Exercise-dependent BDNF as a Modulatory Factor for the Executive Processing of Individuals in Course of Cognitive Decline. A Systematic Review

Gilmara G de Assis, Katie Moraes de Almondes, Gilmara G de Assis, Katie Moraes de Almondes

Abstract

Background: Aging naturally triggers a decline in cognition as result of deterioration in cerebral circuits, thus the executive functions (EFs) suffer changes that progress from mild to severe states of impairment. Exercise instead, works as a strategy for cognitive enhancement by modulating neuronal plasticity through the regulation of BDNF. However, whether the exercise-dependent BDNF may improve higher complexity processes such as the EFs is still in a studying process. Results: Current data on exercise-dependent BDNF changes for aging individuals in a course of cognitive impairment was summarized to investigate whether the exercise regulation of BDNF is effective to pronounce long term changes on executive controls. While the exercise-dependent regulation of BDNF is currently undeniable, the role of exercise dependent BDNF as a tool for the improvement of EFs in individuals with dementia is still less clear and seldom discussed. The summary of findings indicate a limited number of studies addressing exercise in order to discuss parameters related to either BDNF or executive functioning in such population conditions (n = 215), further narrowing to a total of 5 studies presenting analysis of both parameters. Nonetheless, positive outcomes from BDNF and EF variables were displayed by all the populations exposed to exercise across studies. Aerobic exercise was shown to be a major source for the enhancement of the BDNF-dependent executive functioning, when compared to cognitive stimulation. Moreover, the effect of exercise-dependent BDNF on domains of executive functioning appears to occur in a dose-dependent manner for the aging individuals, independently of cognitive condition.

Keywords: BDNF; aerobic exercise; aging; cognitive decline; executive functions.

Figures

FIGURE 1
FIGURE 1
Search strategies flow chart.

