes Care. 2003;26(3):770–776. doi: 10.2337/diacare.26.3.770.
    1. Ziegler D., Ametov A., Barinov A., et al. Oral treatment with α-lipoic acid improves symptomatic diabetic polyneuropathy. Diabetes Care. 2006;29(11):2365–2370. doi: 10.2337/dc06-1216.
    1. Ziegler D., Low P. A., Litchy W. J., et al. Efficacy and safety of antioxidant treatment with α-lipoic acid over 4 years in diabetic polyneuropathy: the NATHAN 1 trial. Diabetes Care. 2011;34(9):2054–2060. doi: 10.2337/dc11-0503.
    1. Hong J.-H., Kim M.-J., Park M.-R., et al. Effects of vitamin E on oxidative stress and membrane fluidity in brain of streptozotocin-induced diabetic rats. Clinica Chimica Acta. 2004;340(1-2):107–115. doi: 10.1016/j.cccn.2003.10.003.
    1. Özkan Y., Yilmaz Ö., Öztürk A. I., Erşan Y. Effects of triple antioxidant combination (vitamin E, vitamin C and α-lipoic acid) with insulin on lipid and cholesterol levels and fatty acid composition of brain tissue in experimental diabetic and non-diabetic rats. Cell Biology International. 2005;29(9):754–760. doi: 10.1016/j.cellbi.2005.04.011.
    1. Vallianou N., Evangelopoulos A., Koutalas P. Alpha-lipoic acid and diabetic neuropathy. Review of Diabetic Studies. 2009;6(4):230–236. doi: 10.1900/RDS.2009.6.230.
    1. Packer L., Kraemer K., Rimbach G. Molecular aspects of lipoic acid in the prevention of diabetes complications. Nutrition. 2001;17(10):888–895. doi: 10.1016/S0899-9007(01)00658-X.
    1. Nagamatsu M., Nickander K. K., Schmelzer J. D., et al. Lipoic acid improves nerve blood flow, reduces oxidative stress, and improves distal nerve conduction in experimental diabetic neuropathy. Diabetes Care. 1995;18(8):1160–1167. doi: 10.2337/diacare.18.8.1160.
    1. Baydas G., Donder E., Kiliboz M., et al. Neuroprotection by α-lipoic acid in streptozotocin-induced diabetes. Biochemistry. 2004;69(9):1001–1005. doi: 10.1023/B:BIRY.0000043542.39691.95.
    1. Evans J. L., Heymann C. J., Goldfine I. D., Gavin L. A. Pharmacokinetics, tolerability, and fructosamine-lowering effect of a novel, controlled-release formulation of α-lipoic acid. Endocrine Practice. 2002;8(1):29–35. doi: 10.4158/EP.8.1.29.
    1. Tankova T., Cherninkova S., Koev D. Treatment for diabetic mononeuropathy with α-lipoic acid. International Journal of Clinical Practice. 2005;59(6):645–650. doi: 10.1111/j.1742-1241.2005.00452.x.
    1. Du X., Edelstein D., Brownlee M. Oral benfotiamine plus α-lipoic acid normalises complication-causing pathways in type 1 diabetes. Diabetologia. 2008;51(10):1930–1932. doi: 10.1007/s00125-008-1100-2.
    1. Huang E. A., Gitelman S. E. The effect of oral alpha-lipoic acid on oxidative stress in adolescents with type 1 diabetes mellitus. Pediatric Diabetes. 2008;9(3):69–73. doi: 10.1111/j.1399-5448.2007.00342.x.
    1. Gianturco V., Bellomo A., D'Ottavio E., et al. Impact of therapy with alpha-lipoic acid (ALA) on the oxidative stress in the controlled NIDDM: a possible preventive way against the organ dysfunction? Archives of Gerontology and Geriatrics. 2009;49:129–133.
    1. Bertolotto F., Massone A. Combination of alpha lipoic acid and superoxide dismutase leads to physiological and symptomatic improvements in diabetic neuropathy. Drugs in R and D. 2012;12(1):29–34. doi: 10.2165/11599200-000000000-00000.
    1. Shakher J., Stevens M. J. Update on the management of diabetic polyneuropathies. Diabetes, Metabolic Syndrome and Obesity. 2011;4:289–305.
