Small Vessels Are a Big Problem in Neurodegeneration and Neuroprotection

Şefik Evren Erdener, Turgay Dalkara, Şefik Evren Erdener, Turgay Dalkara

Abstract

The cerebral microcirculation holds a critical position to match the high metabolic demand by neuronal activity. Functionally, microcirculation is virtually inseparable from other nervous system cells under both physiological and pathological conditions. For successful bench-to-bedside translation of neuroprotection research, the role of microcirculation in acute and chronic neurodegenerative disorders appears to be under-recognized, which may have contributed to clinical trial failures with some neuroprotectants. Increasing data over the last decade suggest that microcirculatory impairments such as endothelial or pericyte dysfunction, morphological irregularities in capillaries or frequent dynamic stalls in blood cell flux resulting in excessive heterogeneity in capillary transit may significantly compromise tissue oxygen availability. We now know that ischemia-induced persistent abnormalities in capillary flow negatively impact restoration of reperfusion after recanalization of occluded cerebral arteries. Similarly, microcirculatory impairments can accompany or even precede neural loss in animal models of several neurodegenerative disorders including Alzheimer's disease. Macrovessels are relatively easy to evaluate with radiological or experimental imaging methods but they cannot faithfully reflect the downstream microcirculatory disturbances, which may be quite heterogeneous across the tissue at microscopic scale and/or happen fast and transiently. The complexity and size of the elements of microcirculation, therefore, require utilization of cutting-edge imaging techniques with high spatiotemporal resolution as well as multidisciplinary team effort to disclose microvascular-neurodegenerative connection and to test treatment approaches to advance the field. Developments in two photon microscopy, ultrafast ultrasound, and optical coherence tomography provide valuable experimental tools to reveal those microscopic events with high resolution. Here, we review the up-to-date advances in understanding of the primary microcirculatory abnormalities that can result in neurodegenerative processes and the combined neurovascular protection approaches that can prevent acute as well as chronic neurodegeneration.

Keywords: capillary; flow heterogeneity; microcirculation; neurodegeneration; neuroprotection; oxygen extraction; pericytes.

Figures

Figure 1
Figure 1
Morphological features of cerebral microcirculation. (A,B) Dense external coverage of the surface by pial arteries and veins which are interconnected via anastomoses and collateral vessels then gives rise to a complex meshwork of capillaries, composed of segments about 60–70 μm in length. (C) Penetrating arteries originating from pial vasculature dive into the cortical tissue without forming any further anastomoses. Immediately surrounded by the cerebrospinal fluid-filled spaces called perivascular spaces or Virchow-Robin spaces along their course, penetrating arteries then give rise an extensive tree of small vessels as they branch into arterioles (30–100 μm diameter), precapillary arterioles (10–30 μm), and capillaries (<10 μm), respectively. As arterioles turn into capillaries, the perivascular space disappears, making the capillary wall adjacent to the parenchyma. (D) Capillaries branch out for 5–6 times on average (2) as they release oxygen into the tissue, until they converge on postcapillary venules that drain into ascending veins. (A,B reproduced by permission from: PNAS, Meyer et al. (3) ©2008 National Academy of Sciences. (D) reprinted by permission from: Nature Communications, Sakadžić et al. (2) ©2014 Springer Nature).
Figure 2
Figure 2
Irregularity and heterogeneity in capillary flow (A) OCT angiogram time-series identify capillary segments with stalling red blood cells. Individual segments (arrowheads) with temporary interruptions of RBC flux simply lose OCT angiogram signal. Hollow arrowheads indicate a stalled capillary segment (10). (B) Two photon microscopy time series with fluorescent labeled plasma can identify flowing and stalled capillaries based on the motion of unlabeled cells as seen in black (11). (C) A single time-point two-photon angiogram of a set of capillary branches at ~100 μm below cortical surface shows heterogeneous distribution of RBC flux. Segments with higher flow have thinner and denser RBC-bands whereas slower flow is indicated by thicker and more scarce bands. One segment (arrow) has no RBCs flowing but is still filled with fluorescent labeled plasma. Scalebar: 20 μm) (D) Matrix plot of individual stall events in a region of interest, acquired during a functional stimulation experiment, with a frame period of 9 s. Every black points denotes a stall in a particular capillary. Green shades indicate whisker stimulation. (E) The frequency of capillary stalls is dynamically modulated during functional stimulation; stall prevalence was significantly lower during functional hyperemia. *Statistical significance (p < 0.05). (A,D,E reproduced by permission from: JCBFM, Erdener et al. (10); (B) reprinted by permission from: Nature Neuroscience, Cruz Hernandez et al. (11), ©2019 Springer Nature).
Figure 3
Figure 3
Capillary dysfunction in ischemic stroke and flow-limiting conditions. (A,B) Differential interference contrast (DIC) microscopy images illustrate frequent interruptions in the erythrocyte column in an ischemic capillary contrary to a continuous row of erythrocytes flowing through a non-ischemic capillary. Scale bar: 20 μm. (C–E) The constricted segments colocalized with α-smooth muscle actin (α-SMA) immunoreactive pericytes. Scale bar: 10 μm. (F–J) Very high frequency of dynamic RBC flow stalls in ischemic penumbra shown with OCT angiogram time-series (Manuscript* in preparation). (K) Ideally, capillary flow should be homogeneous across a capillary bed to optimize oxygen extraction. Arrows indicate direction of cell motion. (L) Pericyte contractions, and increased plugging of leukocytes and red blood cells as a result of ischemia-induced capillary dysfunction, introduce severe heterogeneity into the microcirculation, resulting in redistributions of flow, and pathological shunting. This can profoundly reduce the oxygen delivery into the tissue, even if the total plasma-perfused capillary count and absolute arterial input is the same. Green arrows indicate constricted pericytes, red arrowheads indicate stagnant red blood cells, blue arrow indicates a plugged leukocyte. Deoxygenated RBCs are darker and bluish in color. [A–E reproduced by permission from: Nature Medicine, Yemisci et al. (28)]. (*Manuscript by authors: Erdener SE, Tang J, Kilic K, Postnov D, Giblin JT, Kura S, Chen A, Vayisoglu T, Sakadzic S, Schaffer CB and Boas DA).
Figure 4
Figure 4
Microcirculatory changes in experimental models of Alzheimer's disease. (A) There is increased fraction of stalled capillaries in double-transgenic mice overexpressing amyloid-beta (APP/SW1) due to increased plugging by leukocytes (Green: rhodamine-G labeled leukocyte, red: Texas-red labeled plasma). (B) Vascular network tracings show distribution of stalled capillaries. (C) Although the fraction of stalled capillaries may seem small, computer simulations on capillary networks show a prominent decrease in overall cerebral blood flow with gradual introduction of stalls. (D,E) In another model, 15 month-old mice overexpressing pathological form of hyperphosphorylated tau (Tg4510) show abnormal capillary morphology, number and density (spiral shapes as shown with asterisks(*)). Scale bar 50 μm (inset: 20 μm) There is increased number of stagnant of leukocytes also in these capillaries (not shown here). (A–C reprinted by permission from: Nature Neuroscience, Cruz Hernandez (11) ©2019 Springer Nature; (D,E) reproduced from Bennett et al. (33), by rights granted under a Creative Commons BY-NC-ND license).

References

    1. Bosetti F, Galis ZS, Bynoe MS, Charette M, Cipolla MJ, Del Zoppo GJ, et al. . “Small blood vessels: big health problems?”: scientific recommendations of the national institutes of health workshop. J Am Heart Assoc. (2016) 5:e004389. 10.1161/JAHA.116.004389
    1. Sakadžić S, Mandeville ET, Gagnon L, Musacchia JJ, Yaseen MA, Yucel MA, et al. . Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue. Nat Commun. (2014) 5:5734. 10.1038/ncomms6734
    1. Meyer EP, Ulmann-Schuler A, Staufenbiel M, Krucker T. Altered morphology and 3D architecture of brain vasculature in a mouse model for Alzheimer's disease. Proc Natl Acad Sci USA. (2008) 105:3587–92. 10.1073/pnas.0709788105
    1. Mabuchi T, Lucero J, Feng A, Koziol JA, del Zoppo GJ. Focal cerebral ischemia preferentially affects neurons distant from their neighboring microvessels. J Cereb Blood Flow Metab. (2005) 25:257–66. 10.1038/sj.jcbfm.9600027
    1. Lovick TA, Brown LA, Key BJ. Neurovascular relationships in hippocampal slices: physiological and anatomical studies of mechanisms underlying flow-metabolism coupling in intraparenchymal microvessels. Neuroscience. (1999) 92:47–60. 10.1016/S0306-4522(98)00737-4
    1. Kanno I, Masamoto K. Bridging macroscopic and microscopic methods for the measurements of cerebral blood flow: toward finding the determinants in maintaining the CBF homeostasis. In: New Horizons in Neurovascular Coupling: A Bridge Between Brain Circulation and Neural Plasticity. Vol. 255 1st ed. (Amsterdam: Elsevier B.V.) (2016).
