Residential exposure to air pollution and access to neighborhood greenspace in relation to hair cortisol concentrations during the second and third trimester of pregnancy

Veerle Josefa Verheyen, Sylvie Remy, Nathalie Lambrechts, Eva Govarts, Ann Colles, Lien Poelmans, Els Verachtert, Wouter Lefebvre, Pieter Monsieurs, Charlotte Vanpoucke, Flemming Nielsen, Lena Van den Eeden, Yves Jacquemyn, Greet Schoeters, Veerle Josefa Verheyen, Sylvie Remy, Nathalie Lambrechts, Eva Govarts, Ann Colles, Lien Poelmans, Els Verachtert, Wouter Lefebvre, Pieter Monsieurs, Charlotte Vanpoucke, Flemming Nielsen, Lena Van den Eeden, Yves Jacquemyn, Greet Schoeters

Abstract

Background: Exposure to air pollution during pregnancy has been associated with adverse pregnancy outcomes in studies worldwide, other studies have described beneficial effects of residential greenspace on pregnancy outcomes. The biological mechanisms that underlie these associations are incompletely understood. A biological stress response, which implies release of cortisol, may underlie associations of air pollution exposure and access to neighborhood greenspaces with health.

Methods: We explored residential exposure to air pollution and residential access to neighborhood greenspaces in relation to hair cortisol concentrations of participants in a prospective pregnancy cohort study in Flanders, Belgium. Hair samples were collected at the end of the second pregnancy trimester (n = 133) and shortly after delivery (n = 81). Cortisol concentrations were measured in 3-cm scalp-near hair sections, to reflect second and third pregnancy trimester cortisol secretion. We estimated long-term (3 months before sampling) residential exposure to fine particulate matter (PM2.5), nitrogen dioxide (NO2) and black carbon (BC), assessed residential distance to major roads and residential access to neighborhood greenspaces (NHGS). Associations between residential exposures and hair cortisol concentrations were studied using linear regression models while adjusting for season of sampling.

Results: Three-month mean residential NO2 and BC concentrations were positively associated with third pregnancy trimester hair cortisol concentrations (p = 0.008 and p = 0.017). Access to a large NHGS (10 ha or more within 800 m from residence) was negatively associated with third trimester hair cortisol concentrations (p = 0.019). Access to a large NHGS significantly moderated the association between residential proximity to major roads and second trimester hair cortisol concentrations (p = 0.021). Residential distance to major roads was negatively associated with second trimester hair cortisol concentrations of participants without access to a large NHGS (p = 0.003). The association was not significant for participants with access to a large NHGS. The moderation tended towards significance in the third pregnancy trimester (p < 0.10).

Conclusions: Our findings suggest a positive association between long-term residential exposure to air pollution and biological stress during pregnancy, residential access to neighborhood greenspaces may moderate the association. Further research is needed to confirm our results.

Trial registration: The IPANEMA study is registered under number NCT02592005 at clinicaltrials.gov .

Keywords: Air pollution; Hair cortisol concentrations; Longer-term biological stress; Neighborhood greenspace; Pregnancy; Proximity to major roads.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Interaction between distance to a major road and access to a large neighborhood greenspace in relation to 2nd trimester HCC
Fig. 2
Fig. 2
Interaction between distance to a major road and access to a large neighborhood greenspace in relation to 3rd trimester HCC