    1. Maritim A. C., Sanders R. A., Watkins J. B., III Diabetes, oxidative stress, and antioxidants: a review. Journal of Biochemical and Molecular Toxicology. 2003;17(1):24–38. doi: 10.1002/jbt.10058.
    1. Salah S. H., Abdou H. S., Abdel Rahim E. A. Modulatory effect of vitamins A, C and E mixtures against tefluthrin pesticide genotoxicity in rats. Pesticide Biochemistry and Physiology. 2010;98(2):191–197. doi: 10.1016/j.pestbp.2010.06.006.
    1. Kunisaki M., Bursell S.-E., Clermont A. C., et al. Vitamin E prevents diabetes-induced abnormal retinal blood flow via the diacylglycerol-protein kinase C pathway. The American Journal of Physiology—Endocrinology and Metabolism. 1995;269(2, part 1):E239–E246.
    1. Çinar M. G., Ülker S., Alper G., Evinç A. Effect of dietary vitamin E supplementation on vascular reactivity of thoracic aorta in streptozotocin-diabetic rats. Pharmacology. 2001;62(1):56–64. doi: 10.1159/000056072.
    1. Chang T. I., Horal M., Jain S. K., Wang F., Patel R., Loeken M. R. Oxidant regulation of gene expression and neural tube development: insights gained from diabetic pregnancy on molecular causes of neural tube defects. Diabetologia. 2003;46(4):538–545.
    1. Hamblin M., Smith H. M., Hill M. F. Dietary supplementation with vitamin E ameliorates cardiac failure in type 1 diabetic cardiomyopathy by suppressing myocardial generation of 8-iso-prostaglandin F2α and oxidized glutathione. Journal of Cardiac Failure. 2007;13(10):884–892. doi: 10.1016/j.cardfail.2007.07.002.
    1. Niedowicz D. M., Daleke D. L. The role of oxidative stress in diabetic complications. Cell Biochemistry and Biophysics. 2005;43(2):289–330. doi: 10.1385/CBB:43:2:289.
    1. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto miocardico. The Lancet. 1999;354(9177):447–455. doi: 10.1016/S0140-6736(99)07072-5.
    1. Yusuf S. Vitamin E supplementation and cardiovascular events in high-risk patients. The New England Journal of Medicine. 2000;342(3):154–160. doi: 10.1056/NEJM200001203420302.
    1. Pruthi S., Allison T. G., Hensrud D. D. Vitamin E supplementation in the prevention of coronary heart disease. Mayo Clinic Proceedings. 2001;76(11):1131–1136. doi: 10.4065/76.11.1131.
    1. Lee I.-M., Cook N. R., Gaziano J. M., et al. Vitamin E in the primary prevention of cardiovascular disease and cancer: the women's health study: a randomized controlled trial. The Journal of the American Medical Association. 2005;294(1):56–65. doi: 10.1001/jama.294.1.56.
    1. Milman U., Blum S., Shapira C., et al. Vitamin E supplementation reduces cardiovascular events in a subgroup of middle-aged individuals with both type 2 diabetes mellitus and the haptoglobin 2-2 genotype: a prospective double-blinded clinical trial. Arteriosclerosis, Thrombosis, and Vascular Biology. 2008;28(2):341–347. doi: 10.1161/ATVBAHA.107.153965.
    1. Einarson T. R., Garg M., Kaur V., Hemels M. E. H. Composite endpoints in trials of type-2 diabetes. Diabetes, Obesity and Metabolism. 2014;16(6):492–499. doi: 10.1111/dom.12226.
    1. Babaei-Balderlou F., Zare S., Heidari R., Farrokhi F. Effects of melatonin and vitamin E on peripheral neuropathic pain in streptozotocin-induced diabetic rats. Iranian Journal of Basic Medical Sciences. 2010;13(2):1–8.
    1. Cunningham J. J., Mearkle P. L., Brown R. G. Vitamin C: an aldose reductase inhibitor that normalizes erythrocyte sorbitol in insulin-dependent diabetes mellitus. Journal of the American College of Nutrition. 1994;13(4):344–350. doi: 10.1080/07315724.1994.10718420.