    1. Raichle ME, Mintun MA. Brain Work and Brain Imaging. Annu Rev Neurosci. (2006) 29:449–76. 10.1146/annurev.neuro.29.051605.112819
    1. Østergaard L, Jørgensen MB, Knudsen GM. Low on energy? An energy supply-demand perspective on stress and depression. Neurosci Biobehav Rev. (2018) 94:248–70. 10.1016/j.neubiorev.2018.08.007
    1. Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat Neurosci. (2007) 10:1369–76. 10.1038/nn2003
    1. Erdener SE, Tang J, Sajjadi A, Kiliç K, Kura S, Schaffer CB, et al. . Spatio-temporal dynamics of cerebral capillary segments with stalling red blood cells. J Cereb Blood Flow Metab. (2019) 39:886–900. 10.1177/0271678X17743877
    1. Cruz Hernández JC, Bracko O, Kersbergen CJ, Muse V, Haft-Javaherian M, Berg M, et al. Neutrophil adhesion in brain capillaries reduces cortical blood flow and impairs memory function in Alzheimer's disease mouse models. Nat Neurosci. (2019) 22:413–20. 10.1038/s41593-018-0329-4
    1. Shih AY, Driscoll JD, Drew PJ, Nishimura N, Schaffer CB, Kleinfeld D. Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain. J Cereb Blood Flow Metab. (2012) 32:1277–309. 10.1038/jcbfm.2011.196
    1. Kisler K, Lazic D, Sweeney MD, Plunkett S, El Khatib M, Vinogradov SA, et al. . In vivo imaging and analysis of cerebrovascular hemodynamic responses and tissue oxygenation in the mouse brain. Nat Protoc. (2018) 13:1377–402. 10.1038/nprot.2018.034
    1. Kleinfeld D, Mitra PP, Helmchen F, Denk W. Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc Natl Acad Sci USA. (1998) 95:15741–6. 10.1073/pnas.95.26.15741
    1. Yaseen MA, Srinivasan VJ, SakadŽić S, Radhakrishnan H, Gorczynska I, Wu W, et al. . Microvascular oxygen tension and flow measurements in rodent cerebral cortex during baseline conditions and functional activation. J Cereb Blood Flow Metab. (2011) 31:1051–63. 10.1038/jcbfm.2010.227
    1. Devor A, Sakadzic S, Saisan PA, Yaseen MA, Roussakis E, Srinivasan VJ, et al. “Overshoot” of O2 is required to maintain baseline tissue oxygenation at locations distal to blood vessels. J Neurosci. (2011) 31:13676–81. 10.1523/JNEUROSCI.1968-11.2011
    1. SakadŽic S, Yaseen MA, Jaswal R, Roussakis E, Dale AM, Buxton RB, et al. . Two-photon microscopy measurement of cerebral metabolic rate of oxygen using periarteriolar oxygen concentration gradients. Neurophotonics. (2016) 3:045005. 10.1117/1.NPh.3.4.045005
    1. Sakadzić S, Yuan S, Dilekoz E, Ruvinskaya S, Vinogradov SA, Ayata C, et al. . Simultaneous imaging of cerebral partial pressure of oxygen and blood flow during functional activation and cortical spreading depression. Appl Opt. (2009) 48:D169–77. 10.1364/AO.48.00D169
    1. Sinks LE, Robbins GP, Roussakis E, Troxler T, Hammer DA, Vinogradov SA. Two-photon microscopy of oxygen: polymersomes as probe carrier vehicles. J Phys Chem B. (2010) 114:14373–82. 10.1021/jp100353v
    1. Lecoq J, Parpaleix A, Roussakis E, Ducros M, Houssen YG, Vinogradov SA, et al. . Simultaneous two-photon imaging of oxygen and blood flow in deep cerebral vessels. Nat Med. (2011) 17:893–8. 10.1038/nm.2394
    1. Esipova TV, Barrett MJP, Erlebach E, Masunov AE, Weber B, Vinogradov SA. Oxyphor 2P: a high-performance probe for deep-tissue longitudinal oxygen imaging. Cell Metab. (2019) 29:736–44. 10.1016/j.cmet.2018.12.022
    1. Devor A, SakadŽić S, Srinivasan VJ, Yaseen MA, Nizar K, Saisan PA, Tian P, et al. . Frontiers in optical imaging of cerebral blood flow and metabolism. J Cereb Blood Flow Metab. (2012) 32:1259–76. 10.1038/jcbfm.2011.195
    1. Srinivasan VJ, SakadŽić S, Gorczynska I, Ruvinskaya S, Wu W, Fujimoto JG, et al. . Quantitative cerebral blood flow with optical coherence tomography. Opt Express. (2010) 18:2477. 10.1364/OE.18.002477
    1. Tang J, Erdener SE, Fu B, Boas DA. Capillary red blood cell velocimetry by phase-resolved optical coherence tomography. Opt Lett. (2017) 42:3976. 10.1364/OL.42.003976
    1. Lee J, Wu W, Jiang JY, Zhu B, Boas DA. Dynamic light scattering optical coherence tomography. Opt Express. (2012) 20:22262–77. 10.1364/OE.20.022262
    1. Tang J, Erdener SE, Li B, Fu B, Sakadzic S, Carp SA, et al. . Shear-induced diffusion of red blood cells measured with dynamic light scattering-optical coherence tomography. J Biophotonics. (2018) 11:1–10. 10.1002/jbio.201700070
    1. Mouridsen K, Hansen MB, Østergaard L, Jespersen SN. Reliable estimation of capillary transit time distributions using DSC-MRI. J Cereb Blood Flow Metab. (2014) 34:1511–21. 10.1038/jcbfm.2014.111
    1. Yemisci M, Gursoy-Ozdemir Y, Vural A, Can A, Topalkara K, Dalkara T. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med. (2009) 15:1031–7. 10.1038/nm.2022
    1. Iadecola C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron. (2017) 96:17–42. 10.1016/j.neuron.2017.07.030
    1. Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, et al. . Capillary pericytes regulate cerebral blood flow in health and disease. Nature. (2014) 508:55–60. 10.1038/nature13165
    1. Kisler K, Nelson AR, Rege SV, Ramanathan A, Wang Y, Ahuja A, et al. . Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat Neurosci. (2017) 20:406–16. 10.1038/nn.4489
    1. Lee J, Wu W, Boas DA. Early capillary flux homogenization in response to neural activation. J Cereb Blood Flow Metab. (2016) 36:375–80. 10.1177/0271678X15605851
    1. Bennett RE, Robbins AB, Hu M, Cao X, Betensky RA, Clark T, et al. . Tau induces blood vessel abnormalities and angiogenesis-related gene expression in P301L transgenic mice and human Alzheimer's disease. Proc Natl Acad Sci USA. (2018) 115:E1289–98. 10.1073/pnas.1710329115
    1. Gagnon L, SakadŽić S, Lesage F, Pouliot P, Dale AM, Devor A, et al. . Validation and optimization of hypercapnic-calibrated fMRI from oxygen-sensitive two-photon microscopy. Philos Trans R Soc B Biol Sci. (2016) 371:20150359. 10.1098/rstb.2015.0359
    1. Cheng X, Berman AJL, Polimeni JR, Buxton RB, Gagnon L, Devor A, et al. . Dependence of the MR signal on the magnetic susceptibility of blood studied with models based on real microvascular networks. Magn Reson Med. (2019) 81:3865–74. 10.1002/mrm.27660
    1. Østergaard L, Jespersen SN, Mouridsen K, Mikkelsen IK, Jonsdottír KÝ, Tietze A, et al. . The role of the cerebral capillaries in acute ischemic stroke: the extended penumbra model. J Cereb Blood Flow Metab. (2013) 33:635–48. 10.1038/jcbfm.2013.18
    1. Jespersen SN, Østergaard L. The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism. J Cereb Blood Flow Metab. (2012) 32:264–77. 10.1038/jcbfm.2011.153
    1. Østergaard L, Engedal TS, Moreton F, Hansen MB, Wardlaw JM, Dalkara T, et al. . Cerebral small vessel disease: capillary pathways to stroke and cognitive decline. J Cereb Blood Flow Metab. (2016) 36:302–25. 10.1177/0271678X15606723
    1. Østergaard L, Aamand R, Karabegovic S, Tietze A, Blicher JU, Mikkelsen IK, et al. . The role of the microcirculation in delayed cerebral ischemia and chronic degenerative changes after subarachnoid hemorrhage. J Cereb Blood Flow Metab. (2013) 33:1825–37. 10.1038/jcbfm.2013.173
    1. Balogh P, Bagchi P. Analysis of red blood cell partitioning at bifurcations in simulated microvascular networks. Phys Fluids. (2018) 30:051902 10.1063/1.5024783
    1. Santisakultarm TP, Paduano CQ, Stokol T, Southard TL, Nishimura N, Skoda RC, et al. . Stalled cerebral capillary blood flow in mouse models of essential thrombocythemia and polycythemia vera revealed by in vivo two-photon imaging. J Thromb Haemost. (2014) 12:2120–30. 10.1111/jth.12738
    1. Kataoka H, Kim SW, Plesnila N. Leukocyte-endothelium interactions during permanent focal cerebral ischemia in mice. J Cereb Blood Flow Metab. (2004) 24:668–76. 10.1097/01.WCB.0000117812.35136.5B
    1. Østergaard L, Jespersen SN, Engedahl T, Jiménez EG, Ashkanian M, Hansen MB, et al. . Capillary dysfunction: its detection and causative role in dementias and stroke. Curr Neurol Neurosci Rep. (2015) 15:557. 10.1007/s11910-015-0557-x
    1. Angleys H, Østergaard L, Jespersen SN. The effects of capillary transit time heterogeneity (CTH) on brain oxygenation. J Cereb Blood Flow Metab. (2015) 35:806–17. 10.1038/jcbfm.2014.254
    1. Daneman R, Prat A. The blood–brain barrier. Cold Spring Harb Perspect Biol. (2015) 7:a020412. 10.1101/cshperspect.a020412
    1. Gu Y, Zheng G, Xu M, Li Y, Chen X, Zhu W, et al. . Caveolin-1 regulates nitric oxide-mediated matrix metalloproteinases activity and blood-brain barrier permeability in focal cerebral ischemia and reperfusion injury. J Neurochem. (2012) 120:147–56. 10.1111/j.1471-4159.2011.07542.x
    1. Oldendorf WH, Cornford ME, Brown WJ. The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol. (1977) 1:409–17. 10.1002/ana.410010502
    1. Friis ML, Paulson OB, Hertz MM. Carbon dioxide permeability of the blood-brain barrier in man: The effect of acetazolamide. Microvasc Res. (1980) 20:71–80. 10.1016/0026-2862(80)90020-5
    1. Srinivasan VJ, Yu E, Radhakrishnan H, Can A, Climov M, Leahy C, et al. . Micro-heterogeneity of flow in a mouse model of chronic cerebral hypoperfusion revealed by longitudinal doppler optical coherence tomography and angiography. J Cereb Blood Flow Metab. (2015) 35:1552–60. 10.1038/jcbfm.2015.175
