Effects of β-alanine supplementation during a 5-week strength training program: a randomized, controlled study

José Luis Maté-Muñoz, Juan H Lougedo, Manuel V Garnacho-Castaño, Pablo Veiga-Herreros, María Del Carmen Lozano-Estevan, Pablo García-Fernández, Fernando de Jesús, Jesús Guodemar-Pérez, Alejandro F San Juan, Raúl Domínguez, José Luis Maté-Muñoz, Juan H Lougedo, Manuel V Garnacho-Castaño, Pablo Veiga-Herreros, María Del Carmen Lozano-Estevan, Pablo García-Fernández, Fernando de Jesús, Jesús Guodemar-Pérez, Alejandro F San Juan, Raúl Domínguez

Abstract

Background: β-Alanine (BA) is a non-essential amino acid that has been shown to enhance exercise performance. The purpose of this investigation was to determine if BA supplementation improved the adaptive response to five weeks of a resistance training program.

Methods: Thirty healthy, strength-trained individuals were randomly assigned to the experimental groups placebo (PLA) or BA. Over 5 weeks of strength training, subjects in BA took 6.4 g/day of BA as 8 × 800 mg doses each at least 1.5 h apart. The training program consisted of 3 sessions per week in which three different leg exercises were conducted as a circuit (back squat, barbell step ups and loaded jumping lunges). The program started with 3 sets of 40 s of work per exercise and rest periods between sets of 120 s in the first week. This training volume was then gradually built up to 5 sets of 20 s work/60 s rest in the fifth week. The work load during the program was set by one of the authors according to the individual's perceived effort the previous week. The variables measured were average velocity, peak velocity, average power, peak power, and load in kg in a back squat, incremental load, one-repetition maximum (1RM) test. In addition, during the rest period, jump ability (jump height and power) was assessed on a force platform. To compare data, a general linear model with repeated measures two-way analysis of variance was used.

Results: Significantly greater training improvements were observed in the BA group versus PLA group (p = 0.045) in the variables average power at 1RM (BA: 42.65%, 95% CI, 432.33, 522.52 VS. PLA: 21.07%, 95% CI, 384.77, 482.19) and average power at maximum power output (p = 0.037) (BA: 20.17%, 95% CI, 637.82, 751.90 VS. PLA; 10.74%, 95% CI, 628.31, 751.53). The pre- to post training average power gain produced at 1RM in BA could be explained by a greater maximal strength gain, or load lifted at 1RM (p = 0.014) (24 kg, 95% CI, 19.45, 28.41 VS. 16 kg, 95% CI, 10.58, 20.25) and in the number of sets executed (p = 0.025) in the incremental load test (BA: 2.79 sets, 95% CI, 2.08, 3.49 VS. PLA: 1.58 sets, 95% CI, 0.82, 2.34).

Conclusions: β-Alanine supplementation was effective at increasing power output when lifting loads equivalent to the individual's maximal strength or when working at maximum power output. The improvement observed at 1RM was explained by a greater load lifted, or strength gain, in response to training in the participants who took this supplement.

Keywords: Average power; Exercise program; Jump height; One-repetition maximum test; β-alanine.

Conflict of interest statement

The study was approved by the Ethical Committee of the University Alfonso X el Sabio on December 15, 2014.The authors declare that they have no competing interests.Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Study design
Fig. 2
Fig. 2
a Average velocity β-alanine VS. placebo-Pretest; b Average velocity β-alanine VS. placebo-Posttest; c Average power β-alanine VS. placebo-Pretest; d Average power β-alanine VS. placebo-Posttest
Fig. 3
Fig. 3
a Jump height β-alanine VS. placebo-Pretest; b Jump height β-alanine VS. placebo-Posttest; c Average power β-alanine VS. placebo-Pretest; d Average power β-alanine VS. placebo-Posttest

