Peripheral nerve blocks versus general anesthesia for total knee replacement in elderly patients on the postoperative quality of recovery

JunLe Liu, WeiXiu Yuan, XiaoLin Wang, Colin F Royse, MaoWei Gong, Ying Zhao, Hong Zhang, JunLe Liu, WeiXiu Yuan, XiaoLin Wang, Colin F Royse, MaoWei Gong, Ying Zhao, Hong Zhang

Abstract

Background: Both peripheral nerve blocks with sedation or general anesthesia can be used for total knee replacement surgery.

Objectives: We compared these anesthetic techniques on the postoperative quality of recovery early in elderly patients.

Materials and methods: In our study, 213 patients who were ≥65 years old and undergoing total knee replacement were randomized to peripheral nerve blocks (PNBs) - lumbar plexus and sciatic - with propofol sedation, or general anesthesia with combined propofol and remifentanil. Blocks were performed using nerve stimulation and 0.35% ropivacaine. All patients received postoperative multimodal analgesia. Postoperative recovery was assessed at 15 minutes, 40 minutes, 1 day, 3 days, and 7 days after surgery, with the Postoperative Quality of Recovery Scale, in physiological, nociceptive, emotive, modified activities of daily living, modified cognitive, and overall patient perspective domains.

Results: Intraoperative blood pressure and heart rate were more stable with PNBs (P<0.001). The recovery was better with PNBs in physiological (P<0.001), emotive (depression and anxiety) (P<0.001), nociceptive (pain and nausea) (P<0.001), modified cognitive (P<0.001), and all domains recovery (P<0.001), but not in activities of daily living (P=0.181). Intraoperative drugs and the postoperative sulfentanil requirement of the PNBs group were lower (all P<0.001). Differences were greatest early after surgery with equivalence by 1 week. Satisfaction was high and not different between groups (P=0.059).

Conclusion: Lumbar plexus and sciatic blocks with sedation facilitates faster postoperative recovery than general anesthesia, but not at 1 week after total knee replacement in patients who were 65 years or older. The trial has been registered at ClinicalTrials.gov. (NCT01871012).

Keywords: general anesthesia; knee replacement; nerve block; perioperative care.

Figures

Figure 1
Figure 1
Flow chart showing patient enrollment, randomization, follow-up, and analysis. Abbreviations: GA, general anesthesia; PNBs, peripheral nerve blocks.
Figure 2
Figure 2
Intraoperative systolic blood pressure and heart rate variation between the PNBs group (■) and the GA group (○). Notes: (A) intraoperative systolic blood pressure; (B) intraoperative heart rate. Abbreviations: GA, general anesthesia; PNBs, peripheral nerve blocks; SBP, systolic blood pressure; HR, heart rate; BL, baseline (performed up to 1–4 days presurgery); OR, operation room; induction, anesthetic induction; skin incision, operation begin; end, end of surgery.
Figure 3
Figure 3
Postoperative recovery variation of the domains over time between the PNBs group (■) and the GA group (○). Notes: The domains include (A) physiology, (B) modified ADL, (C) emotive, (D) nociceptive, (E) modified cognitive, and (F) all domains recovery. Abbreviations: GA, general anesthesia; PNBs, peripheral nerve blocks; ADL, activities of daily living; BL, baseline; T15, 15 minutes after surgery; T40, 40 minutes after surgery; D1, 1 day after surgery; D3, 3 days after surgery; D7, 7, days after surgery.
Figure 4
Figure 4
Incidence of full recovery between the PNBs group (■) and the GA group (O) in nociceptive and emotive domain. Notes: The nociceptive domain includes (A) pain and (B) nausea. Emotive domain includes (C) anxiety and (D) depression. Zero indicated failure of recovery. The maximum number in each graph denotes full recovery. Abbreviations: GA, general anesthesia; PNBs, peripheral nerve blocks; BL, baseline; T15, 15 minutes after surgery; T40, 40 minutes after surgery, D1, 1 day after surgery; D3, 3 days after surgery; and D7, 7 days after surgery.
Figure 5
Figure 5
Percentage of patients who rated their overall perspective of the operative procedure between the PNBs group (■) and the GA group (○). Notes: The domain includes (A) ADL (eat and dress), (B) clarity of thought, and (C) satisfaction. Also, 100% indicates patients feel “no impact at all”. Abbreviations: GA, general anesthesia; PNBs, peripheral nerve blocks; ADL, activities of daily living; D1, 1 day after surgery; D3, 3 days after surgery; D7, 7 days after surgery.