    1. Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res. (2005) 97:512–23. 10.1161/01.RES.0000182903.16652.d7
    1. Peppiatt CM, Howarth C, Mobbs P, Attwell D. Bidirectional control of CNS capillary diameter by pericytes. Nature. (2006) 443:700–4. 10.1038/nature05193
    1. Risau W, Wolburg H. Development of the blood-brain barrier. Trends Neurosci. (1990) 13:174–8. 10.1016/0166-2236(90)90043-A
    1. Dore-Duffy P, LaManna JC. Physiologic angiodynamics in the brain. Antioxid Redox Signal. (2007) 9:1363–71. 10.1089/ars.2007.1713
    1. Thomas WE. Brain macrophages: on the role of pericytes and perivascular cells. Brain Res Brain Res Rev. (1999) 31:42–57. 10.1016/S0165-0173(99)00024-7
    1. Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, et al. . Pericytes regulate the blood-brain barrier. Nature. (2010) 468:557–61. 10.1038/nature09522
    1. ElAli A, Thériault P, Rivest S. The role of pericytes in neurovascular unit remodeling in brain disorders. Int J Mol Sci. (2014) 15:6453–74. 10.3390/ijms15046453
    1. Yang S, Jin H, Zhu Y, Wan Y, Opoku EN, Zhu L, et al. . Diverse functions and mechanisms of pericytes in ischemic stroke. Curr Neuropharmacol. (2017) 15:892–905. 10.2174/1570159X15666170112170226
    1. Attwell D, Buchan AM, Charpak S, Lauritzen M, MacVicar BA, Newman EA. Glial and neuronal control of brain blood flow. Nature. (2010) 468:232–43. 10.1038/nature09613
    1. Jakovcevic D, Harder DR. Role of astrocytes in matching blood flow to neuronal activity. In: Schatten GP, editor. Current Topics in Developmental Biology. Vol. 79. (San Diego, CA: Academic Press; ) (2007). p. 75–97. 10.1016/S0070-2153(06)79004-4
    1. Magistretti PJ, Allaman I. Lactate in the brain: from metabolic end-product to signalling molecule. Nat Rev Neurosci. (2018) 19:235–49. 10.1038/nrn.2018.19
    1. Bennett MVL, Contreras JE, Bukauskas FF, Sáez JC. New roles for astrocytes: gap junction hemichannels have something to communicate. Trends Neurosci. (2003) 26:610–7. 10.1016/j.tins.2003.09.008
    1. Parys B, Côté A, Gallo V, De Koninck P, Sík A. Intercellular calcium signaling between astrocytes and oligodendrocytes via gap junctions in culture. Neuroscience. (2010) 167:1032–43. 10.1016/j.neuroscience.2010.03.004
    1. Gu X, Chen W, Volkow ND, Koretsky AP, Du C, Pan Y. Synchronized astrocytic Ca2+responses in neurovascular coupling during somatosensory stimulation and for the resting state. Cell Rep. (2018) 23:3878–90. 10.1016/j.celrep.2018.05.091
    1. Segal SS, Duling BR. Flow control among microvessels coordinated by intercellular conduction. Science. (1986) 234:868–70. 10.1126/science.3775368
    1. Isakson BE, Damon DN, Day KH, Liao Y, Duling BR. Connexin40 and connexin43 in mouse aortic endothelium: evidence for coordinated regulation. Am J Physiol Heart Circ Physiol. (2006) 290:H1199–205. 10.1152/ajpheart.00945.2005
    1. Little TL, Beyer EC, Duling BR. Connexin 43 and connexin 40 gap junctional proteins are present in arteriolar smooth muscle and endothelium in vivo. Am J Physiol Circ Physiol. (1995) 268:H729–39. 10.1152/ajpheart.1995.268.2.H729
    1. Pries AR, Höpfner M, le Noble F, Dewhirst MW, Secomb TW. The shunt problem: control of functional shunting in normal and tumour vasculature. Nat Rev Cancer. (2010) 10:587–93. 10.1038/nrc2895
    1. Isakson BE, Kronke G, Kadl A, Leitinger N, Duling BR. Oxidized phospholipids alter vascular connexin expression, phosphorylation, and heterocellular communication. Arterioscler Thromb Vasc Biol. (2006) 26:2216–21. 10.1161/01.ATV.0000237608.19055.53
    1. Uhlirova H, Kiliç K, Tian P, Thunemann M, Desjardins M, Saisan PA, et al. . Cell type specificity of neurovascular coupling in cerebral cortex. Elife. (2016) 5:14315. 10.7554/eLife.14315
    1. Anenberg E, Chan AW, Xie Y, LeDue JM, Murphy TH. Optogenetic stimulation of GABA neurons can decrease local neuronal activity while increasing cortical blood flow. J Cereb Blood Flow Metab. (2015) 35:1579–86. 10.1038/jcbfm.2015.140
    1. Cauli B, Tong X-K, Rancillac A, Serluca N, Lambolez B, Rossier J, et al. . Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J Neurosci. (2004) 24:8940–9. 10.1523/JNEUROSCI.3065-04.2004
    1. Du W, Stern JE, Filosa JA. Neuronal-derived nitric oxide and somatodendritically released vasopressin regulate neurovascular coupling in the rat hypothalamic supraoptic nucleus. J Neurosci. (2015) 35:5330–41. 10.1523/JNEUROSCI.3674-14.2015
    1. Sprague RS, Stephenson AH, Ellsworth ML. Red not dead: signaling in and from erythrocytes. Trends Endocrinol Metab. (2007) 18:350–5. 10.1016/j.tem.2007.08.008
    1. Zhang H, Shen Z, Hogan B, Barakat AI, Misbah C. ATP release by red blood cells under flow: model and simulations. Biophys J. (2018) 115:2218–29. 10.1016/j.bpj.2018.09.033
    1. Marginedas-Freixa I, Alvarez CL, Moras M, Leal Denis MF, Hattab C, et al. . Human erythrocytes release ATP by a novel pathway involving VDAC oligomerization independent of pannexin-1. Sci Rep. (2018) 8:11384. 10.1038/s41598-018-29885-7
    1. Belcik JT, Davidson BP, Xie A, Wu MD, Yadava M, Qi Y, et al. . Augmentation of muscle blood flow by ultrasound cavitation is mediated by ATP and purinergic signaling. Circulation. (2017) 135:1240–52. 10.1161/CIRCULATIONAHA.116.024826
    1. Sridharan M, Adderley SP, Bowles EA, Egan TM, Stephenson AH, Ellsworth ML, Sprague RS. Pannexin 1 is the conduit for low oxygen tension-induced ATP release from human erythrocytes. Am J Physiol Heart Circ Physiol. (2010) 299:H1146–52. 10.1152/ajpheart.00301.2010
    1. Takano T, Tian G-F, Peng W, Lou N, Libionka W, Han X, et al. . Astrocyte-mediated control of cerebral blood flow. Nat Neurosci. (2006) 9:260–7. 10.1038/nn1623
    1. Astrup J, Siesjö BK, Symon L. Thresholds in cerebral ischemia - the ischemic penumbra. Stroke. (1981) 12:723–5. 10.1161/01.STR.12.6.723
    1. Iihara K, Okawa M, Hishikawa T, Yamada N, Fukushima K, Iida H, et al. . Slowly progressive neuronal death associated with postischemic hyperperfusion in cortical laminar necrosis after high-flow bypass for a carotid intracavernous aneurysm. J Neurosurg. (2010) 112:1254–9. 10.3171/2009.9.JNS09345
    1. Wegener S, Artmann J, Luft AR, Buxton RB, Weller M, Wong EC. The time of maximum post-ischemic hyperperfusion indicates infarct growth following transient experimental ischemia. PLoS ONE. (2013) 8:e65322. 10.1371/journal.pone.0065322
    1. Engedal TS, Hjort N, Hougaard KD, Simonsen CZ, Andersen G, Mikkelsen IK, et al. . Transit time homogenization in ischemic stroke – A novel biomarker of penumbral microvascular failure? J Cereb Blood Flow Metab. (2018) 38:2006–20. 10.1177/0271678X17721666
    1. Park CS, Payne SJ. Modelling the effects of cerebral microvasculature morphology on oxygen transport. Med Eng Phys. (2016) 38:41–7. 10.1016/j.medengphy.2015.09.004
    1. Gagnon L, Smith AF, Boas DA, Devor A, Secomb TW, SakadŽić S. Modeling of cerebral oxygen transport based on in vivo microscopic imaging of microvascular network structure, blood flow, and oxygenation. Front Comput Neurosci. (2016) 10:1–20. 10.3389/fncom.2016.00082
    1. Lücker A, Secomb TW, Barrett MJP, Weber B, Jenny P. The relation between capillary transit times and hemoglobin saturation heterogeneity. part 2: capillary networks. Front Physiol. (2018) 9:1296. 10.3389/fphys.2018.01296
    1. Eskildsen SF, Gyldensted L, Nagenthiraja K, Nielsen RB, Hansen MB, Dalby RB, et al. . Increased cortical capillary transit time heterogeneity in Alzheimer's disease: a DSC-MRI perfusion study. Neurobiol Aging. (2017) 50:107–18. 10.1016/j.neurobiolaging.2016.11.004
    1. Secomb TW, Hsu R, Pries AR. A model for red blood cell motion in glycocalyx-lined capillaries. Am J Physiol. (1998) 274:H1016–22. 10.1152/ajpheart.1998.274.3.H1016
    1. Vink H, Duling BR. Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ Res. (1996) 79:581–9. 10.1161/01.RES.79.3.581
    1. McClatchey PM, Schafer M, Hunter KS, Reusch JEB. The endothelial glycocalyx promotes homogenous blood flow distribution within the microvasculature. Am J Physiol Heart Circ Physiol. (2016) 311:H168–76. 10.1152/ajpheart.00132.2016
    1. Strunden MS, Bornscheuer A, Schuster A, Kiefmann R, Goetz AE, Heckel K. Glycocalyx degradation causes microvascular perfusion failure in the ex vivo perfused mouse lung. Shock. (2012) 38:559–66. 10.1097/SHK.0b013e31826f2583
    1. Mas M. A close look at the endothelium: its role in the regulation of vasomotor tone. Eur Urol Suppl. (2009) 8:48–57. 10.1016/j.eursup.2008.10.011
    1. Favero G, Paganelli C, Buffoli B, Rodella LF, Rezzani R. Endothelium and its alterations in cardiovascular diseases: life style intervention. Biomed Res Int. (2014) 2014:801896. 10.1155/2014/801896
    1. Lefer AM. Nitric oxide: nature's naturally occurring leukocyte inhibitor. Circulation. (1997) 95:553–4. 10.1161/01.CIR.95.3.553
    1. Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA. (1991) 88:4651–5. 10.1073/pnas.88.11.4651
    1. Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, et al. . Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. (1998) 91:3527–61.