References

    1. Kingsley SL, Eliot MN, Whitsel EA, Huang YT, Kelsey KT, Marsit CJ, et al. Maternal residential proximity to major roadways, birth weight, and placental DNA methylation. Environ Int. 2016;92–93:43–49. doi: 10.1016/j.envint.2016.03.020.
    1. Dadvand P, Ostro B, Figueras F, Foraster M, Basagaña X, Valentín A, et al. Residential proximity to major roads and term low birth weight: the roles of air pollution, heat, noise, and road-adjacent trees. Epidemiology. 2014;25:518–525. doi: 10.1097/EDE.0000000000000107.
    1. Zhu X, Liu Y, Chen Y, Yao C, Che Z, Cao J. Maternal exposure to fine particulate matter (PM2.5) and pregnancy outcomes: a meta-analysis. Environ Sci Pollut Res. 2015;22:3383–3396. doi: 10.1007/s11356-014-3458-7.
    1. Barker DJP, Godfrey KM, Gluckman PD, Harding JE, Owens JA, Robinson JS. Fetal nutrition and cardiovascular disease in adult life. Lancet. 1993;341:938–941. doi: 10.1016/0140-6736(93)91224-A.
    1. Barouki R, Melén E, Herceg Z, Beckers J, Chen J, Karagas M, et al. Epigenetics as a mechanism linking developmental exposures to long-term toxicity. Environ Int. 2018;114:77–86. doi: 10.1016/j.envint.2018.02.014.
    1. Pedersen M, Stayner L, Slama R, Sørensen M, Figueras F, Nieuwenhuijsen MJ, et al. Ambient air pollution and pregnancy-induced hypertensive disorders: a systematic review and meta-analysis. Hypertension. 2014;64:494–500. doi: 10.1161/HYPERTENSIONAHA.114.03545.
    1. Pedersen M, Halldorsson TI, Olsen SF, Hjortebjerg D, Ketzel M, Grandström C, et al. Impact of road traffic pollution on pre-eclampsia and pregnancy-induced hypertensive disorders. Epidemiology. 2017;28:99–106. doi: 10.1097/EDE.0000000000000555.
    1. Elshahidi MH. Outdoor air pollution and gestational diabetes mellitus: a systematic review and meta-analysis. Iran J Public Health. 2019;48:9–19.
    1. Abramson BL, Melvin RG. Cardiovascular risk in women: focus on hypertension. Can J Cardiol. 2014;30:553–559. doi: 10.1016/j.cjca.2014.02.014.
    1. Dadvand P, Parker J, Bell ML, Bonzini M, Brauer M, Darrow LA, et al. Maternal exposure to particulate air pollution and term birth weight: a multi-country evaluation of effect and heterogeneity. Environ Health Perspect. 2013;121:367–373.
    1. Thomson EM. Air pollution, stress, and Allostatic load: linking systemic and central nervous system impacts. J Alzheimers Dis. 2019;69:597–614. doi: 10.3233/JAD-190015.
    1. Thomson EM, Filiatreault A, Guénette J. Stress hormones as potential mediators of air pollutant effects on the brain: rapid induction of glucocorticoid-responsive genes. Environ Res. 2019;178:108717. doi: 10.1016/j.envres.2019.108717.
    1. Niu Y, Chen R, Xia Y, Cai J, Ying Z, Lin Z, et al. Fine particulate matter constituents and stress hormones in the hypothalamus–pituitary–adrenal axis. Environ Int. 2018;119:186–192. doi: 10.1016/j.envint.2018.06.027.
    1. Hajat A, Hazlehurst MF, Golden SH, Merkin SS, Seeman T, Szpiro AA, et al. The cross-sectional and longitudinal association between air pollution and salivary cortisol: evidence from the multi-ethnic study of atherosclerosis. Environ Int. 2019;131:105062. doi: 10.1016/j.envint.2019.105062.
    1. Lee DY, Kim E, Choi MH. Technical and clinical aspects of cortisol as a biochemical marker of chronic stress. BMB Rep. 2015;48:209–216. doi: 10.5483/BMBRep.2015.48.4.275.