    1. Eriksson J., Kohvakka A. Magnesium and ascorbic acid supplementation in diabetes mellitus. Annals of Nutrition and Metabolism. 1995;39(4):217–223. doi: 10.1159/000177865.
    1. Je H. D., Shin C. Y., Park S. Y., et al. Combination of vitamin C and rutin on neuropathy and lung damage of diabetes mellitus rats. Archives of Pharmacal Research. 2002;25(2):184–190. doi: 10.1007/BF02976561.
    1. Fadupin G. T., Akpoghor A. U., Okunade K. A. A comparative study of serum ascorbic acid level in people with and without type 2 diabetes in Ibadan, Nigeria. African Journal of Medicine and Medical Sciences. 2007;36(4):335–339.
    1. Mazloom Z., Hejazi N., Dabbaghmanesh M.-H., Tabatabaei H.-R., Ahmadi A., Ansar H. Effect of vitamin C supplementation on postprandial oxidative stress and lipid profile in type 2 diabetic patients. Pakistan Journal of Biological Sciences. 2011;14(19):900–904. doi: 10.3923/pjbs.2011.900.904.
    1. Lukačínová A., Mojžiš J., Beňačka R., Rácz O., Ništiar F. Structure-activity relationships of preventive effects of flavonoids in alloxan-induced diabetes mellitus in rats. Journal of Animal and Feed Sciences. 2008;17(3):411–421.
    1. Nijveldt R. J., van Nood E., van Hoorn D. E. C., Boelens P. G., van Norren K., van Leeuwen P. A. M. Flavonoids: a review of probable mechanisms of action and potential applications. The American Journal of Clinical Nutrition. 2001;74(4):418–425.
    1. Arts I. C. W., Hollman P. C. H. Polyphenols and disease risk in epidemiologic studies. The American Journal of Clinical Nutrition. 2005;81(1):317S–325S.
    1. Nettleton J. A., Harnack L. J., Scrafford C. G., Mink P. J., Barraj L. M., Jacobs D. R., Jr. Dietary flavonoids and flavonoid-rich foods are not associated with risk of type 2 diabetes in postmenopausal women. Journal of Nutrition. 2006;136(12):3039–3045.
    1. Cui X.-P., Li B.-Y., Gao H.-Q., Wei N., Wang W.-L., Lu M. Effects of grape seed proanthocyanidin extracts on peripheral nerves in streptozocin-induced diabetic rats. Journal of Nutritional Science and Vitaminology. 2008;54(4):321–328. doi: 10.3177/jnsv.54.321.
    1. Wang G. G., Lu X. H., Li W., Zhao X., Zhang C. Protective effects of luteolin on diabetic nephropathy in STZ-induced diabetic rats. Evidence-Based Complementary and Alternative Medicine. 2011;2011:7. doi: 10.1155/2011/323171.323171
    1. Ibrahim S. S. Protective effect of hesperidin, a citrus bioflavonoid, on diabetes-induced brain damage in rats. Journal of Applied Sciences Research. 2008;4(1):84–95.
    1. Maher P., Dargusch R., Ehren J. L., Okada S., Sharma K., Schubert D. Fisetin lowers methylglyoxal dependent protein glycation and limits the complications of diabetes. PLoS ONE. 2011;6(6) doi: 10.1371/journal.pone.0021226.e21226
    1. Baluchnejadmojarad T., Roghani M. Chronic oral epigallocatechin-gallate alleviates streptozotocin-induced diabetic neuropathic hyperalgesia in rat: Involvement of oxidative stress. Iranian Journal of Pharmaceutical Research. 2012;11(4):1243–1253.
    1. Al-Enazi M. M. Ameliorative potential of rutin on streptozotocin-induced neuropathic pain in rat. African Journal of Pharmacy and Pharmacology. 2003;7(41):2743–2754.
    1. Ferreira P. E. B., Lopes C. R. P., Alves A. M. P., et al. Diabetic neuropathy: an evaluation of the use of quercetin in the cecum of rats. World Journal of Gastroenterology. 2013;19(38):6416–6426. doi: 10.3748/wjg.v19.i38.6416.
