Interventional Left Atrial Appendage Closure Affects the Metabolism of Acylcarnitines

Christian Fastner, Michael Behnes, Benjamin Sartorius, Annika Wenke, Siegfried Lang, Gökhan Yücel, Katherine Sattler, Jonas Rusnak, Ahmad Saleh, Christian Barth, Kambis Mashayekhi, Ursula Hoffmann, Martin Borggrefe, Ibrahim Akin, Christian Fastner, Michael Behnes, Benjamin Sartorius, Annika Wenke, Siegfried Lang, Gökhan Yücel, Katherine Sattler, Jonas Rusnak, Ahmad Saleh, Christian Barth, Kambis Mashayekhi, Ursula Hoffmann, Martin Borggrefe, Ibrahim Akin

Abstract

Background: Left atrial appendage closure (LAAC) represents the interventional alternative to oral anticoagulation for stroke prevention in atrial fibrillation (AF). The metabolism of acylcarnitines was shown to affect cardiovascular diseases. This study evaluates the influence of successful LAAC on the metabolism of acylcarnitines.

Methods: Patients undergoing successful LAAC were enrolled prospectively. Peripheral blood samples for metabolomics measurements were collected immediately before (i.e., index) and six months after LAAC (i.e., mid-term). A targeted metabolomics analysis based on electrospray ionization-liquid chromatography-mass spectrometry (ESI-LC-MS/MS) and MS/MS measurements was performed.

Results: 44 patients with non-valvular AF (median CHA₂DS₂-VASc score 4, median HAS-BLED score 4) and successful LAAC were included. Significant changes in acylcarnitine levels were found in the total cohort, which were mainly attributed to patients with impaired left ventricular and renal function, elevated amino-terminal pro-brain natriuretic peptide (NT-proBNP) and diabetes mellitus. Adjusted multivariable regression models revealed significant changes of five metabolites over mid-term follow-up: C2, C14:1, C16, and C18:1 decreased significantly (each p < 0.05); short-chain C5 acylcarnitine plasma levels increased significantly (p < 0.05).

Conclusion: This study demonstrates that successful LAAC affects the metabolism of acylcarnitines at mid-term follow-up.

Clinical trial registration: ClinicalTrials.gov Identifier: NCT02985463.

Keywords: acylcarnitines; atrial fibrillation; left atrial appendage; left atrial appendage closure; metabolomics.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Hierarchical cluster analysis giving an overview of differences in metabolites between T1 and T2.
Figure 2
Figure 2
Changes of acylcarnitines before and after left atrial appendage closure over mid-term follow-up. (Left) Mean logarithmic changes of carnitine and acylcarnitine plasma levels for each analyzed metabolite; (right) percentage change.
Figure 3
Figure 3
Metabolomic pathway of acylcarnitine utilization and influence of the left atrial appendage closure over the mid-term follow-up. ** indicate statistical significance after regression analysis (p < 0.05), * indicates a statistical trend (p < 0.1); AC = acylcarnitine, CoA = co-enzyme A, TCA = tricarboxylic acid.