    1. Wang S, Cao C, Chen Z, Bankaitis V, Tzima E, Sheibani N, et al. . Pericytes regulate vascular basement membrane remodeling and govern neutrophil extravasation during inflammation. PLoS ONE. (2012) 7:e45499. 10.1371/journal.pone.0045499
    1. Schmid F, Reichold J, Weber B, Jenny P. The impact of capillary dilation on the distribution of red blood cells in artificial networks. Am J Physiol Heart Circ Physiol. (2015) 308:H733–42. 10.1152/ajpheart.00335.2014
    1. Špiranec K, Chen W, Werner F, Nikolaev VO, Naruke T, Koch F, et al. . Endothelial C-type natriuretic peptide acts on pericytes to regulate microcirculatory flow and blood pressure. Circulation. (2018) 138:494–508. 10.1161/CIRCULATIONAHA.117.033383
    1. Gaudin A, Yemisci M, Eroglu H, Lepetre-Mouelhi S, Turkoglu OF, Dönmez-Demir B, et al. . Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury. Nat Nanotechnol. (2014) 9:1054–62. 10.1038/nnano.2014.274
    1. Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, et al. . Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron. (2010) 68:409–27. 10.1016/j.neuron.2010.09.043
    1. Miners JS, Schulz I, Love S. Differing associations between Aβ accumulation, hypoperfusion, blood–brain barrier dysfunction and loss of PDGFRB pericyte marker in the precuneus and parietal white matter in Alzheimer's disease. J Cereb Blood Flow Metab. (2018) 38:103–15. 10.1177/0271678X17690761
    1. Schultz N, Brännström K, Byman E, Moussaud S, Nielsen HM, Olofsson A, et al. . Amyloid-beta 1-40 is associated with alterations in NG2+ pericyte population ex vivo and in vitro. Aging Cell. (2018) 17:e12728. 10.1111/acel.12728
    1. Lin W, Ma X, Hao M, Zhou H, Yu X, Shao N, et al. . Liraglutide attenuates the migration of retinal pericytes induced by advanced glycation end products. Peptides. (2018) 105:7–13. 10.1016/j.peptides.2018.05.003
    1. Reeves C, Jardim AP, Sisodiya SM, Thom M, Liu JYW. Spatiotemporal dynamics of PDGFRβ expression in pericytes and glial scar formation in penetrating brain injuries in adults. Neuropathol Appl Neurobiol. (2019). 10.1111/nan.12539. [Epub ahead of print].
    1. Dore-Duffy P, Owen C, Balabanov R, Murphy S, Beaumont T, Rafols JA. Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc Res. (2000) 60:55–69. 10.1006/mvre.2000.2244
    1. Berthiaume AA, Grant RI, McDowell KP, Underly RG, Hartmann DA, Levy M, et al. . Dynamic remodeling of pericytes in vivo maintains capillary coverage in the adult mouse brain. Cell Rep. (2018) 22:8–16. 10.1016/j.celrep.2017.12.016
    1. Berthiaume AA, Hartmann DA, Majesky MW, Bhat NR, Shih AY. Pericyte structural remodeling in cerebrovascular health and homeostasis. Front Aging Neurosci. (2018) 10:210. 10.3389/fnagi.2018.00210
    1. Mazzoni MC, Schmid-Schonbein GW. Mechanisms and consequences of cell activation in the microcirculation. Cardiovasc Res. (1996) 32:709–19. 10.1016/S0008-6363(96)00146-0
    1. Barnes AJ, Locke P, Scudder PR, Dormandy TL, Dormandy JA, Slack J. Is hyperviscosity a treatable component of diabetic microcirculatory disease? Lancet. (1977) 2:789–91. 10.1016/S0140-6736(77)90724-3
    1. Mori E, del Zoppo GJ, Chambers JD, Copeland BR, Arfors KE. Inhibition of polymorphonuclear leukocyte adherence suppresses no- reflow after focal cerebral ischemia in baboons. Stroke. (1992) 23:712–8. 10.1161/01.STR.23.5.712
    1. del Zoppo GJ, Schmid-Schönbein GW, Mori E, Copeland BR, Chang CM. Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons. Stroke. (1991) 22:1276–83. 10.1161/01.STR.22.10.1276
    1. Ritter LS, Orozco JA, Coull BM, McDonagh PF, Rosenblum WI. Leukocyte accumulation and hemodynamic changes in the cerebral microcirculation during early reperfusion after stroke editorial comment. Stroke. (2000) 31:1153–61. 10.1161/01.STR.31.5.1153
    1. Clark WM, Coull BM, Briley DP, Mainolfi E, Rothlein R. Circulating intercellular adhesion molecule-1 levels and neutrophil adhesion in stroke. J Neuroimmunol. (1993) 44:123–5. 10.1016/0165-5728(93)90275-4
    1. Harris AG, Skalak TC. Effects of leukocyte capillary plugging in skeletal muscle ischemia-reperfusion injury. Am J Physiol. (1996) 271:H2653–60. 10.1152/ajpheart.1996.271.6.H2653
    1. Theilen H, Schröck H, Kuschinsky W. Gross persistence of capillary plasma perfusion after middle cerebral artery occlusion in the rat brain. J Cereb Blood Flow Metab. (1994) 14:1055–61. 10.1038/jcbfm.1994.138
    1. Villringer A, Them A, Lindauer U, Einhäupl K, Dirnagl U. Capillary perfusion of the rat brain cortex. An in vivo confocal microscopy study. Circ Res. (1994) 75:55–62. 10.1161/01.RES.75.1.55
    1. Abounader R, Vogel J, Kuschinsky W. Patterns of capillary plasma perfusion in brains of conscious rats during normocapnia and hypercapnia. Circ Res. (1995) 76:120–6. 10.1161/01.RES.76.1.120
    1. Bookheimer SY, Strojwas MH, Cohen MS, Saunders AM, Pericak-Vance MA, Mazziotta JC, et al. . Patterns of brain activation in people at risk for Alzheimer's disease. N Engl J Med. (2000) 343:450–6. 10.1056/NEJM200008173430701
    1. Scarmeas N, Habeck CG, Stern Y, Anderson KE. APOE genotype and cerebral blood flow in healthy young individuals. JAMA. (2003) 290:1581–2. 10.1001/jama.290.12.1581
    1. Kim T, Richard Jennings J, Kim SG. Regional cerebral blood flow and arterial blood volume and their reactivity to hypercapnia in hypertensive and normotensive rats. J Cereb Blood Flow Metab. (2014) 34:408–14. 10.1038/jcbfm.2013.197
    1. Angleys H, Jespersen SN, Østergaard L. The effects of capillary transit time heterogeneity on the BOLD signal. Hum Brain Mapp. (2018) 39:2329–52. 10.1002/hbm.23991
    1. Brown WR. A review of string vessels or collapsed, empty basement membrane tubes. J Alzheimer Dis. (2010) 21:725–39. 10.3233/JAD-2010-100219
    1. Hunter JM, Kwan J, Malek-Ahmadi M, Maarouf CL, Kokjohn TA, Belden C, et al. . Morphological and pathological evolution of the brain microcirculation in aging and alzheimer's disease. PLoS ONE. (2012) 7:e36893. 10.1371/journal.pone.0036893
    1. Tong X-K, Hamel E. Simvastatin restored vascular reactivity, endothelial function and reduced string vessel pathology in a mouse model of cerebrovascular disease. J Cereb Blood Flow Metab. (2015) 35:512–20. 10.1038/jcbfm.2014.226
    1. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. (2010) 9:689–701. 10.1016/S1474-4422(10)70104-6
    1. Price TO, Eranki V, Banks WA, Ercal N, Shah GN. Topiramate treatment protects blood-brain barrier pericytes from hyperglycemia-induced oxidative damage in diabetic mice. Endocrinology. (2012) 153:362–72. 10.1210/en.2011-1638
    1. McCuskey PA, McCuskey RS. In vivo and electron microscopic study of the development of cerebral diabetic microangiography. Microcirc Endothelium Lymphatics. (1984) 1:221–44.