    1. Naziroğlu M., Şimşek M., Şimşek H., Aydilek N., Özcan Z., Atilgan R. The effects of hormone replacement therapy combined with vitamins C and E on antioxidants levels and lipid profiles in postmenopausal women with Type 2 diabetes. Clinica Chimica Acta. 2004;344(1-2):63–71. doi: 10.1016/j.cccn.2004.01.031.
    1. Roldi L. P., Pereira R. V. F., Tronchini E. A., et al. Vitamin E (α-tocopherol) supplementation in diabetic rats: effects on the proximal colon. BMC Gastroenterology. 2009;9(1, article 88) doi: 10.1186/1471-230X-9-88.
    1. Kao Y.-H., Hiipakka R. A., Liao S. Modulation of endocrine systems and food intake by green tea epigallocatechin gallate. Endocrinology. 2000;141(3):980–987. doi: 10.1210/en.141.3.980.
    1. Kamalakkannan N., Prince P. S. M. Rutin improves the antioxidant status in streptozotocin-induced diabetic rat tissues. Molecular and Cellular Biochemistry. 2006;293(1-2):211–219. doi: 10.1007/s11010-006-9244-1.
    1. Kawano A., Nakamura H., Hata S.-I., Minakawa M., Miura Y., Yagasaki K. Hypoglycemic effect of aspalathin, a rooibos tea component from Aspalathus linearis, in type 2 diabetic model db/db mice. Phytomedicine. 2009;16(5):437–443. doi: 10.1016/j.phymed.2008.11.009.
    1. Fernandes A. A. H., Novelli E. L. B., Junior A. F., Galhardi C. M. Effect of naringerin on biochemical parameters in the streptozotocin-induced diabetic rats. Brazilian Archives of Biology and Technology. 2009;52(1):51–59. doi: 10.1590/S1516-89132009000100007.
    1. Torres-Piedra M., Ortiz-Andrade R., Villalobos-Molina R., et al. A comparative study of flavonoid analogues on streptozotocin-nicotinamide induced diabetic rats: quercetin as a potential antidiabetic agent acting via 11β-Hydroxysteroid dehydrogenase type 1 inhibition. European Journal of Medicinal Chemistry. 2010;45(6):2606–2612. doi: 10.1016/j.ejmech.2010.02.049.
    1. Pari L., Srinivasan S. Antihyperglycemic effect of diosmin on hepatic key enzymes of carbohydrate metabolism in streptozotocin-nicotinamide-induced diabetic rats. Biomedicine and Pharmacotherapy. 2010;64(7):477–481. doi: 10.1016/j.biopha.2010.02.001.
    1. Nadig P., Revankar R., Dethe S., Narayanswamy S., Aliyar M. Effect of Tinospora cordifolia on experimental diabetic neuropathy. Indian Journal of Pharmacology. 2012;44(5):580–583. doi: 10.4103/0253-7613.100380.
    1. Malik Z. A., Singh M., Sharma P. L. Neuroprotective effect of Momordica charantia in global cerebral ischemia and reperfusion induced neuronal damage in diabetic mice. Journal of Ethnopharmacology. 2011;133(2):729–734. doi: 10.1016/j.jep.2010.10.061.
    1. Islam M. S., Choi H. Comparative effects of dietary ginger (Zingiber officinale) and garlic (Allium sativum) investigated in a type 2 diabetes model of rats. Journal of Medicinal Food. 2008;11(1):152–159. doi: 10.1089/jmf.2007.634.
    1. Afolayan A. J., Sunmonu T. O. Artemisia afra jacq. ameliorates oxidative stress in the pancreas of streptozotocin-induced diabetic wistar rats. Bioscience, Biotechnology and Biochemistry. 2011;75(11):2083–2086. doi: 10.1271/bbb.100792.
    1. Afolayan A. J., Sunmonu T. O. Protective role of Artemisia afra aqueous extract on tissue antioxidant defense systems in streptozotocin-induced diabetic rats. African Journal of Traditional, Complementary and Alternative Medicines. 2012;10(1):15–20.
    1. Oyenihi A. B., Brooks N. L., Oguntibeju O. O., Aboua Y. Antioxidant-Rich Natural Products and Human Health. Vol. 14. Intech; 2014. Antioxidant-rich natural products and diabetes mellitus; pp. 317–345.