References

    1. Kirchhof P., Benussi S., Kotecha D., Ahlsson A., Atar D., Casadei B., Hindricks G. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur. Heart J. 2016;37:2893–2962. doi: 10.1093/eurheartj/ehw210.
    1. January C.T., Wann L.S., Alpert J.S., Calkins H., Cigarroa J.E., Cleveland J.C., Jr., Sacco R.L. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol. 2014;64:e1–e76. doi: 10.1016/j.jacc.2014.03.022.
    1. Reddy V.Y., Sievert H., Halperin J., Doshi S.K., Buchbinder M., Neuzil P., Gordon N. Percutaneous left atrial appendage closure vs warfarin for atrial fibrillation: A randomized clinical trial. JAMA. 2014;312:1988–1998. doi: 10.1001/jama.2014.15192.
    1. Patti G., Pengo V., Marcucci R., Cirillo P., Renda G., Santilli F., Parato V.M. The left atrial appendage: From embryology to prevention of thromboembolism. Eur. Heart J. 2017;38:877–887. doi: 10.1093/eurheartj/ehw159.
    1. Majunke N., Sandri M., Adams V., Daehnert I., Mangner N., Schuler G., Moebius-Winkler S. Atrial and Brain Natriuretic Peptide Secretion After Percutaneous Closure of the Left Atrial Appendage With the Watchman Device. J. Invasive Cardiol. 2015;27:448–452.
    1. Fastner C., Behnes M., Sartorius B., Yildiz M., Mashayekhi K., El-Battrawy I., Akin I. Left atrial appendage morphology, echocardiographic characterization, procedural data and in-hospital outcome of patients receiving left atrial appendage occlusion device implantation: A prospective observational study. BMC Cardiovasc. Disord. 2016;16:25. doi: 10.1186/s12872-016-0200-z.
    1. Behnes M., Sartorius B., Wenke A., Lang S., Hoffmann U., Fastner C., Borggrefe M., Roth T., Triebel J., Bertsch T., Akin I. Percutaneous closure of left atrial appendage affects mid-term release of MR-proANP. Sci. Rep. 2017;7:9028. doi: 10.1038/s41598-017-08999-4.
    1. Lewis G.D., Asnani A., Gerszten R.E. Application of metabolomics to cardiovascular biomarker and pathway discovery. J. Am. Coll. Cardiol. 2008;52:117–123. doi: 10.1016/j.jacc.2008.03.043.
    1. Ussher J.R., Elmariah S., Gerszten R.E., Dyck J.R. The Emerging Role of Metabolomics in the Diagnosis and Prognosis of Cardiovascular Disease. J. Am. Coll. Cardiol. 2016;68:2850–2870. doi: 10.1016/j.jacc.2016.09.972.
    1. Lewis G.D., Wei R., Liu E., Yang E., Shi X., Martinovic M., Shaham O. Metabolite profiling of blood from individuals undergoing planned myocardial infarction reveals early markers of myocardial injury. J. Clin. Investig. 2008;118:3503–3512. doi: 10.1172/JCI35111.
    1. Nemutlu E., Zhang S., Xu Y.Z., Terzic A., Zhong L., Dzeja P.D., Cha Y.M. Cardiac resynchronization therapy induces adaptive metabolic transitions in the metabolomic profile of heart failure. J. Card. Fail. 2015;21:460–469. doi: 10.1016/j.cardfail.2015.04.005.
    1. Sattler K., Behnes M., Barth C., Wenke A., Sartorius B., El-Battrawy I., Mashayekhi K., Kuschyk J., Hoffmann U., Papavasiliu T., et al. Occlusion of left atrial appendage affects metabolomic profile: Focus on glycolysis, tricarboxylic acid and urea metabolism. Metabolomics. 2017;13:127. doi: 10.1007/s11306-017-1255-2.
    1. McCoin C.S., Knotts T.A., Adams S.H. Acylcarnitines—Old actors auditioning for new roles in metabolic physiology. Nat. Rev. Endocrinol. 2015;11:617–625. doi: 10.1038/nrendo.2015.129.
    1. Rizza S., Copetti M., Rossi C., Cianfarani M.A., Zucchelli M., Luzi A., Pellegrini F. Metabolomics signature improves the prediction of cardiovascular events in elderly subjects. Atherosclerosis. 2014;232:260–264. doi: 10.1016/j.atherosclerosis.2013.10.029.
    1. Ahmad T., Kelly J.P., McGarrah R.W., Hellkamp A.S., Fiuzat M., Testani J.M., Ilkayeva O.R. Prognostic Implications of Long-Chain Acylcarnitines in Heart Failure and Reversibility With Mechanical Circulatory Support. J. Am. Coll. Cardiol. 2016;67:291–299. doi: 10.1016/j.jacc.2015.10.079.