    1. Stalder T, Kirschbaum C. Analysis of cortisol in hair - state of the art and future directions. Brain Behav Immun. 2012;26:1019–1029. doi: 10.1016/j.bbi.2012.02.002.
    1. Kirschbaum C, Tietze A, Skoluda N, Dettenborn L. Hair as a retrospective calendar of cortisol production-increased cortisol incorporation into hair in the third trimester of pregnancy. Psychoneuroendocrinology. 2009;34:32–37. doi: 10.1016/j.psyneuen.2008.08.024.
    1. Stalder T, Steudte-Schmiedgen S, Alexander N, Klucken T, Vater A, Wichmann S, et al. Stress-related and basic determinants of hair cortisol in humans: a meta-analysis. Psychoneuroendocrinology. 2017;77:261–274. doi: 10.1016/j.psyneuen.2016.12.017.
    1. Davenport MD, Tiefenbacher S, Lutz CK, Novak MA, Meyer JS. Analysis of endogenous cortisol concentrations in the hair of rhesus macaques. Gen Comp Endocrinol. 2006;147:255–261. doi: 10.1016/j.ygcen.2006.01.005.
    1. Heimbürge S, Kanitz E, Otten W. The use of hair cortisol for the assessment of stress in animals. Gen Comp Endocrinol. 2019;270:10–17. doi: 10.1016/j.ygcen.2018.09.016.
    1. Manenschijn L, Koper JW, Lamberts SWJ, Van Rossum EFC. Evaluation of a method to measure long term cortisol levels. Steroids. 2011;76:1032–1036. doi: 10.1016/j.steroids.2011.04.005.
    1. Cottrell EC, Seckl JR, Holmes MC, Wyrwoll CS. Foetal and placental 11B-HSD2: a hub for developmental programming. Acta Physiol. 2014;210:288–295. doi: 10.1111/apha.12187.
    1. Bärebring L, O’Connell M, Winkvist A, Johannsson G, Augustin H. Serum cortisol and vitamin D status are independently associated with blood pressure in pregnancy. J Steroid Biochem Mol Biol. 2019;189:259–264. doi: 10.1016/j.jsbmb.2019.01.019.
    1. Hoffman MC, Mazzoni SE, Wagner BD, Laudenslager ML, Ross RG. Measures of maternal stress and mood in relation to preterm birth. Obstet Gynecol. 2016;127:545–552. doi: 10.1097/AOG.0000000000001287.
    1. Banay RF, Bezold CP, James P, Hart JE, Laden F. Residential greenness: current perspectives on its impact on maternal health and pregnancy outcomes. Int J Womens Health. 2017;9:133–144. doi: 10.2147/IJWH.S125358.
    1. Twohig-Bennett C, Jones A. The health benefits of the great outdoors: a systematic review and meta-analysis of greenspace exposure and health outcomes. Environ Res. 2018;166:628–637. doi: 10.1016/j.envres.2018.06.030.
    1. Markevych I, Schoierer J, Hartig T, Chudnovsky A, Hystad P, Dzhambov AM, et al. Exploring pathways linking greenspace to health: theoretical and methodological guidance. Environ Res. 2017;158:301–317. doi: 10.1016/j.envres.2017.06.028.
    1. Honold J, Lakes T, Beyer R, van der Meer E. Restoration in urban spaces. Environ Behav. 2016;48:796–825. doi: 10.1177/0013916514568556.
    1. The Worldbank: Urban Development Overview. . Accessed 20 Nov 2020.
    1. Bloemsma LD, Wijga AH, Klompmaker JO, Janssen NAH, Smit HA, Koppelman GH, et al. The associations of air pollution, traffic noise and green space with overweight throughout childhood: the PIAMA birth cohort study. Environ Res. 2019;169:348–356. doi: 10.1016/j.envres.2018.11.026.
    1. Kim S, Kim H, Lee JT. Interactions between ambient air particles and greenness on cause-specific mortality in seven Korean metropolitan cities, 2008–2016. Int J Environ Res Public Health. 2019;16:1866. doi: 10.3390/ijerph16101866.