    1. Patel D. K., Kumar R., Laloo D., Hemalatha S. Natural medicines from plant source used for therapy of diabetes mellitus: an overview of its pharmacological aspects. Asian Pacific Journal of Tropical Disease. 2012;2(3):239–250. doi: 10.1016/S2222-1808(12)60054-1.
    1. Hotta N., Sakamoto N., Shigeta Y., Kikkawa R., Goto Y. Clinical investigation of epalrestat, aldose reductase inhibitor, on diabetic neuropathy in Japan: multicenter study. Journal of Diabetes and its Complications. 1996;10(3):168–172. doi: 10.1016/1056-8727(96)00113-4.
    1. Yagihashi S., Yamagishi S. I., Wada R. I., et al. Neuropathy in diabetic mice overexpressing human aldose reductase and effects of aldose reductase inhibitor. Brain. 2001;124(12):2448–2458. doi: 10.1093/brain/124.12.2448.
    1. Hotta N., Toyota T., Matsuoka K., et al. SNK-860 diabetic neuropathy study group: clinical efficacy of fidarestat , a novel aldose reductase inhibitor, for diabetic peripheral neuropathy: a 52-week multicenter placebo-controlled double-blind parallel group study. Diabetes Care. 2001;24(10):1776–1782. doi: 10.2337/diacare.24.10.1776.
    1. Hotta N., Akanuma Y., Kawamori R., et al. Long-term clinical effects of epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy: The 3-year, multicenter, comparative aldose reductase inhibitor-diabetes complications trial. Diabetes Care. 2006;29(7):1538–1544. doi: 10.2337/dc05-2370.
    1. Ramirez M. A., Borja N. L. Epalrestat: an aldose reductase inhibitor for the treatment of diabetic neuropathy. Pharmacotherapy. 2008;28(5):646–655. doi: 10.1592/phco.28.5.646.
    1. Bril V., Buchanan R. A. Aldose reductase inhibition by AS-3201 in sural nerve from patients with diabetic sensorimotor polyneuropathy. Diabetes Care. 2004;27(10):2369–2375. doi: 10.2337/diacare.27.10.2369.
    1. Bril V., Hirose T., Tomioka S., Buchanan R. Ranirestat for the management of diabetic sensorimotor polyneuropathy. Diabetes Care. 2009;32(7):1256–1260. doi: 10.2337/dc08-2110.
    1. Schemmel K. E., Padiyara R. S., D’Souza J. J. Aldose reductase inhibitors in the treatment of diabetic peripheral neuropathy: a review. Journal of Diabetes and its Complications. 2010;24(5):354–360. doi: 10.1016/j.jdiacomp.2009.07.005.
    1. Kawai T., Takei I., Tokui M., et al. Effects of epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy in patients with type 2 diabetes, in relation to suppression of N ε-carboxymethyl lysine. Journal of Diabetes and Its Complications. 2010;24(6):424–432. doi: 10.1016/j.jdiacomp.2008.10.005.
    1. Sharma S., Sharma N. Epalrestat, an aldose reductase inhibitor, in diabetic neuropathy: an Indian perspective. Annals of Indian Academy of Neurology. 2008;11(4):231–235. doi: 10.4103/0972-2327.44558.
    1. Chattopadhyay M., Mata M., Fink D. J. Continuous δ-opioid receptor activation reduces neuronal voltage-gated sodium channel (NaV1.7) levels through activation of protein kinase C in painful diabetic neuropathy. Journal of Neuroscience. 2008;28(26):6652–6658. doi: 10.1523/JNEUROSCI.5530-07.2008.
    1. Norcini M., Vivoli E., Galeotti N., Bianchi E., Bartolini A., Ghelardini C. Supraspinal role of protein kinase C in oxaliplatin-induced neuropathy in rat. Pain. 2009;146(1-2):141–147. doi: 10.1016/j.pain.2009.07.017.
    1. Nakamura J., Kato K., Hamada Y., et al. A protein kinase C-β-selective inhibitor ameliorates neural dysfunction in streptozotocin-induced diabetic rats. Diabetes. 1999;48(10):2090–2095. doi: 10.2337/diabetes.48.10.2090.
