Safety and efficacy of rhBMP2 in posterior cervical spinal fusion for subaxial degenerative spine disease: Analysis of outcomes in 204 patients

Risheng Xu, Mohamad Bydon, Daniel M Sciubba, Timothy F Witham, Jean-Paul Wolinsky, Ziya L Gokaslan, Ali Bydon, Risheng Xu, Mohamad Bydon, Daniel M Sciubba, Timothy F Witham, Jean-Paul Wolinsky, Ziya L Gokaslan, Ali Bydon

Abstract

Background: Many studies offer excellent demonstration of the ability of bone morphogenic protein (BMP) to enhance fusion rates in anterior as well as posterior lumbar surgery. Recently, BMP has also been shown to increase arthrodesis rates in anterior cervical surgery, albeit with concomitant increases in complication rates. To date, however, few studies have investigated the safety and efficacy of BMP in cervical surgeries approached posteriorly.

Methods: We retrospectively reviewed 204 consecutive patients with degenerative cervical spinal conditions necessitating posterior cervical fusion at a single institution over the past 4 years. The incidence of postoperative mechanical neck pain, fusion rates, as well as neurologic outcomes were compared between patients who received BMP vs those who did not receive BMP intraoperatively.

Results: There were no significant differences in preoperative variables between the non-BMP vs the BMP cohorts. Over an average follow-up of 24.2 months, there were no significant differences between the two cohorts in duration of hospitalization, cerebrospinal fluid leakage, deep vein thrombosis, pulmonary embolism, hyperostosis, infection, pneumonia, hematoma, C5 palsy, wound dehiscence, reoperation rates, or Nurick/ASIA scores. Eleven (7.1%) patients in the non-BMP group experienced instrumentation failure vs none in the BMP group (P=0.06). Patients receiving BMP had a significantly increased rate of fusion by the chi-square test (P=0.01) and the log-rank test (P=0.02). However, patients receiving BMP also had the highest rates of recurrent/persistent neck pain by the chi-square test (P=0.003) and the log-rank test (P=0.01).

Conclusions: To date, few studies have evaluated the safety and efficacy of BMP in the posterior cervical spine. Here, we show that BMP usage does not increase complication rates, but it significantly increases arthrodesis rates and also may increase the rate of recurrent/persistent neck pain.

Keywords: Arthrodesis; cervical; fusion; neck pain; non-fusion; pseudoarthrodesis.

Figures

Figure 1
Figure 1
Kaplan-Meier plots of postoperative nonfusion. Patients who did not receive bone morphogenic protein had a significantly higher chance of non-fusion over time (P=0.026) when compared with patients who received bone morphogenic protein
Figure 2
Figure 2
Kaplan-Meier plots of postoperative recurrent neck pain over time. Patients who received bone morphogenic protein had a significantly higher chance of recurrent neck pain (P=0.010) compared to patients who did not receive bone morphogenic protein