    1. Tagami M, Nara Y, Kubota A, Fujino H, Yamori Y. Ultrastructural changes in cerebral pericytes and astrocytes of stroke-prone spontaneously hypertensive rats. Stroke. (1990) 21:1064–71. 10.1161/01.STR.21.7.1064
    1. Junker U, Jaggi C, Bestetti G, Rossi GL. Basement membrane of hypothalamus and cortex capillaries from normotensive and spontaneously hypertensive rats with streptozotocin-induced diabetes. Acta Neuropathol. (1985) 65:202–8. 10.1007/BF00686999
    1. Wood KC, Hebbel RP, Granger DN. Endothelial cell NADPH oxidase mediates the cerebral microvascular dysfunction in sickle cell transgenic mice. FASEB J. (2005) 19:989–91. 10.1096/fj.04-3218fje
    1. Gidday JM, Park TS, Shah AR, Gonzales ER. Modulation of basal and postischemic leukocyte-endothelial adherence by nitric oxide. Stroke. (1998) 29:1423–30. 10.1161/01.STR.29.7.1423
    1. Fraticelli A, Serrano CV, Bochner BS, Capogrossi MC, Zweier JL. Hydrogen peroxide and superoxide modulate leukocyte adhesion molecule expression and leukocyte endothelial adhesion. Biochim Biophys Acta. (1996) 1310:251–9. 10.1016/0167-4889(95)00169-7
    1. Vink H, Constantinescu AA, Spaan JA. Oxidized lipoproteins degrade the endothelial surface layer : implications for platelet-endothelial cell adhesion. Circulation. (2000) 101:1500–2. 10.1161/01.CIR.101.13.1500
    1. Czarnowska E, Karwatowska-Prokopczuk E. Ultrastructural demonstration of endothelial glycocalyx disruption in the reperfused rat heart. Involvement of oxygen free radicals. Basic Res Cardiol. (1995) 90:357–64. 10.1007/BF00788496
    1. Pantoni L, Garcia JH. Pathogenesis of leukoaraiosis. Stroke. (1997) 28:652–59. 10.1161/01.STR.28.3.652
    1. Salat DH. Imaging small vessel-associated white matter changes in aging. Neuroscience. (2014) 276:174–86. 10.1016/j.neuroscience.2013.11.041
    1. Pires PW, Dams Ramos CM, Matin N, Dorrance AM. The effects of hypertension on the cerebral circulation. Am J Physiol Heart Circ Physiol. (2013) 304:H1598–614. 10.1152/ajpheart.00490.2012
    1. Shi Y, Wardlaw JM. Update on cerebral small vessel disease: a dynamic whole-brain disease. Stroke Vasc Neurol. (2016) 1:83–92. 10.1136/svn-2016-000035
    1. Martinez-Quinones P, McCarthy CG, Watts SW, Klee NS, Komic A, Calmasini FB, Priviero F, et al. . Hypertension induced morphological and physiological changes in cells of the arterial wall. Am J Hypertens. (2018) 31:1067–78. 10.1093/ajh/hpy083
    1. Umemura T, Kawamura T, Hotta N. Pathogenesis and neuroimaging of cerebral large and small vessel disease in type 2 diabetes: a possible link between cerebral and retinal microvascular abnormalities. J Diabetes Investig. (2017) 8:134–48. 10.1111/jdi.12545
    1. Caplan LR. Diabetes and brain ischemia. Diabetes. (1996) 45(Suppl 3):S95–7. 10.2337/diab.45.3.S95
    1. Gursoy-Ozdemir Y, Yemisci M, Dalkara T. Microvascular protection is essential for successful neuroprotection in stroke. J Neurochem. (2012) 123:2–11. 10.1111/j.1471-4159.2012.07938.x
    1. Dalkara T, Arsava EM. Can restoring incomplete microcirculatory reperfusion improve stroke outcome after thrombolysis? J Cereb Blood Flow Metab. (2012) 32:2091–9. 10.1038/jcbfm.2012.139
    1. De Silva DA, Fink JN, Christensen S, Ebinger M, Bladin C, Levi CR, et al. . Assessing reperfusion and recanalization as markers of clinical outcomes after intravenous thrombolysis in the echoplanar imaging thrombolytic evaluation trial (EPITHET). Stroke. (2009) 40:2872–4. 10.1161/STROKEAHA.108.543595
    1. Soares BP, Tong E, Hom J, Cheng SC, Bredno J, Boussel L, et al. . Reperfusion is a more accurate predictor of follow-up infarct volume than recanalization: a proof of concept using CT in acute ischemic stroke patients. Stroke. (2010) 41:e34–40. 10.1161/STROKEAHA.109.568766
    1. Liu S, Shi H, Liu W, Furuichi T, Timmins GS, Liu KJ. Interstitial pO2 in ischemic penumbra and core are differentially affected following transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab. (2004) 24:343–9. 10.1097/01.WCB.0000110047.43905.01
    1. Maestrini I, Strbian D, Gautier S, Haapaniemi E, Moulin S, Sairanen T, et al. . Higher neutrophil counts before thrombolysis for cerebral ischemia predict worse outcomes. Neurology. (2015) 85:1408–16. 10.1212/WNL.0000000000002029
    1. Zhang J, Ren Q, Song Y, He M, Zeng Y, Liu Z, Xu J. Prognostic role of neutrophil–lymphocyte ratio in patients with acute ischemic stroke. Medicine. (2017) 96:e8624. 10.1097/MD.0000000000008624
    1. Fang YN, Tong MS, Sung PH, Chen YL, Chen CH, Tsai NW, et al. . Higher neutrophil counts and neutrophil-to-lymphocyte ratio predict prognostic outcomes in patients after non-atrial fibrillation-caused ischemic stroke. Biomed J. (2017) 40:154–62. 10.1016/j.bj.2017.03.002
    1. Wang H, Zhang M, Hao Y, Zi W, Yang D, Zhou Z, et al. . Early prediction of poor outcome despite successful recanalization after endovascular treatment for anterior large vessel occlusion stroke. World Neurosurg. (2018) 115:e312–21. 10.1016/j.wneu.2018.04.042
    1. Elkind MS. Why now? Moving from stroke risk factors to stroke triggers. Curr Opin Neurol. (2007) 20:51–7. 10.1097/WCO.0b013e328012da75
    1. Davis S, Donnan GA. Time is Penumbra: imaging, selection and outcome. The Johann jacob wepfer award 2014. Cerebrovasc Dis. (2014) 38:59–72. 10.1159/000365503
    1. Guadagno JV, Jones PS, Aigbirhio FI, Wang D, Fryer TD, Day DJ, et al. . Selective neuronal loss in rescued penumbra relates to initial hypoperfusion. Brain. (2008) 131:2666–78. 10.1093/brain/awn175
    1. Baron JC, Yamauchi H, Fujioka M, Endres M. Selective neuronal loss in ischemic stroke and cerebrovascular disease. J Cereb Blood Flow Metab. (2014) 34:2–18. 10.1038/jcbfm.2013.188
    1. Phan TG, Wright PM, Markus R, Howells DW, Davis SM, Donnan GA. Salvaging the ischaemic penumbra: more than just reperfusion? Clin Exp Pharmacol Physiol. (2002) 29:1–10. 10.1046/j.1440-1681.2002.03609.x
    1. Murphy BD, Fox AJ, Lee DH, Sahlas DJ, Black SE, Hogan MJ, et al. . Identification of penumbra and infarct in acute ischemic stroke using computed tomography perfusion-derived blood flow and blood volume measurements. Stroke. (2006) 37:1771–7. 10.1161/01.STR.0000227243.96808.53
    1. Bordeleau M, ElAli A, Rivest S. Severe chronic cerebral hypoperfusion induces microglial dysfunction leading to memory loss in APPswe/PS1 mice. Oncotarget. (2016) 7:11864–80. 10.18632/oncotarget.7689
    1. ElAli A, Thériault P, Préfontaine P, Rivest S. Mild chronic cerebral hypoperfusion induces neurovascular dysfunction, triggering peripheral beta-amyloid brain entry and aggregation. Acta Neuropathol Commun. (2013) 1:75. 10.1186/2051-5960-1-75
    1. Song J, Nan D, He Q, Yang L, Guo H. Astrocyte activation and capillary remodeling in modified bilateral common carotid artery occlusion mice. Microcirculation. (2017) 24:e12366. 10.1111/micc.12366
    1. Takasugi J, Miwa K, Watanabe Y, Okazaki S, Todo K, Sasaki T, et al. . Cortical cerebral microinfarcts on 3T magnetic resonance imaging in patients with carotid artery stenosis. Stroke. (2019) 50:639–44. 10.1161/STROKEAHA.118.023781
    1. Mundiyanapurath S, Ringleb PA, Diatschuk S, Hansen MB, Mouridsen K, Østergaard L, et al. . Capillary transit time heterogeneity is associated with modified rankin scale score at discharge in patients with bilateral high grade internal carotid artery stenosis. PLoS ONE. (2016) 11:e0158148. 10.1371/journal.pone.0158148
    1. Crowley RW, Medel R, Dumont AS, Ilodigwe D, Kassell NF, Mayer SA, et al. . Angiographic vasospasm is strongly correlated with cerebral infarction after subarachnoid hemorrhage. Stroke. (2011) 42:919–23. 10.1161/STROKEAHA.110.597005
    1. Macdonald RL, Weir BK. A review of hemoglobin and the pathogenesis of cerebral vasospasm. Stroke. (1991) 22:971–82. 10.1161/01.STR.22.8.971
    1. Takeuchi K, Miyata N, Renic M, Harder DR, Roman RJ. Hemoglobin NO, and 20-HETE interactions in mediating cerebral vasoconstriction following SAH. Am J Physiol Regul Integr Comp Physiol. (2006) 290:R84–9. 10.1152/ajpregu.00445.2005
    1. Friedrich B, Müller F, Feiler S, Schöller K, Plesnila N. Experimental subarachnoid hemorrhage causes early and long-lasting microarterial constriction and microthrombosis: an in-vivo microscopy study. J Cereb Blood Flow Metab. (2012) 32:447–55. 10.1038/jcbfm.2011.154
    1. Anzabi M, Angleys H, Aamand R, Ardalan M, Mouridsen K, Rasmussen PM, et al. . Capillary flow disturbances after experimental subarachnoid hemorrhage: a contributor to delayed cerebral ischemia? Microcirculation. (2018) 26:e12516. 10.1111/micc.12516
    1. McConnell ED, Wei HS, Reitz KM, Kang H, Takano T, Vates GE, et al. . Cerebral microcirculatory failure after subarachnoid hemorrhage is reversed by hyaluronidase. J Cereb Blood Flow Metab. (2016) 36:1537–52. 10.1177/0271678X15608389
    1. Ishikawa M, Kajimura M, Morikawa T, Tsukada K, Tsuji T, Kusaka G, et al. . Cortical microcirculatory disturbance in the super acute phase of subarachnoid hemorrhage - In vivo analysis using two-photon laser scanning microscopy. J Neurol Sci. (2016) 368:326–33. 10.1016/j.jns.2016.06.067
    1. Wang KC, Tang SC, Lee JE, Tsai JC, Lai DM, Lin WC, et al. . Impaired microcirculation after subarachnoid hemorrhage in an in vivo animal model. Sci Rep. (2018) 8:1–15. 10.1038/s41598-018-31709-7
    1. Balbi M, Koide M, Wellman GC, Plesnila N. Inversion of neurovascular coupling after subarachnoid hemorrhage in vivo. J Cereb Blood Flow Metab. (2017) 37:3625–34. 10.1177/0271678X16686595
    1. Graham DI, Adams JH. Ischaemic brain damage in fatal head injuries. Lancet. (1971) 1:265–6. 10.1016/S0140-6736(71)91003-8
    1. Bragin DE, Bush RC, Nemoto EM. Effect of cerebral perfusion pressure on cerebral cortical microvascular shunting at high intracranial pressure in rats. Stroke. (2013) 44:177–81. 10.1161/STROKEAHA.112.668293