    1. Vinik A. I., Bril V., Kempler P., et al. Treatment of symptomatic diabetic peripheral neuropathy with the protein kinase C β-inhibitor ruboxistaurin mesylate during a 1-year, randomized, placebo-controlled, double-blind clinical trial. Clinical Therapeutics. 2005;27(8):1164–1180. doi: 10.1016/j.clinthera.2005.08.001.
    1. Haupt E., Ledermann H., Köpcke W. Benfotiamine in the treatment of diabetic polyneuropathy—a three-week randomized, controlled pilot study (BEDIP study) International Journal of Clinical Pharmacology and Therapeutics. 2005;43(2):71–77. doi: 10.5414/CPP43071.
    1. Stirban A., Negrean M., Stratmann B., et al. Adiponectin decreases postprandially following a heat-processed meal in individuals with type 2 diabetes: an effect prevented by benfotiamine and cooking method. Diabetes Care. 2007;30(10):2514–2516. doi: 10.2337/dc07-0302.
    1. Balakumar P., Rohilla A., Krishan P., Solairaj P., Thangathirupathi A. The multifaceted therapeutic potential of benfotiamine. Pharmacological Research. 2010;61(6):482–488. doi: 10.1016/j.phrs.2010.02.008.
    1. Cameron N. E., Gibson T. M., Nangle M. R., Cotter M. A. Inhibitors of advanced glycation end product formation and neurovascular dysfunction in experimental diabetes. Annals of the New York Academy of Sciences. 2005;1043:784–792. doi: 10.1196/annals.1333.091.
    1. Stracke H., Lindemann A., Federlin K. A benfotiamine-vitamin B combination in treatment of diabetic polyneuropathy. Experimental and Clinical Endocrinology and Diabetes. 1996;104(4):311–316. doi: 10.1055/s-0029-1211460.
    1. Yan H., Guo Y., Zhang J., Ding Z., Ha W., Harding J. J. Effect of carnosine, aminoguanidine, and aspirin drops on the prevention of cataracts in diabetic rats. Molecular Vision. 2008;14:2282–2291.
    1. Urios P., Grigorova-Borsos A.-M., Sternberg M. Aspirin inhibits the formation of pentosidine, a cross-linking advanced glycation end product, in collagen. Diabetes Research and Clinical Practice. 2007;77(2):337–340. doi: 10.1016/j.diabres.2006.12.024.
    1. Green K., Brand M. D., Murphy M. P. Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes. Diabetes. 2004;53(supplement 1):S110–S118. doi: 10.2337/diabetes.53.2007.S110.
    1. Bugger H., Abel E. D. Mitochondria in the diabetic heart. Cardiovascular Research. 2010;88(2):229–240. doi: 10.1093/cvr/cvq239.
    1. Nishikawa T., Edelstein D., Du X. L., et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404(6779):787–790. doi: 10.1038/35008121.
    1. Huang T.-J., Price S. A., Chilton L., et al. Insulin prevents depolarization of the mitochondrial inner membrane in sensory neurons of type 1 diabetic rats in the presence of sustained hyperglycemia. Diabetes. 2003;52(8):2129–2136. doi: 10.2337/diabetes.52.8.2129.
    1. Huang T.-J., Sayers N. M., Verkhratsky A., Fernyhough P. Neurotrophin-3 prevents mitochondrial dysfunction in sensory neurons of streptozotocin-diabetic rats. Experimental Neurology. 2005;194(1):279–283. doi: 10.1016/j.expneurol.2005.03.001.
    1. Dikalov S. Cross talk between mitochondria and NADPH oxidases. Free Radical Biology and Medicine. 2011;51(7):1289–1301. doi: 10.1016/j.freeradbiomed.2011.06.033.
    1. Shen X., Zheng S., Metreveli N. S., Epstein P. N. Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes. 2006;55(3):798–805. doi: 10.1562/2005-10-20-RN-723.
    1. Matsushima S., Ide T., Yamato M., et al. Overexpression of mitochondrial peroxiredoxin-3 prevents left ventricular remodeling and failure after myocardial infarction in mice. Circulation. 2006;113(14):1779–1786. doi: 10.1161/CIRCULATIONAHA.105.582239.