    1. Van Den Eeden L, Lambrechts N, Verheyen V, Berth M, Schoeters G, Jacquemyn Y. Impact of particulate matter on mothers and babies in Antwerp (IPANEMA): a prospective cohort study on the impact of pollutants and particulate matter in pregnancy. BMJ Open. 2018;8:e020028. doi: 10.1136/bmjopen-2017-020028.
    1. Eurostat . Urban Europe statistics on cities, town and suburbs. 2016.
    1. Janssen S, Dumont G, Fierens F, Mensink C. Spatial interpolation of air pollution measurements using CORINE land cover data. Atmos Environ. 2008;42:4884–4903. doi: 10.1016/j.atmosenv.2008.02.043.
    1. Lefebvre W, Degrawe B, Beckx C, Vanhulsel M, Kochan B, Bellemans T, et al. Presentation and evaluation of an integrated model chain to respond to traffic- and health-related policy questions. Environ Model Software. 2013;40:160–170. doi: 10.1016/j.envsoft.2012.09.003.
    1. Wilhelm M, Ritz B. Residential proximity to traffic and adverse birth outcomes in Los Angeles County, California, 1994–1996. Environ Health Perspect. 2003;111:207–216. doi: 10.1289/ehp.5688.
    1. Poelmans L, Janssen L, Hambsch L. Landgebruik en ruimtebeslag in Vlaanderen, toestand 2016, uitgevoerd in opdracht van het Vlaams Planbureau voor Omgeving. 2019.
    1. Verachtert E, Poelmans L, Vermeiren K, Hendrix R. Technische fiche groentypologieën Stadsmonitor. Studie uitgevoerd in opdracht van Agentschap Binnenlands Bestuur. 2018; . Accessed 6 Apr 2020.
    1. Sauvé B, Koren G, Walsh G, Tokmakejian S, Van Uum SHM. Measurement of cortisol in human hair as a biomarker of systemic exposure. Clin Invest Med. 2007;30:E183–E191. doi: 10.25011/cim.v30i5.2894.
    1. Greff MJE, Levine JM, Abuzgaia AM, Elzagallaai AA, Rieder MJ, van Uum SHM. Hair cortisol analysis: an update on methodological considerations and clinical applications. Clin Biochem. 2019;63:1–9. doi: 10.1016/j.clinbiochem.2018.09.010.
    1. Abell JG, Stalder T, Ferrie JE, Shipley MJ, Kirschbaum C, Kivimäki M, et al. Assessing cortisol from hair samples in a large observational cohort: the Whitehall II study. Psychoneuroendocrinology. 2016;73:148–156. doi: 10.1016/j.psyneuen.2016.07.214.
    1. Russell E, Kirschbaum C, Laudenslager ML, Stalder T, de Rijke Y, van Rossum EFC, et al. Toward standardization of hair cortisol measurement. Ther Drug Monit. 2015;37:71–75. doi: 10.1097/FTD.0000000000000148.
    1. Chen Z, Li J, Zhang J, Xing X, Gao W, Lu Z, et al. Simultaneous determination of hair cortisol, cortisone and DHEAS with liquid chromatography-electrospray ionization-tandem mass spectrometry in negative mode. J Chromatogr B Analyt Technol Biomed Life Sci. 2013;929:187–194. doi: 10.1016/j.jchromb.2013.04.026.
    1. Wester VL, Van Rossum EFC. Clinical applications of cortisol measurements in hair. Eur J Endocrinol. 2015;173:1–10. doi: 10.1530/EJE-15-0313.
    1. Braig S, Grabher F, Ntomchukwu C, Reister F, Stalder T, Kirschbaum C, et al. Determinants of maternal hair cortisol concentrations at delivery reflecting the last trimester of pregnancy. Psychoneuroendocrinology. 2015;52:289–296. doi: 10.1016/j.psyneuen.2014.12.006.
    1. Gray NA, Dhana A, Van Der Vyver L, Van Wyk J, Khumalo NP, Stein DJ. Determinants of hair cortisol concentration in children: a systematic review. Psychoneuroendocrinology. 2018;87:204–214. doi: 10.1016/j.psyneuen.2017.10.022.
    1. Wester VL, Noppe G, Savas M, van den Akker ELT, de Rijke YB, van Rossum EFC. Hair analysis reveals subtle HPA axis suppression associated with use of local corticosteroids: the lifelines cohort study. Psychoneuroendocrinology. 2017;80:1–6. doi: 10.1016/j.psyneuen.2017.02.024.