References

    1. Carr AJ, Robertsson O, Graves S, et al. Knee replacement. Lancet. 2012;379(9823):1331–1340.
    1. Manku K, Bacchetti P, Leung JM. Prognostic significance of postoperative in-hospital complications in elderly patients. I. Long-term survival. Anesth Analg. 2003;96(2):583–589. table of contents.
    1. Young A, Buvanendran A. Recent advances in multimodal analgesia. Anesthesiol Clin. 2012;30(1):91–100.
    1. Stevens RD, Van Gessel E, Flory N, Fournier R, Gamulin Z. Lumbar plexus block reduces pain and blood loss associated with total hip arthroplasty. Anesthesiology. 2000;93(1):115–121.
    1. Capdevila X, Macaire P, Dadure C, et al. Continuous psoas compartment block for postoperative analgesia after total hip arthroplasty: new landmarks, technical guidelines, and clinical evaluation. Anesth Analg. 2002;94(6):1606–1613. table of contents.
    1. Hu S, Zhang ZY, Hua YQ, Li J, Cai ZD. A comparison of regional and general anaesthesia for total replacement of the hip or knee: a meta-analysis. J Bone Joint Surg Br. 2009;91(7):935–942.
    1. Hadzic A, Karaca PE, Hobeika P, et al. Peripheral nerve blocks result in superior recovery profile compared with general anesthesia in outpatient knee arthroscopy. Anesth Analg. 2005;100(4):976–981.
    1. Royse CF, Chung F, Newman S, Stygall J, Wilkinson DJ. Predictors of patient satisfaction with anaesthesia and surgery care: a cohort study using the Postoperative Quality of Recovery Scale. Eur J Anaesthesiol. 2013;30(3):106–110.
    1. Royse CF, Newman S, Chung F, et al. Development and feasibility of a scale to assess postoperative recovery: the post-operative quality recovery scale. Anesthesiology. 2010;113(4):892–905.
    1. Moller JT, Cluitmans P, Rasmussen LS, et al. Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. ISPOCD investigators. International Study of Post-Operative Cognitive Dysfunction. Lancet. 1998;351(9106):857–861.
    1. Monk TG, Weldon BC, Garvan CW, et al. Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology. 2008;108(1):18–30.
    1. Chayen D, Nathan H, Chayen M. The psoas compartment block. Anesthesiology. 1976;45(1):95–99.
    1. Royse CF, Newman S, Williams Z, Wilkinson DJ. A human volunteer study to identify variability in performance in the cognitive domain of the postoperative quality of recovery scale. Anesthesiology. 2013;119(3):576–581.
    1. Pavlin DJ, Chen C, Penaloza DA, Polissar NL, Buckley FP. Pain as a factor complicating recovery and discharge after ambulatory surgery. Anesth Analg. 2002;95(3):627–634.
    1. Wu CL, Rowlingson AJ, Partin AW, et al. Correlation of postoperative pain to quality of recovery in the immediate postoperative period. Reg Anesth Pain Med. 2005;30(6):516–522.
    1. Hadzic A, Williams BA, Karaca PE, et al. For outpatient rotator cuff surgery, nerve block anesthesia provides superior same-day recovery over general anesthesia. Anesthesiology. 2005;102(5):1001–1007.
    1. van den Bosch JE, Bonsel GJ, Moons KG, Kalkman CJ. Effect of postoperative experiences on willingness to pay to avoid postoperative pain, nausea, and vomiting. Anesthesiology. 2006;104(5):1033–1039.
    1. Sinclair DR, Chung F, Mezei G. Can postoperative nausea and vomiting be predicted? Anesthesiology. 1999;91(1):109–118.
    1. Gustafsson BA, Ponzer S, Heikkilä K, Ekman SL. The lived body and the perioperative period in replacement surgery: older people’s experiences. J Adv Nurs. 2007;60(1):20–28.
    1. Bedford PD. Adverse cerebral effects of anaesthesia on old people. Lancet. 1955;269(6884):259–263.
    1. Newman S, Stygall J, Hirani S, Shaefi S, Maze M. Postoperative cognitive dysfunction after noncardiac surgery: a systematic review. Anesthesiology. 2007;106(3):572–590.
    1. Murkin JM, Newman SP, Stump DA, Blumenthal JA. Statement of consensus on assessment of neurobehavioral outcomes after cardiac surgery. Ann Thorac Surg. 1995;59(5):1289–1295.
    1. Robinson TN, Raeburn CD, Tran ZV, Angles EM, Brenner LA, Moss M. Postoperative delirium in the elderly: risk factors and outcomes. Ann Surg. 2009;249(1):173–178.
    1. Royse CF, Andrews DT, Newman SN, et al. The influence of propofol or desflurane on postoperative cognitive dysfunction in patients undergoing coronary artery bypass surgery. Anaesthesia. 2011;66(6):455–464.
    1. Ghoneim MM, Block RI. Clinical, methodological and theoretical issues in the assessment of cognition after anaesthesia and surgery: a review. Eur J Anaesthesiol. 2012;29(9):409–422.
    1. Funder KS, Steinmetz J, Rasmussen LS. Methodological issues of postoperative cognitive dysfunction research. Semin Cardiothoracic Vasc Anesth. 2010;14(2):119–122.

Source: PubMed

3
Iratkozz fel