    1. Banmeyer I., Marchand C., Clippe A., Knoops B. Human mitochondrial peroxiredoxin 5 protects from mitochondrial DNA damages induced by hydrogen peroxide. FEBS Letters. 2005;579(11):2327–2333. doi: 10.1016/j.febslet.2005.03.027.
    1. Ernster L., Forsmark P., Nordenbrand K. The mode of action of lipid-soluble antioxidants in biological membranes: relationship between the effects of ubiquinol and vitamin E as inhibitors of lipid peroxidation in submitochondrial particles. BioFactors. 1992;3(4):241–248.
    1. Chew G. T., Watts G. F. Coenzyme Q10 and diabetic endotheliopathy: oxidative stress and the ‘recoupling hypothesis’. QJM. 2004;97(8):537–548. doi: 10.1093/qjmed/hch089.
    1. Murphy M. P., Smith R. A. J. Drug delivery to mitochondria: the key to mitochondrial medicine. Advanced Drug Delivery Reviews. 2000;41(2):235–250. doi: 10.1016/S0169-409X(99)00069-1.
    1. Armstrong J. S. Mitochondrial medicine: pharmacological targeting of mitochondria in disease. British Journal of Pharmacology. 2007;151(8):1154–1165. doi: 10.1038/sj.bjp.0707288.
    1. Echtay K. S., Murphy M. P., Smith R. A. J., Talbot D. A., Brand M. D. Superoxide activates mitochondrial uncoupling protein 2 from the matrix side: Studies using targeted antioxidants. The Journal of Biological Chemistry. 2002;277(49):47129–47135. doi: 10.1074/jbc.M208262200.
    1. Smith R. A. J., Porteous C. M., Gane A. M., Murphy M. P. Delivery of bioactive molecules to mitochondria in vivo . Proceedings of the National Academy of Sciences of the United States of America. 2003;100(9):5407–5412. doi: 10.1073/pnas.0931245100.
    1. Skulachev V. P. A biochemical approach to the problem of aging: “megaproject” on membrane-penetrating ions. The first results and prospects. Biochemistry. 2007;72(12):1385–1396. doi: 10.1134/S0006297907120139.
    1. Trnka J., Blaikie F. H., Logan A., Smith R. A. J., Murphy M. P. Antioxidant properties of MitoTEMPOL and its hydroxylamine. Free Radical Research. 2009;43(1):4–12. doi: 10.1080/10715760802582183.
    1. McEwen M. L., Sullivan P. G., Rabchevsky A. G., Springer J. E. Targeting mitochondrial function for the treatment of acute spinal cord injury. Neurotherapeutics. 2011;8(2):168–179. doi: 10.1007/s13311-011-0031-7.
    1. Szeto H. H. Mitochondria-targeted peptide antioxidants: novel neuroprotective agents. The American Association of Pharmaceutical Scientists Journal. 2006;8(3):E521–E531. doi: 10.1208/aapsj080362.
    1. Cao M., Jiang J., Du Y., Yan P. Mitochondria-targeted antioxidant attenuates high glucose-induced P38 MAPK pathway activation in human neuroblastoma cells. Molecular Medicine Reports. 2012;5(4):929–934. doi: 10.3892/mmr.2012.746.
    1. Harper J. A., Dickinson K., Brand M. D. Mitochondrial uncoupling as a target for drug development for the treatment of obesity. Obesity Reviews. 2001;2(4):255–265. doi: 10.1046/j.1467-789X.2001.00043.x.
    1. Drummond G. R., Selemidis S., Griendling K. K., Sobey C. G. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nature Reviews Drug Discovery. 2011;10(6):453–471. doi: 10.1038/nrd3403.
    1. Guzik T. J., Mussa S., Gastaldi D., et al. Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation. 2002;105(14):1656–1662. doi: 10.1161/01.CIR.0000012748.58444.08.
    1. Thallas-Bonke V., Thorpe S. R., Coughlan M. T., et al. Inhibition of NADPH oxidase prevents advanced glycation end product-mediated damage in diabetic nephropathy through a protein kinase C-α-dependent pathway. Diabetes. 2008;57(2):460–469. doi: 10.2337/db07-1119.

Source: PubMed

3
Iratkozz fel