    1. Marteinsdottir I, Sydsjö G, Faresjö TE, Josefsson A. Parity-related variation in cortisol concentrations in hair during pregnancy. BJOG. 2020. 10.1111/1471-0528.16542.
    1. Bleker LS, Roseboom TJ, Vrijkotte TG, Reynolds RM, de Rooij SR. Determinants of cortisol during pregnancy – the ABCD cohort. Psychoneuroendocrinology. 2017;83:172–181. doi: 10.1016/j.psyneuen.2017.05.026.
    1. Fairburn J, Schüle SA, Dreger S, Hilz LK, Bolte G. Social inequalities in exposure to ambient air pollution: a systematic review in the WHO European region. Int J Environ Res Public Health. 2019;16(17):3127. doi: 10.3390/ijerph16173127.
    1. Schüle SA, Gabriel KMA, Bolte G. Relationship between neighbourhood socioeconomic position and neighbourhood public green space availability: an environmental inequality analysis in a large German city applying generalized linear models. Int J Hyg Environ Health. 2017;220:711–718. doi: 10.1016/j.ijheh.2017.02.006.
    1. Statistics Flanders. . Accessed 15 Jan 2020.
    1. Organisation for Economic Co-operation and Development (OECD): Country Note Early Childhood Education and Care Policy in the Flemish Community of Belgium (2000). . Accessed 27 Jan 2020.
    1. Moudon AV. Real noise from the urban environment. How ambient community noise affects health and what can be done about it. Am J Prev Med. 2009;37:167–171. doi: 10.1016/j.amepre.2009.03.019.
    1. Eionet: Environmental Noise Directive (2016). . Accessed 14 May 2020.
    1. Miedema HME, Vos H. Noise annoyance from stationary sources: relationships with exposure metric day–evening–night level (DENL) and their confidence intervals. J Acoust Soc Am. 2004;116:334–343. doi: 10.1121/1.1755241.
    1. World Health Organization WHO. Environmental noise guidelines for the European region: World Health Organization; 2018. . Accessed 3 May 2020
    1. Weaver AM, Wellenius GA, Wu WC, Hickson DA, Kamalesh M, Wang Y. Residential distance to major roadways and cardiac structure in African Americans: cross-sectional results from the Jackson heart study. Environ Health. 2017;16(1):21. doi: 10.1186/s12940-017-0226-4.
    1. Robinson O, Tamayo I, de Castro M, Valentin A, Giorgis-Allemand L, Krog NH, et al. The urban exposome during pregnancy and its socioeconomic determinants. Environ Health Perspect. 2018;126(7):077005. doi: 10.1289/EHP2862.
    1. Liu SV, Lin CF, Xue J. A meta-analysis of selected near-road air pollutants based on concentration decay rates. Heliyon. 2019;5(8):e02236. doi: 10.1016/j.heliyon.2019.e02236.
    1. Verheyen V, Van den Eeden L, Lambrechts N, Remy S, Govarts E, Nielsen F, et al. Residential proximity to major roads and neighbourhood green space in relation to biological stress in the second trimester of pregnancy in the IPANEMA cohort. Environ Epidemiol. 2019;3:411–412.
    1. Van Aart CJC, Michels N, Sioen I, De Decker A, Bijnens EM, Janssen BG, et al. Residential landscape as a predictor of psychosocial stress in the life course from childhood to adolescence. Environ Int. 2018;120:456–463. doi: 10.1016/j.envint.2018.08.028.
    1. Makri A, Stilianakis NI. Vulnerability to air pollution health effects. Int J Hyg Environ Health. 2008;211:326–336. doi: 10.1016/j.ijheh.2007.06.005.