References

    1. Anderson-Hanley C., Arciero P. J., Brickman A. M., Nimon J. P., Okuma N., Westen S. C., et al. (2012). Exergaming and older adult cognition: a cluster randomized clinical trial. Am. J. Prev. Med. 42 109–119. 10.1016/j.amepre.2011.10.016
    1. Azadian E., Torbati H. R. T., Kakhki A. R. S., Farahpour N. (2016). The effect of dual task and executive training on pattern of gait in older adults with balance impairment: a Randomized controlled trial. Arch. Gerontol. Geriatr. 62 83–89. 10.1016/j.archger.2015.10.001
    1. Baker L. D., Frank L. L., Foster-Schubert K., Green P. S., Wilkinson C. W., McTiernan A., et al. (2010). Effects of aerobic exercise on mild cognitive impairment. Arch. Neurol. 67 71–79. 10.1001/archneurol.2009.307
    1. Bamidis P. D., Fissler P., Papageorgiou S. G., Zilidou V., Konstantinidis E. I., Billis A. S., et al. (2015). Gains in cognition through combined cognitive and physical training: the role of training dosage and severity of neurocognitive disorder. Front. Aging Neurosci. 7:152 10.3389/fnagi.2015.00152
    1. Bechara R. G., Lyne R., Kelly Á. M. (2014). BDNF-stimulated intracellular signalling mechanisms underlie exercise-induced improvement in spatial memory in the male Wistar rat. Behav. Brain Res. 275 297–306. 10.1016/j.bbr.2013.11.015
    1. Blair C. (2016). Educating executive function. Wiley Interdiscip. Rev. Cogn. Sci. 8:e1403 10.1002/wcs.1403
    1. Budni J., Bellettini-Santos T., Mina F., Garcez M. L., Zugno A. I. (2015). The involvement of BDNF, NGF and GDNF in aging and Alzheimer’s disease. Aging Dis. 6 331–341. 10.14336/AD.2015.0825
    1. Chen M. J., Russo-Neustadt A. A. (2010). NIH Public Access. System 19 962–972. 10.1002/hipo.20579
    1. Coelho F. G., Gobbi S., Andreatto C. A., Corazza D. I., Pedroso R. V., Santos-Galduróz R. F. (2013). Physical exercise modulates peripheral levels of brain-derived neurotrophic factor (BDNF): a systematic review of experimental studies in the elderly. Arch. Gerontol. Geriatr. 56 10–15. 10.1016/j.archger.2012.06.003
    1. Diamond A. (2014). Executive functions. Annu. Rev. Psychol. 64 135–168.10.1146/annurev-psych-113011-143750
    1. Dinoff A., Herrmann N., Swardfager W., Liu C. S., Sherman C., Chan S., et al. (2016). The Effect of exercise training on resting concentrations of peripheral brain-derived neurotrophic factor (BDNF): a meta-analysis. PLoS ONE 11:e0163037 10.1371/journal.pone.0163037
    1. Fernandes V. R., Ribeiro M. L., Melo T., de Tarso Maciel-Pinheiro P., Guimarães T. T., Araújo N. B., et al. (2016). Motor coordination correlates with academic achievement and cognitive function in children. Front. Psychol. 7:31810.3389/fpsyg.2016.00318
    1. Finney G. R., Minagar A., Heilman K. M. (2016). Assessment of mental status. Neurol. Clin. 34 1–16. 10.1016/j.ncl.2015.08.001
    1. Flöel A., Ruscheweyh R., Krüger K., Willemer C., Winter B., Völker K., et al. (2010). Physical activity and memory functions: are neurotrophins and cerebral gray matter volume the missing link? Neuroimage 49 2756–2763. 10.1016/j.neuroimage.2009.10.043
    1. Heijnen S., Hommel B., Kibele A., Colzato L. S. (2016). Neuromodulation of aerobic exercise-A review. Front. Psychol. 6:1890 10.3389/fpsyg.2015.01890
    1. Hötting K., Röder B. (2013). Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci. Biobehav. Rev. 37 2243–2257.10.1016/j.neubiorev.2013.04.005
    1. Huang T., Larsen K. T., Ried-Larsen M., Møller N. C., Andersen L. B. B. (2014). The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans: a review. Scand. J. Med. Sci. Sports 24 1–10. 10.1111/sms.12069
    1. Karpova N. N. (2014). Role of BDNF epigenetics in activity-dependent neuronal plasticity. Neuropharmacology 76(Pt C) 709–718. 10.1016/j.neuropharm.2013.04.002
    1. Komulainen P., Pedersen M., Hänninen T., Bruunsgaard H., Lakka T. A., Kivipelto M., et al. (2008). BDNF is a novel marker of cognitive function in ageing women: the DR’s EXTRA Study. Neurobiol. Learn. Mem. 90 596–603. 10.1016/j.nlm.2008.07.014
    1. Konar A., Singh P., Thakur M. K. (2016). Age-associated cognitive decline: insights into molecular switches and recovery avenues. Aging Dis. 7 121–129. 10.14336/AD.2015.1004
    1. Leckie R. L., Oberlin L. E., Voss M. W., Prakash R. S., Szabo-Reed A., Chaddock-Heyman L., et al. (2014). BDNF mediates improvements in executive function following a 1-year exercise intervention. Front. Hum. Neurosci. 8:98510.3389/fnhum.2014.00985
    1. Lista I., Sorrentino G. (2010). Biological mechanisms of physical activity in preventing cognitive decline. Cell. Mol. Neurobiol. 30 493–503. 10.1007/s10571-009-9488-x
    1. Monsell S. (2003). Task switching. Trends Cogn. Sci. 7 134–140. 10.1016/S1364-6613(03)00028-7
    1. Muñoz A., Corrêa C. L., Villar-Cheda B., Costa-Besada M. A., Labandeira-Garcia J. L. (2016). Aging-related increase in Rho kinase activity in the nigral region is counteracted by physical exercise. J. Gerontol. A Biol. Sci. Med. Sci. 71 1254–1257. 10.1093/gerona/glv179