    1. Hunter W.G., Kelly J.P., McGarrah R.W., 3rd, Khouri M.G., Craig D., Haynes C., Newgard C.B. Metabolomic Profiling Identifies Novel Circulating Biomarkers of Mitochondrial Dysfunction Differentially Elevated in Heart Failure With Preserved Versus Reduced Ejection Fraction: Evidence for Shared Metabolic Impairments in Clinical Heart Failure. J. Am. Heart Assoc. 2016;5:e003190.
    1. Reuter S.E., Evans A.M. Carnitine and acylcarnitines: Pharmacokinetic, pharmacological and clinical aspects. Clin. Pharmacokinet. 2012;51:553–572. doi: 10.1007/BF03261931.
    1. Meincke F., Schmidt-Salzmann M., Kreidel F., Kuck K.H., Bergmann M.W. New technical and anticoagulation aspects for left atrial appendage closure using the WATCHMAN(R) device in patients not taking warfarin. EuroIntervention. 2013;9:463–468. doi: 10.4244/EIJV9I4A75.
    1. Sick P.B., Schuler G., Hauptmann K.E., Grube E., Yakubov S., Turi Z.G., Holmes D.R. Initial worldwide experience with the WATCHMAN left atrial appendage system for stroke prevention in atrial fibrillation. J. Am. Coll. Cardiol. 2007;49:1490–1495. doi: 10.1016/j.jacc.2007.02.035.
    1. Saw J., Fahmy P., DeJong P., Lempereur M., Spencer R., Tsang M., Nicolaou S. Cardiac CT angiography for device surveillance after endovascular left atrial appendage closure. Eur. Heart J. Cardiovasc. Imaging. 2015;16:1198–1206. doi: 10.1093/ehjci/jev067.
    1. Behnes M., Akin I., Sartorius B., Fastner C., El-Battrawy I., Borggrefe M., Henzler T. LAA Occluder View for post-implantation Evaluation (LOVE)—Standardized imaging proposal evaluating implanted left atrial appendage occlusion devices by cardiac computed tomography. BMC Med. Imaging. 2016;16:25. doi: 10.1186/s12880-016-0127-y.
    1. Meier B., Blaauw Y., Khattab A.A., Lewalter T., Sievert H., Tondo C., Roffi M. EHRA/EAPCI expert consensus statement on catheter-based left atrial appendage occlusion. Europace. 2014;16:1397–1416. doi: 10.1093/europace/euu174.
    1. Violante S., Ijlst L., Te Brinke H., de Almeida I.T., Wanders R.J., Ventura F.V., Houten S.M. Carnitine palmitoyltransferase 2 and carnitine/acylcarnitine translocase are involved in the mitochondrial synthesis and export of acylcarnitines. FASEB J. 2013;27:2039–2044. doi: 10.1096/fj.12-216689.
    1. Kalim S., Clish C.B., Wenger J., Elmariah S., Yeh R.W., Deferio J.J., Rhee E.P. A plasma long-chain acylcarnitine predicts cardiovascular mortality in incident dialysis patients. J. Am. Heart Assoc. 2013;2:e000542. doi: 10.1161/JAHA.113.000542.
    1. Aguer C., McCoin C.S., Knotts T.A., Thrush A.B., Ono-Moore K., McPherson R., Harper M.E. Acylcarnitines: Potential implications for skeletal muscle insulin resistance. FASEB J. 2015;29:336–345. doi: 10.1096/fj.14-255901.
    1. Schooneman M.G., Vaz F.M., Houten S.M., Soeters M.R. Acylcarnitines: Reflecting or inflicting insulin resistance? Diabetes. 2013;62:1–8. doi: 10.2337/db12-0466.
    1. Mihalik S.J., Goodpaster B.H., Kelley D.E., Chace D.H., Vockley J., Toledo F.G., DeLany J.P. Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity. Obesity. 2010;18:1695–1700. doi: 10.1038/oby.2009.510.
    1. Boersma L.V., Schmidt B., Betts T.R., Sievert H., Tamburino C., Teiger E., Bergmann M.W. Implant success and safety of left atrial appendage closure with the WATCHMAN device: Peri-procedural outcomes from the EWOLUTION registry. Eur. Heart J. 2016;37:2465–2474. doi: 10.1093/eurheartj/ehv730.
    1. Di Guida R., Engel J., Allwood J.W., Weber R.J., Jones M.R., Sommer U., Dunn W.B. Non-targeted UHPLC-MS metabolomic data processing methods: A comparative investigation of normalisation, missing value imputation, transformation and scaling. Metabolomics. 2016;12:93. doi: 10.1007/s11306-016-1030-9.
    1. Kooperberg C., Stone C.J. Logspine Density Estimation for Censored Data. J. Comput. Graph. Stat. 1992;1:301–328.
    1. Worley B., Powers R. Multivariate Analysis in Metabolomics. Curr. Metab. 2013;1:92–107.
    1. Benjamini Y., Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995;57:289–300.

Source: PubMed

3
Iratkozz fel