References

    1. Benglis D, Wang MY, Levi AD. A comprehensive review of the safety profile of bone morphogenetic protein in spine surgery. Neurosurgery. 2008;62:ONS423–31. discussion ONS431.
    1. Boakye M, Mummaneni PV, Garrett M, Rodts G, Haid R. Anterior cervical discectomy and fusion involving a polyetheretherketone spacer and bone morphogenetic protein. J Neurosurg Spine. 2005;2:521–5.
    1. Buttermann GR. Prospective nonrandomized comparison of an allograft with bone morphogenic protein versus an iliac-crest autograft in anterior cervical discectomy and fusion. Spine J. 2008;8:426–35.
    1. Cahill KS, Chi JH, Day A, Claus EB. Prevalence, complications, and hospital charges associated with use of bone-morphogenetic proteins in spinal fusion procedures. JAMA. 2009;302:58–66.
    1. Connolly ES, Seymour RJ, Adams JE. Clinical evaluation of anterior cervical fusion for degenerative cervical disc disease. J Neurosurg. 1965;23:431–7.
    1. Deyo RA, Cherkin D, Conrad D, Volinn E. Cost, controversy, crisis: low back pain and the health of the public. Annu Rev Public Health. 1991;12:141–56.
    1. Deyo RA, Mirza SK. Trends and variations in the use of spine surgery. Clin Orthop Relat Res. 2006;443:139–46.
    1. Deyo RA, Nachemson A, Mirza SK. Spinal-fusion surgery - the case for restraint. N Engl J Med. 2004;350:722–6.
    1. Haid RW, Jr, Branch CL, Jr, Alexander JT, Burkus JK. Posterior lumbar interbody fusion using recombinant human bone morphogenetic protein type 2 with cylindrical interbody cages. Spine J. 2004;4:527–38. discussion 538.
    1. Joseph V, Rampersaud YR. Heterotopic bone formation with the use of rhBMP2 in posterior minimal access interbody fusion: A CT analysis. Spine (Phila Pa 1976) 2007;32:2885–90.
    1. Kaiser MG, Haid RW, Jr, Subach BR, Barnes B, Rodts GE., Jr Anterior cervical plating enhances arthrodesis after discectomy and fusion with cortical allograft. Neurosurgery. 2002;50:229–36. discussion 236.
    1. Kepler CK, Rawlins BA. Mesh cage reconstruction with autologous cancellous graft in anterior cervical discectomy and fusion. J Spinal Disord Tech. 2010;23:328–32.
    1. Lanman TH, Hopkins TJ. Early findings in a pilot study of anterior cervical interbody fusion in which recombinant human bone morphogenetic protein-2 was used with poly(L-lactide-co-D,L-lactide) bioabsorbable implants. Neurosurg Focus. 2004;16:E6.
    1. Marawar S, Girardi FP, Sama AA, Ma Y, Gaber-Baylis LK, Besculides MC, et al. National trends in anterior cervical fusion procedures. Spine (Phila Pa 1976) 2010;35:1454–9.
    1. Martin BI, Deyo RA, Mirza SK, Turner JA, Comstock BA, Hollingworth W, et al. Expenditures and health status among adults with back and neck problems. JAMA. 2008;299:656–64.
    1. Martin BI, Turner JA, Mirza SK, Lee MJ, Comstock BA, Deyo RA. Trends in health care expenditures, utilization, and health status among US adults with spine problems, 1997-2006. Spine (Phila Pa 1976) 2009;34:2077–84.
    1. Martin GJ, Jr, Haid RW, Jr, MacMillan M, Rodts GE, Jr, Berkman R. Anterior cervical discectomy with freeze-dried fibula allograft.Overview of 317 cases and literature review. Spine (Phila Pa 1976) 1999;24:852–8. discussion 858-9.
    1. Miyamoto S, Takaoka K, Yonenobu K, Ono K. Ossification of the ligamentum flavum induced by bone morphogenetic protein: An experimental study in mice. J Bone Joint Surg Br. 1992;74:279–83.
    1. Newman M. The outcome of pseudarthrosis after cervical anterior fusion. Spine (Phila Pa 1976) 1993;18:2380–2.
    1. Park Y, Riew KD, Cho W. The long-term results of anterior surgical reconstruction in patients with postlaminectomy cervical kyphosis. Spine J. 2010;10:380–7.
    1. Patil PG, Turner DA, Pietrobon R. National trends in surgical procedures for degenerative cervical spine disease: 1990-2000. Neurosurgery. 2005;57:753–8. discussion 753-8.
    1. Perri B, Cooper M, Lauryssen C, Anand N. Adverse swelling associated with use of rh-BMP-2 in anterior cervical discectomy and fusion: A case study. Spine J. 2007;7:235–9.
    1. Samartzis D, Shen FH, Goldberg EJ, An HS. Is autograft the gold standard in achieving radiographic fusion in one-level anterior cervical discectomy and fusion with rigid anterior plate fixation? Spine (Phila Pa 1976) 2005;30:1756–61.
    1. Shamji MF, Cook C, Pietrobon R, Tackett S, Brown C, Isaacs RE. Impact of surgical approach on complications and resource utilization of cervical spine fusion: A nationwide perspective to the surgical treatment of diffuse cervical spondylosis. Spine J. 2009;9:31–8.
    1. Shields LB, Raque GH, Glassman SD, Campbell M, Vitaz T, Harpring J, et al. Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine (Phila Pa 1976) 2006;31:542–7.
    1. Shimer AL, Oner FC, Vaccaro AR. Spinal reconstruction and bone morphogenetic proteins: Open questions. Injury. 2009;40(Suppl 3):S32–8.
    1. Silber JS, Anderson DG, Daffner SD, Brislin BT, Leland JM, Hilibrand AS, et al. Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine (Phila Pa 1976) 2003;28:134–9.
    1. Smucker JD, Rhee JM, Singh K, Yoon ST, Heller JG. Increased swelling complications associated with off-label usage of rhBMP-2 in the anterior cervical spine. Spine (Phila Pa 1976) 2006;31:2813–9.
    1. Song KJ, Taghavi CE, Lee KB, Song JH, Eun JP. The efficacy of plate construct augmentation versus cage alone in anterior cervical fusion. Spine (Phila Pa 1976) 2009;34:2886–92.
    1. Tumialan LM, Pan J, Rodts GE, Mummaneni PV. The safety and efficacy of anterior cervical discectomy and fusion with polyetheretherketone spacer and recombinant human bone morphogenetic protein-2: A review of 200 patients. J Neurosurg Spine. 2008;8:529–35.
    1. Vaidya R, Carp J, Sethi A, Bartol S, Craig J, Les CM. Complications of anterior cervical discectomy and fusion using recombinant human bone morphogenetic protein-2. Eur Spine J. 2007;16:1257–65.
    1. Villavicencio AT, Burneikiene S, Nelson EL, Bulsara KR, Favors M, Thramann J. Safety of transforaminal lumbar interbody fusion and intervertebral recombinant human bone morphogenetic protein-2. J Neurosurg Spine. 2005;3:436–43.
    1. Wang MC, Chan L, Maiman DJ, Kreuter W, Deyo RA. Complications and mortality associated with cervical spine surgery for degenerative disease in the United States. Spine (Phila Pa 1976) 2007;32:342–7.
    1. Wang MC, Kreuter W, Wolfla CE, Maiman DJ, Deyo RA. Trends and variations in cervical spine surgery in the United States: Medicare beneficiaries, 1992 to 2005. Spine (Phila Pa 1976) 2009;34:955–61. discussion 962.
    1. Wong DA, Kumar A, Jatana S, Ghiselli G, Wong K. Neurologic impairment from ectopic bone in the lumbar canal: A potential complication of off-label PLIF/TLIF use of bone morphogenetic protein-2 (BMP-2) Spine J. 2008;8:1011–8.

Source: PubMed

3
Iratkozz fel