    1. Murawska-Cialowicz E., Wojna J., Zuwala-Jagiello J. (2015). Crossfit training changes brain-derived neurotrophic factor and irisin levels at rest, after wingate and progressive tests, and improves aerobic capacity and body composition of young physically active men and women. J. Physiol. Pharmacol. 66 811–821.
    1. Nascimento C. M. C., Pereira J. R., de Andrade L. P., Garuffi M., Talib L. L., Forlenza O. V., et al. (2014). Physical exercise in mci elderly promotes reduction of pro-inflammatory cytokines and improvements on cognition and bdnf peripheral levels. Curr. Alzheimer Res. 11 799–805. 10.2174/156720501108140910122849
    1. Öhman H., Savikko N., Strandberg T. E., Kautiainen H., Raivio M. M., Laakkonen M. L., et al. (2016). Effects of exercise on cognition: the Finnish Alzheimer Disease exercise trial: a randomized, controlled trial. J. Am. Geriatr. Soc. 64 731–738. 10.1111/jgs.14059
    1. Paillard T. (2015). Preventive effects of regular physical exercise against cognitive decline and the risk of dementia with age advancement. Sports Med. Open 1 4 10.1186/s40798-015-0016-x
    1. Phillips C., Baktir M. A., Srivatsan M., Salehi A. (2014). Neuroprotective effects of physical activity on the brain: a closer look at trophic factor signaling. Front. Cell Neurosci. 8:170 10.3389/fncel.2014.00170
    1. Rafieva L. M., Gasanov E. V. (2016). Neurotrophin propeptides: biological functions and molecular mechanisms. Curr. Protein Pept. Sci. 17 298–305.
    1. Rivera D., Perrin P. B., Stevens L. F., Garza M. T., Weil C., Saracho C. P., et al. (2015). Stroop color-word interference test: normative data for the Latin American Spanish speaking adult population. NeuroRehabilitation 37 591–624. 10.3233/NRE-151281
    1. Rothman S. M., Griffioen K. J., Wan R., Mattson M. P. (2012). Brain-derived neurotrophic factor as a regulator of systemic and brain energy metabolism and cardiovascular health. Ann. N. Y. Acad. Sci. 1264 49–63. 10.1111/j.1749-6632.2012.06525.x
    1. Ruscheweyh R., Willemer C., Krüger K., Duning T., Warnecke T., Sommer J., et al. (2011). Physical activity and memory functions: an interventional study. Neurobiol. Aging 32 1304–1319. 10.1016/j.neurobiolaging.2009.08.001
    1. Scherder E., Scherder R., Verburgh L., Königs M., Blom M., Kramer A. F., et al. (2014). Executive functions of sedentary elderly may benefit from walking: a systematic review and meta-analysis. Am. J. Geriatr. Psychiatry 22 782–791. 10.1016/j.jagp.2012.12.026
    1. Shao Z., Janse E., Visser K., Meyer A. S. (2014). What do verbal fluency tasks measure? Predictors of verbal fluency performance in older adults. Front. Psychol. 5:772 10.3389/fpsyg.2014.00772
    1. Sheridan L. K., Fitzgerald H. E., Adams K. M., Nigg J. T., Martel M. M., Puttler L. I., et al. (2006). Normative Symbol Digit Modalities Test performance in a community-based sample. Arch. Clin. Neuropsychol. 21 23–28. 10.1016/j.acn.2005.07.003
    1. Sleiman S. F., Henry J., Al-Haddad R., El Hayek L., Haidar E. A., Stringer T., et al. (2016). Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate. Elife 5:e15092 10.7554/eLife.15092
    1. Sofi F., Valecchi D., Bacci D., Abbate R., Gensini G. F., Casini A., et al. (2011). Physical activity and risk of cognitive decline: a meta-analysis of prospective studies. J. Intern. Med. 269 107–117. 10.1111/j.1365-2796.2010.02281.x
    1. Suzuki T., Shimada H., Makizako H., Doi T., Yoshida D., Ito K., et al. (2013). A randomized controlled trial of multicomponent exercise in older adults with mild cognitive impairment. PLoS ONE 8:e61483 10.1371/journal.pone.0061483
    1. Szuhany K. L., Bugatti M., Otto M. W. (2015). A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J. Psychiatr. Res. 60 56–64. 10.1016/j.jpsychires.2014.10.003
    1. Tombaugh T. N. (2004). Trail Making Test A and B: normative data stratified by age and education. Arch. Clin. Neuropsychol. 19 203–214. 10.1016/S0887-6177(03)00039-8
    1. Vaughan S., Wallis M., Polit D., Steele M., Shum D., Morris N. (2014). The effects of multimodal exercise on cognitive and physical functioning and brain-derived neurotrophic factor in older women: a randomised controlled trial. Age Ageing 43 623–629. 10.1093/ageing/afu010
    1. Whiteman A. S., Young D. E., Budson A. E., Stern C. E., Schon K. (2016). Entorhinal volume, aerobic fitness, and recognition memory in healthy young adults: a voxel-based morphometry study. Neuroimage 126 229–238.10.1016/j.neuroimage.2015.11.049
    1. Wrann C. D. D., White J. P. P., Salogiannnis J., Laznik-Bogoslavski D., Wu J., Ma D., et al. (2013). Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 Pathway. Cell Metab. 18 649–659. 10.1016/j.cmet.2013.09.008

Source: PubMed

3
Iratkozz fel