    1. Martin NA, Patwardhan R V, Alexander MJ, Africk CZ, Lee JH, Shalmon E, et al. . Characterization of cerebral hemodynamic phases following severe head trauma: hypoperfusion, hyperemia, and vasospasm. J Neurosurg. (1997) 87:9–19. 10.3171/jns.1997.87.1.0009
    1. Østergaard L, Engedal TS, Aamand R, Mikkelsen R, Iversen NK, Anzabi M, et al. . Capillary transit time heterogeneity and flow-metabolism coupling after traumatic brain injury. J Cereb Blood Flow Metab. (2014) 34:1585–98. 10.1038/jcbfm.2014.131
    1. Villaseñor R, Kuennecke B, Ozmen L, Ammann M, Kugler C, Grüninger F, et al. . Region-specific permeability of the blood–brain barrier upon pericyte loss. J Cereb Blood Flow Metab. (2017) 37:3683–94. 10.1177/0271678X17697340
    1. Schwarzmaier SM, Gallozzi M, Plesnila N. Identification of the vascular source of vasogenic brain edema following traumatic brain injury using in vivo 2-photon microscopy in mice. J Neurotr. (2015) 32:990–1000. 10.1089/neu.2014.3775
    1. Buckley EM, Miller BF, Golinski JM, Sadeghian H, McAllister LM, Vangel M, et al. . Decreased microvascular cerebral blood flow assessed by diffuse correlation spectroscopy after repetitive concussions in mice. J Cereb Blood Flow Metab. (2015) 35:1995–2000. 10.1038/jcbfm.2015.161
    1. Bellapart J, Abi-Fares C, Cuthbertson K, Dunster K, Diab S, Platts DG, et al. . Cerebral microcirculation during mild head injury after a contusion and acceleration experimental model in sheep. Brain Inj. (2016) 30:1542–51. 10.1080/02699052.2016.1199894
    1. Hartings JA, York J, Carroll CP, Hinzman JM, Mahoney E, Krueger B, et al. . Subarachnoid blood acutely induces spreading depolarizations and early cortical infarction. Brain. (2017) 140:2673–90. 10.1093/brain/awx214
    1. Eriksen N, Rostrup E, Fabricius M, Scheel M, Major S, Winkler MKL, et al. . Early focal brain injury after subarachnoid hemorrhage correlates with spreading depolarizations. Neurology. (2019) 92:e326–41. 10.1212/WNL.0000000000006814
    1. Strong AJ, Anderson PJ, Watts HR, Virley DJ, Lloyd A, Irving EA, et al. . Peri-infarct depolarizations lead to loss of perfusion in ischaemic gyrencephalic cerebral cortex. Brain. (2006) 130:995–1008. 10.1093/brain/awl392
    1. Woitzik J, Hecht N, Pinczolits A, Sandow N, Major S, Winkler MKL, et al. . Propagation of cortical spreading depolarization in the human cortex after malignant stroke. Neurology. (2013) 80:1095–102. 10.1212/WNL.0b013e3182886932
    1. Eikermann-Haerter K, Hyun Lee J, Yuzawa I, Liu CH, Zhou Z, Kyoung Shin H, et al. . Migraine mutations increase stroke vulnerability by facilitating ischemic depolarizations. Circulation. (2012) 125:335–45. 10.1161/CIRCULATIONAHA.111.045096
    1. Kumagai T, Walberer M, Nakamura H, Endepols H, Sué M, Vollmar S, et al. . Distinct spatiotemporal patterns of spreading depolarizations during early infarct evolution: evidence from real-time imaging. J Cereb Blood Flow Metab. (2011) 31:580–92. 10.1038/jcbfm.2010.128
    1. Ayata C, Lauritzen M. Spreading depression, spreading depolarizations, and the cerebral vasculature. Physiol Rev. (2015) 95:953–93. 10.1152/physrev.00027.2014
    1. Østergaard L, Dreier JP, Hadjikhani N, Jespersen SN, Dirnagl U, Dalkara T. Neurovascular coupling during cortical spreading depolarization and -depression. Stroke. (2015) 46:1392–401. 10.1161/STROKEAHA.114.008077
    1. Khennouf L, Gesslein B, Brazhe A, Octeau JC, Kutuzov N, Khakh BS, et al. . Active role of capillary pericytes during stimulation-induced activity and spreading depolarization. Brain. (2018) 141:2032–46. 10.1093/brain/awy143
    1. Shahim P, Tegner Y, Gustafsson B, Gren M, Ärlig J, Olsson M, et al. . Neurochemical aftermath of repetitive mild traumatic brain injury. JAMA Neurol. (2016) 73:1308–15. 10.1001/jamaneurol.2016.2038
    1. Aldag M, Armstrong RC, Bandak F, Bellgowan PSF, Bentley T, Biggerstaff S, et al. . The biological basis of chronic traumatic encephalopathy following blast injury: a literature review. J Neurotr. (2017) 34:S-26-S-43. 10.1089/neu.2017.5218
    1. McKee AC, Cantu RC, Nowinski CJ, Hedley-Whyte ET, Gavett BE, Budson AE, et al. . Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol. (2009) 68:709–35. 10.1097/NEN.0b013e3181a9d503
    1. McKee AC, Stein TD, Kiernan PT, Alvarez VE. The neuropathology of chronic traumatic encephalopathy. Brain Pathol. (2015) 25:350–64. 10.1111/bpa.12248
    1. Sahyouni R, Gutierrez P, Gold E, Robertson RT, Cummings BJ. Effects of concussion on the blood-brain barrier in humans and rodents. J Concussion. (2017). 10.1177/2059700216684518. [Epub ahead of print].
    1. Tagge CA, Fisher AM, Minaeva OV, Gaudreau-Balderrama A, Moncaster JA, Zhang XL, et al. . Concussion, microvascular injury, and early tauopathy in young athletes after impact head injury and an impact concussion mouse model. Brain. (2018) 141:422–58. 10.1093/brain/awx350
    1. Goldstein LE, Fisher AM, Tagge CA, Zhang XL, Velisek L, Sullivan JA, et al. . Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci Transl Med. (2012) 4:134ra60. 10.1016/j.jalz.2012.05.592
    1. Zanier ER, Bertani I, Sammali E, Pischiutta F, Chiaravalloti MA, Vegliante G, et al. . Induction of a transmissible tau pathology by traumatic brain injury. Brain. (2018) 141:2685–99. 10.1093/brain/awy193
    1. Wolters FJ, Zonneveld HI, Hofman A, van der Lugt A, Koudstaal PJ, Vernooij MW, et al. Heart-brain connection collaborative research group. cerebral perfusion and the risk of dementia. Circulation. (2017) 136:719–28. 10.1161/CIRCULATIONAHA.117.027448
    1. Dai W, Lopez OL, Carmichael OT, Becker JT, Kuller LH, Gach HM. Mild cognitive impairment and alzheimer disease: patterns of altered cerebral blood flow at MR imaging. Radiology. (2009) 250:856–66. 10.1148/radiol.2503080751
    1. Iturria-Medina Y, Sotero RC, Toussaint PJ, Mateos-Pérez JM, Evans AC, Alzheimer's disease neuroimaging initiative . Early role of vascular dysregulation on late-onset Alzheimer's disease based on multifactorial data-driven analysis. Nat Commun. (2016) 7:11934. 10.1038/ncomms11934
    1. Santos CY, Snyder PJ, Wu WC, Zhang M, Echeverria A, Alber J. Pathophysiologic relationship between Alzheimer's disease, cerebrovascular disease, and cardiovascular risk: a review and synthesis. Alzheimer's Dement. (2017) 7:69–87. 10.1016/j.dadm.2017.01.005
    1. Qiu L, Ng G, Tan EK, Liao P, Kandiah N, Zeng L. Chronic cerebral hypoperfusion enhances Tau hyperphosphorylation and reduces autophagy in Alzheimers disease mice. Sci Rep. (2016) 6:23964 10.1038/srep23964
    1. Pluta R, Bogucka-Kocka A, Ułamek-Kozioł M, Bogucki J, Januszewski S, Kocki J, et al. . Ischemic tau protein gene induction as an additional key factor driving development of Alzheimer's phenotype changes in CA1 area of hippocampus in an ischemic model of Alzheimer's disease. Pharmacol Rep. (2018) 70:881–84. 10.1016/j.pharep.2018.03.004
    1. Kuroiwa T. Experimental cerebral ischemia: the contribution of the Bethesda Group. Acta Neurochir Suppl. (2010) 106:17–9. 10.1007/978-3-211-98811-4_2
    1. Farkas E, De Jong GI, De Vos RAI, Jansen Steur ENH, Luiten PGM. Pathological features of cerebral cortical capillaries are doubled in Alzheimer's disease and Parkinson's disease. Acta Neuropathol. (2000) 100:395–402. 10.1007/s004010000195
    1. Nielsen RB, Egefjord L, Angleys H, Mouridsen K, Gejl M, Møller A, et al. . Capillary dysfunction is associated with symptom severity and neurodegeneration in Alzheimer's disease. Alzheimer Dement. (2017) 13:1143–53. 10.1016/j.jalz.2017.02.007
    1. Gutiérrez-Jiménez E, Angleys H, Rasmussen PM, West MJ, Catalini L, Iversen NK, et al. . Disturbances in the control of capillary flow in an aged APPswe/PS1ΔE9 model of Alzheimer's disease. Neurobiol Aging. (2018) 62:82–94. 10.1016/j.neurobiolaging.2017.10.006
    1. Reeson P, Choi K, Brown CE. VEGF signaling regulates the fate of obstructed capillaries in mouse cortex. Elife. (2018) 7:e33670. 10.7554/eLife.33670
    1. Park L, Uekawa K, Garcia-Bonilla L, Koizumi K, Murphy M, Pistik R, et al. . Brain perivascular macrophages initiate the neurovascular dysfunction of alzheimer Aβ peptides. Circ Res. (2017) 121:258–69. 10.1161/CIRCRESAHA.117.311054
    1. Jaworski T, Lechat B, Demedts D, Gielis L, Devijver H, Borghgraef P, et al. . Dendritic degeneration, neurovascular defects, and inflammation precede neuronal loss in a mouse model for tau-mediated neurodegeneration. Am J Pathol. (2011) 179:2001–15. 10.1016/j.ajpath.2011.06.025
    1. Sagare AP, Bell RD, Zhao Z, Ma Q, Winkler EA, Ramanathan A, et al. . Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat Commun. (2013) 4:1–14. 10.1038/ncomms3932
    1. Sengillo JD, Winkler EA, Walker CT, Sullivan JS, Johnson M, Zlokovic B V. Deficiency in mural vascular cells coincides with blood-brain barrier disruption in Alzheimer's disease. Brain Pathol. (2013) 23:303–10. 10.1111/bpa.12004
    1. Montagne A, Nikolakopoulou AM, Zhao Z, Sagare AP, Si G, Lazic D, et al. . Pericyte degeneration causes white matter dysfunction in the mouse central nervous system. Nat Med. (2018) 24:326–37. 10.1038/nm.4482
    1. Wilhelmus MMM, Otte-Höller I, van Triel JJJ, Veerhuis R, Maat-Schieman MLC, Bu G, et al. . Lipoprotein receptor-related protein-1 mediates amyloid-beta-mediated cell death of cerebrovascular cells. Am J Pathol. (2007) 171:1989–99. 10.2353/ajpath.2007.070050
    1. Rensink AAM, Verbeek MM, Otte-Höller I, ten Donkelaar HT, de Waal RMW, Kremer B. Inhibition of amyloid-beta-induced cell death in human brain pericytes in vitro. Brain Res. (2002) 952:111–21. 10.1016/S0006-8993(02)03218-3
    1. Verbeek MM, Otte-Höller I, Ruiter DJ, de Waal RM. Human brain pericytes as a model system to study the pathogenesis of cerebrovascular amyloidosis in Alzheimer's disease. Cell Mol Biol. (1999) 45:37–46.