    1. Brook RD, Rajagopalan S, Pope CA, Brook JR, Bhatnagar A, Diez-Roux AV, et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the american heart association. Circulation. 2010;121:2331–2378. doi: 10.1161/CIR.0b013e3181dbece1.
    1. Miller MR, Shaw CA, Langrish JP. From particles to patients: oxidative stress and the cardiovascular effects of air pollution. Future Cardiol. 2012;8:577–602. doi: 10.2217/fca.12.43.
    1. John CD, Buckingham JC. Cytokines: regulation of the hypothalamo-pituitary-adrenocortical axis. Curr Opin Pharmacol. 2003;3(1):78–84. doi: 10.1016/S1471-4892(02)00009-7.
    1. Fuertes E, Standl M, Forns J, Berdel D, Garcia-Aymerich J, Markevych I, et al. Traffic-related air pollution and hyperactivity/inattention, dyslexia and dyscalculia in adolescents of the German GINIplus and LISAplus birth cohorts. Environ Int. 2016;97:85–92. doi: 10.1016/j.envint.2016.10.017.
    1. De Prins S, Dons E, Van Poppel M, Int Panis L, Van de Mieroop E, Nelen V, et al. Airway oxidative stress and inflammation markers in exhaled breath from children are linked with exposure to black carbon. Environ Int. 2014;73:440–446. doi: 10.1016/j.envint.2014.06.017.
    1. Gidlow CJ, Randall J, Gillman J, Smith GR, Jones MV. Natural environments and chronic stress measured by hair cortisol. Landsc Urban Plan. 2016;148:61–67. doi: 10.1016/j.landurbplan.2015.12.009.
    1. Ebisu K, Holford TR, Bell ML. Association between greenness, urbanicity, and birth weight. Sci Total Environ. 2016;542:750–756. doi: 10.1016/j.scitotenv.2015.10.111.
    1. Dadvand P, Sunyer J, Basagaña X, Ballester F, Lertxundi A, Fernández-Somoano A, et al. Surrounding greenness and pregnancy outcomes in four Spanish birth cohorts. Environ Health Perspect. 2012;120:1481–1487. doi: 10.1289/ehp.1205244.
    1. Markevych I, Fuertes E, Tiesler CMT, Birk M, Bauer CP, Koletzko S, et al. Surrounding greenness and birth weight: results from the GINIplus and LISAplus birth cohorts in Munich. Health Place. 2014;26:39–46. doi: 10.1016/j.healthplace.2013.12.001.
    1. Nieuwenhuijsen MJ, Agier L, Basagaña X, Urquiza J, Tamayo-Uria I, Giorgis-Allemand L, et al. Influence of the urban exposome on birth weight. Environ Health Perspect. 2019;127(4):47007. doi: 10.1289/EHP3971.
    1. Dadvand P, de Nazelle A, Figueras F, Basagaña X, Su J, Amoly E, et al. Green space, health inequality and pregnancy. Environ Int. 2012;40:110–115. doi: 10.1016/j.envint.2011.07.004.
    1. Ward Thompson C, Roe J, Aspinall P, Mitchell R, Clow A, Miller D. More green space is linked to less stress in deprived communities: evidence from salivary cortisol patterns. Landsc Urban Plan. 2012;105:221–229. doi: 10.1016/j.landurbplan.2011.12.015.
    1. Roe JJ, Aspinall PA, Thompson CW. Coping with stress in deprived urban neighborhoods: what is the role of green space according to life stage? Front Psychol. 2017;8:1760. doi: 10.3389/fpsyg.2017.01760.
    1. Klompmaker JO, Janssen NAH, Bloemsma LD, Gehring U, Wijga AH, Brink C. Vanden, et al. associations of combined exposures to surrounding green, air pollution, and road traffic noise with cardiometabolic diseases. Environ Health Perspect. 2019;127(8):87003. doi: 10.1289/EHP3857.
    1. Liang L, Gong P, Cong N, Li Z, Zhao Y, Chen Y. Assessment of personal exposure to particulate air pollution: the first result of City health outlook (CHO) project. BMC Public Health. 2019;19(1):711. doi: 10.1186/s12889-019-7022-8.

Source: PubMed

3
Iratkozz fel