    1. Toth P, Tucsek Z, Sosnowska D, Gautam T, Mitschelen M, Tarantini S, et al. . Age-related autoregulatory dysfunction and cerebromicrovascular injury in mice with angiotensin II-induced hypertension. J Cereb Blood Flow Metab. (2013) 33:1732–42. 10.1038/jcbfm.2013.143
    1. Kruyer A, Soplop N, Strickland S, Norris EH. Chronic hypertension leads to neurodegeneration in the TgSwDI mouse model of alzheimer's disease. Hypertens. (2015) 66:175–82. 10.1161/HYPERTENSIONAHA.115.05524
    1. Thériault P, ElAli A, Rivest S. High fat diet exacerbates Alzheimer's disease-related pathology in APPswe/PS1 mice. Oncotarget. (2016) 7:67808–27. 10.18632/oncotarget.12179
    1. Casey CS, Atagi Y, Yamazaki Y, Shinohara M, Tachibana M, Fu Y, et al. . Apolipoprotein E inhibits cerebrovascular pericyte mobility through a RhoA protein-mediated pathway. J Biol Chem. (2015) 290:14208–17. 10.1074/jbc.M114.625251
    1. Halliday MR, Rege SV, Ma Q, Zhao Z, Miller CA, Winkler EA, et al. . Accelerated pericyte degeneration and blood-brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer's disease. J Cereb Blood Flow Metab. (2016) 36:216–27. 10.1038/jcbfm.2015.44
    1. Zlokovic BV. Cerebrovascular effects of apolipoprotein E: implications for Alzheimer disease. JAMA Neurol. (2013) 70:440–4. 10.1001/jamaneurol.2013.2152
    1. Vidal R, Calero M, Piccardo P, Farlow MR, Unverzagt FW, Méndez E, et al. Senile dementia associated with amyloid beta protein angiopathy and tau perivascular pathology but not neuritic plaques in patients homozygous for the APOE-epsilon4 allele. Acta Neuropathol. (2000) 100:1–12. 10.1007/s004010051186
    1. Kolinko Y, Krakorova K, Cendelin J, Tonar Z, Kralickova M. Microcirculation of the brain: morphological assessment in degenerative diseases and restoration processes. Rev Neurosci. (2014) 26:75–93. 10.1515/revneuro-2014-0049
    1. Guan J, Pavlovic D, Dalkie N, Waldvogel HJ, O'Carroll SJ, Green CR, et al. Vascular degeneration in parkinsons disease. Brain Pathol. (2013) 23:154–64. 10.1111/j.1750-3639.2012.00628.x
    1. Sarkar S, Raymick J, Mann D, Bowyer J, Hanig J, Schmued L, et al. . Neurovascular changes in acute, sub-acute and chronic mouse models of parkinson's disease. Curr Neurovasc Res. (2014) 11:48–61. 10.2174/1567202610666131124234506
    1. Shibuya K, Yagishita S, Nakamura A, Uchihara T. Perivascular orientation of astrocytic plaques and tuft-shaped astrocytes. Brain Res. (2011) 1404:50–4. 10.1016/j.brainres.2011.06.014
    1. Desai Bradaric B, Patel A, Schneider JA, Carvey PM, Hendey B. Evidence for angiogenesis in Parkinson's disease, incidental Lewy body disease, and progressive supranuclear palsy. J Neural Transm. (2012) 119:59–71. 10.1007/s00702-011-0684-8
    1. Wong PC, Pardo CA, Borchelt DR, Lee MK, Copeland NG, Jenkins NA, et al. . An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron. (1995) 14:1105–16. 10.1016/0896-6273(95)90259-7
    1. Caccamo A, Majumder S, Oddo S. Cognitive decline typical of frontotemporal lobar degeneration in transgenic mice expressing the 25-kDa C-terminal fragment of TDP-43. Am J Pathol. (2012) 180:293–302. 10.1016/j.ajpath.2011.09.022
    1. Qiu H, Lee S, Shang Y, Wang WY, Au KF, Kamiya S, et al. . ALS-associated mutation FUS-R521C causes DNA damage and RNA splicing defects. J Clin Invest. (2014) 124:981–99. 10.1172/JCI72723
    1. O'Rourke JG, Bogdanik L, Muhammad AKMG, Gendron TF, Kim KJ, Austin A, et al. . C9orf72 BAC transgenic mice display typical pathologic features of ALS/FTD. Neuron. (2015) 88:892–901. 10.1016/j.neuron.2015.10.027
    1. Miyazaki K, Ohta Y, Nagai M, Morimoto N, Kurata T, Takehisa Y, et al. . Disruption of neurovascular unit prior to motor neuron degeneration in amyotrophic lateral sclerosis. J Neurosci Res. (2011) 89:718–28. 10.1002/jnr.22594
    1. Miyazaki K, Masamoto K, Morimoto N, Kurata T, Mimoto T, Obata T, et al. . Early and progressive impairment of spinal blood flow-glucose metabolism coupling in motor neuron degeneration of ALS model mice. J Cereb Blood Flow Metab. (2012) 32:456–67. 10.1038/jcbfm.2011.155
    1. Abrahams S, Goldstein LH, Kew JJ, Brooks DJ, Lloyd CM, Frith CD, et al. . Frontal lobe dysfunction in amyotrophic lateral sclerosis. A PET study. Brain. (1996) 119(Pt 6):2105–20. 10.1093/brain/119.6.2105
    1. Ishikawa T, Morita M, Nakano I. Constant blood flow reduction in premotor frontal lobe regions in ALS with dementia – a SPECT study with 3D-SSP. Acta Neurol Scand. (2007) 116:340–4. 10.1111/j.1600-0404.2007.00876.x
    1. van Es MA, Hardiman O, Chio A, Al-Chalabi A, Pasterkamp RJ, Veldink JH, et al. . Amyotrophic lateral sclerosis. Lancet. (2017) 390:2084–98. 10.1016/S0140-6736(17)31287-4
    1. Winkler EA, Sengillo JD, Sullivan JS, Henkel JS, Appel SH, Zlokovic BV. Blood-spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis. Acta Neuropathol. (2013) 125:111–20. 10.1007/s00401-012-1039-8
    1. Zhong Z, Deane R, Ali Z, Parisi M, Shapovalov Y, O'Banion MK, et al. . ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration. Nat Neurosci. (2008) 11:420–2. 10.1038/nn2073
    1. Meldrum BS. Concept of activity-induced cell death in epilepsy: historical and contemporary perspectives. Prog Brain Res. (2002) 135:3–11. 10.1016/S0079-6123(02)35003-9
    1. Farrell JS, Wolff MD, Teskey GC. Neurodegeneration and Pathology in Epilepsy: Clinical and Basic Perspectives. In: Advances in Neurobiology. (2017). p. 317–34. 10.1007/978-3-319-57193-5_12
    1. Mehta A, Prabhakar M, Kumar P, Deshmukh R, Sharma PL. Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur J Pharmacol. (2013) 698:6–18. 10.1016/j.ejphar.2012.10.032
    1. Ko SB, Ortega-Gutierrez S, Choi HA, Claassen J, Presciutti M, Schmidt JM, et al. . Status epilepticus–induced hyperemia and brain tissue hypoxia after cardiac arrest. Arch Neurol. (2011) 68:1323–6. 10.1001/archneurol.2011.240
    1. Johnson AC, Cipolla MJ. Altered hippocampal arteriole structure and function in a rat model of preeclampsia: potential role in impaired seizure-induced hyperemia. J Cereb Blood Flow Metab. (2017) 37:2857–69. 10.1177/0271678X16676287
    1. Wichert-Ana L, de Azevedo-Marques PM, Oliveira LF, Terra-Bustamante VC, Fernandes RMF, Santos AC, et al. . Interictal hyperemia correlates with epileptogenicity in polymicrogyric cortex. Epilepsy Res. (2008) 79:39–48. 10.1016/j.eplepsyres.2007.12.018
    1. Leal-Campanario R, Alarcon-Martinez L, Rieiro H, Martinez-Conde S, Alarcon-Martinez T, Zhao X, et al. . Abnormal capillary vasodynamics contribute to ictal neurodegeneration in epilepsy. Sci Rep. (2017) 7:43276. 10.1038/srep43276
    1. Taskiran-Sag A, Yemisci M, Gursoy-Ozdemir Y, Erdener SE, Karatas H, Yuce D, et al. . Improving microcirculatory reperfusion reduces parenchymal oxygen radical formation and provides neuroprotection. Stroke. (2018) 49:1267–75. 10.1161/STROKEAHA.118.020711
    1. Jung KH, Chu K, Ko SY, Lee ST, Sinn DI, Park DK, et al. . Early intravenous infusion of sodium nitrite protects brain against in vivo ischemia-reperfusion injury. Stroke. (2006) 37:2744–50. 10.1161/01.STR.0000245116.40163.1c
    1. Fathi AR, Pluta RM, Bakhtian KD, Qi M, Lonser RR. Reversal of cerebral vasospasm via intravenous sodium nitrite after subarachnoid hemorrhage in primates. J Neurosurg. (2011) 115:1213–20. 10.3171/2011.7.JNS11390
    1. Cantow K, Flemming B, Ladwig-Wiegard M, Persson PB, Seeliger E. Low dose nitrite improves reoxygenation following renal ischemia in rats. Sci Rep. (2017) 7:14597. 10.1038/s41598-017-15058-5
    1. Terpolilli NA, Kim SW, Thal SC, Kataoka H, Zeisig V, Nitzsche B, et al. . Inhalation of nitric oxide prevents ischemic brain damage in experimental stroke by selective dilatation of collateral arterioles. Circ Res. (2012) 110:727–38. 10.1161/CIRCRESAHA.111.253419
    1. Terpolilli NA, Kim SW, Thal SC, Kuebler WM, Plesnila N. Inhaled nitric oxide reduces secondary brain damage after traumatic brain injury in mice. J Cereb Blood Flow Metab. (2013) 33:311–8. 10.1038/jcbfm.2012.176
    1. Garry PS, Ezra M, Rowland MJ, Westbrook J, Pattinson KTS. The role of the nitric oxide pathway in brain injury and its treatment–from bench to bedside. Exp Neurol. (2015) 263:235–43. 10.1016/j.expneurol.2014.10.017
    1. Terpolilli NA, Feiler S, Dienel A, Müller F, Heumos N, Friedrich B, et al. . Nitric oxide inhalation reduces brain damage, prevents mortality, and improves neurological outcome after subarachnoid hemorrhage by resolving early pial microvasospasms. J Cereb Blood Flow Metab. (2016) 36:2096–107. 10.1177/0271678X15605848
    1. Li J, Iadecola C. Nitric oxide and adenosine mediate vasodilation during functional activation in cerebellar cortex. Neuropharmacology. (1994) 33:1453–61. 10.1016/0028-3908(94)90049-3
    1. O'Farrell FM, Mastitskaya S, Hammond-Haley M, Freitas F, Wah WR, Attwell D. Capillary pericytes mediate coronary no-reflow after myocardial ischaemia. Elife. (2017) 6:e29280. 10.7554/eLife.29280
    1. Costa MA, Paiva AE, Andreotti JP, Cardoso MV, Cardoso CD, Mintz A, et al. . Pericytes constrict blood vessels after myocardial ischemia. J Mol Cell Cardiol. (2018) 116:1–4. 10.1016/j.yjmcc.2018.01.014
    1. Dalkara T, Alarcon-Martinez L. Cerebral microvascular pericytes and neurogliovascular signaling in health and disease. Brain Res. (2015) 1623:3–17. 10.1016/j.brainres.2015.03.047
    1. Biaggioni I, Olafsson B, Robertson RM, Hollister AS, Robertson D. Cardiovascular and respiratory effects of adenosine in conscious man. Evidence for chemoreceptor activation. Circ Res. (1987) 61:779–86. 10.1161/01.RES.61.6.779
    1. Abreu A, Mahmarian JJ, Nishimura S, Boyce TM, Verani MS. Tolerance and safety of pharmacologic coronary vasodilation with adenosine in association with thallium-201 scintigraphy in patients with suspected coronary artery disease. J Am Coll Cardiol. (1991) 18:730–5. 10.1016/0735-1097(91)90796-C
    1. Gaston B. Summary: systemic effects of inhaled nitric oxide. Proc Am Thorac Soc. (2006) 3:170–2. 10.1513/pats.200506-049BG
    1. den Uil CA, Brugts JJ. Impact of intravenous nitroglycerin in the management of acute decompensated heart failure. Curr Heart Fail Rep. (2015) 12:87–93. 10.1007/s11897-014-0230-8
    1. Seabra AB, Duran N. Nanoparticulated nitric oxide donors and their biomedical applications. Mini Rev Med Chem. (2017) 17:216–23. 10.2174/1389557516666160808124624
    1. Cheng J, Korte N, Nortley R, Sethi H, Tang Y, Attwell D. Targeting pericytes for therapeutic approaches to neurological disorders. Acta Neuropathol. (2018) 136:507–23. 10.1007/s00401-018-1893-0
    1. Sugiyama T, Kawamura H, Yamanishi S, Kobayashi M, Katsumura K, Puro DG. Regulation of P2X 7 -induced pore formation and cell death in pericyte-containing retinal microvessels. Am J Physiol. (2005) 288:C568–76. 10.1152/ajpcell.00380.2004
    1. Wu DM, Kawamura H, Sakagami K, Kobayashi M, Puro DG. Cholinergic regulation of pericyte-containing retinal microvessels. Am J Physiol Circ Physiol. (2003) 284:H2083–90. 10.1152/ajpheart.01007.2002
    1. Kutcher ME, Herman IM. The pericyte: cellular regulator of microvascular blood flow. Microvasc Res. (2009) 77:235–46. 10.1016/j.mvr.2009.01.007
    1. Niego B, Lee N, Larsson P, De Silva TM, Au AE-L, McCutcheon F, et al. . Selective inhibition of brain endothelial Rho-kinase-2 provides optimal protection of an in vitro blood-brain barrier from tissue-type plasminogen activator and plasmin. PLoS ONE. (2017) 12:e0177332. 10.1371/journal.pone.0177332
    1. Shin HK, Salomone S, Potts EM, Lee SW, Millican E, Noma K, et al. . Rho-kinase inhibition acutely augments blood flow in focal cerebral ischemia via endothelial mechanisms. J Cereb Blood Flow Metab. (2007) 27:998–1009. 10.1038/sj.jcbfm.9600406
    1. Hyun Lee J, Zheng Y, von Bornstadt D, Wei Y, Balcioglu A, Daneshmand A, et al. Selective ROCK2 inhibition in focal cerebral ischemia. Ann Clin Transl Neurol. (2014) 1:2–14. 10.1002/acn3.19
    1. Shin HK, Huang PL, Ayata C. Rho-Kinase inhibition improves ischemic perfusion deficit in hyperlipidemic mice. J Cereb Blood Flow Metab. (2014) 34:284–87. 10.1038/jcbfm.2013.195
    1. Iba T, Levy JH, Hirota T, Hiki M, Sato K, Murakami T, et al. . Protection of the endothelial glycocalyx by antithrombin in an endotoxin-induced rat model of sepsis. Thromb Res. (2018) 171:1–6. 10.1016/j.thromres.2018.09.042
    1. Iba T, Levy JH. Derangement of the endothelial glycocalyx in sepsis. J Thromb Haemost. (2019) 17:283–94. 10.1111/jth.14371
    1. Gresele P, Momi S, Falcinelli E. Anti-platelet therapy: phosphodiesterase inhibitors. Br J Clin Pharmacol. (2011) 72:634–46. 10.1111/j.1365-2125.2011.04034.x
    1. Muravyov AV, Yakusevich VV, Chuchkanov FA, Maimistova AA, Bulaeva SV, Zaitsev LG. Hemorheological efficiency of drugs, targeting on intracellular phosphodiesterase activity: in vitro study. Clin Hemorheol Microcirc. (2007) 36:327–34.
    1. Zhang Q, Wang G, Yuan W, Wu J, Wang M, Li C. The effects of phosphodiesterase-5 inhibitor sildenafil against post-resuscitation myocardial and intestinal microcirculatory dysfunction by attenuating apoptosis and regulating microRNAs expression: essential role of nitric oxide syntheses signaling. J Transl Med. (2015) 13:177. 10.1186/s12967-015-0550-9
    1. Magny E, Le Petitcorps H, Pociumban M, Bouksani-Kacher Z, Pautas É, Belmin J, et al. . Predisposing and precipitating factors for delirium in community-dwelling older adults admitted to hospital with this condition: a prospective case series. PLoS ONE. (2018) 13:e0193034. 10.1371/journal.pone.0193034
    1. Jickling GC, Liu D, Ander BP, Stamova B, Zhan X, Sharp FR. Targeting neutrophils in ischemic stroke: translational insights from experimental studies. J Cereb Blood Flow Metab. (2015) 35:888–901. 10.1038/jcbfm.2015.45
    1. Provencio JJ, Altay T, Smithason S, Moore SK, Ransohoff RM. Depletion of Ly6G/C(+) cells ameliorates delayed cerebral vasospasm in subarachnoid hemorrhage. J Neuroimmunol. (2011) 232:94–100. 10.1016/j.jneuroim.2010.10.016
    1. Herz J, Sabellek P, Lane TE, Gunzer M, Hermann DM, Doeppner TR. Role of neutrophils in exacerbation of brain injury after focal cerebral ischemia in hyperlipidemic mice. Stroke. (2015) 46:2916–25. 10.1161/STROKEAHA.115.010620
    1. Lee PY, Wang JX, Parisini E, Dascher CC, Nigrovic PA. Ly6 family proteins in neutrophil biology. J Leukoc Biol. (2013) 94:585–94. 10.1189/jlb.0113014
    1. Hu F, Wang Y, Gong K, Ge G, Cao M, Zhao P, et al. . Protective effects of drag-reducing polymers on ischemic reperfusion injury of isolated rat heart. Clin Hemorheol Microcirc. (2016) 62:1–11. 10.3233/CH-151925
    1. Bragin DE, Peng Z, Bragina OA, Statom GL, Kameneva MV, Nemoto EM. Improvement of impaired cerebral microcirculation using rheological modulation by drag-reducing polymers. Adv Exp Med Biol. (2016) 923:239–44. 10.1007/978-3-319-38810-6_32
    1. Bragin DE, Kameneva MV, Bragina OA, Thomson S, Statom GL, Lara DA, et al. . Rheological effects of drag-reducing polymers improve cerebral blood flow and oxygenation after traumatic brain injury in rats. J Cereb Blood Flow Metab. (2017) 37:762–75. 10.1177/0271678X16684153
    1. Subramani K, Raju SP, Chu X, Warren M, Pandya CD, Hoda N, et al. . Effect of plasma-derived extracellular vesicles on erythrocyte deformability in polymicrobial sepsis. Int Immunopharmacol. (2018) 65:244–47. 10.1016/j.intimp.2018.10.011
    1. Sorkin R, Bergamaschi G, Kamsma D, Brand G, Dekel E, Ofir-Birin Y, et al. . Probing cellular mechanics with acoustic force spectroscopy. Mol Biol Cell. (2018) 29:2005–11. 10.1091/mbc.E18-03-0154

Source: PubMed

3
Iratkozz fel