References

    1. Matthews MM, Traut TW. Regulation of N-carbamoyl-beta-alanine amidohydrolase, the terminal enzyme in pyrimidine catabolism, by ligand induced change in polymerization. J Biol Chem. 1987;262(15):7232–7237.
    1. Artioli GG, Gualano B, Smith A, Stout J, Lancha AH. Jr. role of beta-alanine supplementation on muscle carnosine and exercise performance. Med Sci Sports Exerc. 2010;42(6):1162–1173.
    1. Australian Institute of Sport. ABCD Classification System. 2017. . Accessed on 11 April 2017.
    1. Sale C, Saunders B, Harris RC. Effect of beta-alanine supplementation on muscle carnosine concentrations and exercise performance. Amino Acids. 2010;39(2):321–333. doi: 10.1007/s00726-009-0443-4.
    1. Blancquaert L, Everaer I, Missinne M, Baguet A, Stegen S, Volkaert A, et al. Effects of histidine and β-alanine supplementation on human muscle carnosine storage. Med Sci Sports Exerc. 2017;49:602–609. doi: 10.1249/MSS.0000000000001213.
    1. Sterlingwerff T, Decombaz J, Harris RC, Boesch C. Optimizing human in vivo dosing and delivery of β-alanine supplements for muscle carnosine synthesis. Amino Acids. 2012;43:57–65. doi: 10.1007/s00726-012-1245-7.
    1. Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, et al. Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids. 2007;32:225–233. doi: 10.1007/s00726-006-0364-4.
    1. Baguet A, Reyngoudt H, Pottier A, Everaert I, Callens S, Achten E, et al. Carnosine loading and washout in human skeletal muscles. J Appl Physio. 2009;106:837–842. doi: 10.1152/japplphysiol.91357.2008.
    1. Abe H. Role of histidine-related compounds as intracellular proton buffering constituents in vertebrate muscle. Biochemistry. 2000;65(7):757–765.
    1. Harris RC, Tallon MJ, Dunnett M, Boobis L, Coakley J, Kim HJ, et al. The absorption of orally supplied beta-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids. 2006;30:279–289. doi: 10.1007/s00726-006-0299-9.
    1. Dutka TL, Lamb GD. Effect of carnosine on excitation-contraction coupling in mechanically-skinned rat skeletal muscle. J Muscle Res Cell Motill. 2004;25:203–213. doi: 10.1023/B:JURE.0000038265.37022.c5.
    1. Rubtsov AM. Molecular mechanisms of regulation of the activity of sarcoplasmic reticulum ca-release channels (ryanodine receptors), muscle fatigue, and Severin’s phenomenon. Biochemistry. 2001;66(10):1132–1143.
    1. Dutka TL, Lamboley CR, McKenna MJ, Murphy RM, Lamb GD. Effects of carnosine on contractile apparatus Ca2+ sensitivity and sarcoplasmic reticulum Ca2+ release in human skeletal fiber. J Appl Physiol. 2012;112:728–736. doi: 10.1152/japplphysiol.01331.2011.
    1. Begum G, Cunliffe A, Leveritt M. Physiological role of carnosine in contracting muscle. Int J Sport Nutr Exerc Metab. 2005;15:493–514. doi: 10.1123/ijsnem.15.5.493.
    1. Van Thienen R, Van Proeyen K, Van Eynde B, Lefere T, Hespel P. Beta-alanine improves sprint performance in endurance cycling. Med Sci Sports Exerc. 2009;41:898–903. doi: 10.1249/MSS.0b013e31818db708.
    1. De Salles V, Roschel H, de Jesus F, Sale C, Harris RC, Solis MY, et al. The ergogenic effect of beta-alanine combined with sodium bicarbonate on high-intensity swimming performance. Appl Physiol Nutr Metab. 2013;38:525–532. doi: 10.1139/apnm-2012-0286.
    1. Tobias G, Benatti FB, de Salles V, Roschel H, Gualano B, Sale C. Additive effects of beta-alanine and sodium bicarbonate on upper-body intermittent performance. Amino Acids. 2013;45:309–317. doi: 10.1007/s00726-013-1495-z.
    1. Chamari K, Padulo J. ‘Aerobic’ and ‘anaerobic’ terms used in exercise physiology: a critical terminology reflection. Sports Med Open. 2015;1:9. doi: 10.1186/s40798-015-0012-1.
    1. Hoffman JR, Ratamess NA, Kang J, Mangine G, Faigenbaum A, Stout J. Effect of creatine and A-alanine supplementation on performance and endocrine responses in strength/power athletes. Int J Sport Nutr Exerc Metab. 2006;16:430–446. doi: 10.1123/ijsnem.16.4.430.
    1. Outlaw JJ, Smith-Ryan AE, Buckley AL, Urbina SL, Hayward S, Wingfiel HL, et al. Effects of b-alanine on body composition and performance measures in collegiate women. J Strength Cond Res. 2016;30:2627–2637. doi: 10.1519/JSC.0000000000000665.
    1. Baker D, Nance S, Moore M. The load that maximizes the average mechanical power output during explosive bench press throws in highly trained athletes. J Strength Cond Res. 2001;15(1):20–24.
    1. Cronin JB, Sleivert G. Challenges in understanding the influence of maximal power training on improving athletic performance. Sports Med. 2005;35:213–234. doi: 10.2165/00007256-200535030-00003.
    1. Del Coso J, Salinero JJ, González-Millán C, Abián-Vicén J, Pérez-González B. Dose response effects of a caffeine-containing energy drink on muscle performance: a repeated measures design. J Int Soc Sports Nutr. 2012;9:21. doi: 10.1186/1550-2783-9-21.
    1. Pallarés JG, Fernandez-Elías VE. Neuromuscular responses to incremental caffeine doses: performance and side effects. Med Sci Sports Exerc. 2013;45:2184–2192. doi: 10.1249/MSS.0b013e31829a6672.
    1. Rodacki AL, Fowler NE, Bennett SJ. Multi-segment coordination: fatigue effects. Med Sci Sports Exerc. 2001;33:1157–1167. doi: 10.1097/00005768-200107000-00013.
    1. Bobbert MF, Van Soest AJ. Why do people jump the way they do? Exerc Sport Sci Rev. 2001;29:95–102. doi: 10.1097/00003677-200107000-00002.
    1. Smilios I. Effects of varying levels of muscular fatigue on vertical jump performance. J Strength Cond Res. 1998;12:204–208.
    1. Rodacki AL, Fowler NE, Bennett SJ. Vertical jump coordination: fatigue effects. Med Sci Sports Exerc. 2002;34:105–116. doi: 10.1097/00005768-200201000-00017.
    1. Gorostiaga EM, Asiain X, Izquierdo M, Postigo A, Aguado R, Alonso JM, et al. Vertical jump performance and blood ammonia and lactate levels during typical training sessions in elite 400-m runners. J Strength Cond Res. 2010;24:1138–1149. doi: 10.1519/JSC.0b013e3181cf769f.
    1. Sánchez-Medina L, González-Badillo JJ. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med Sci Sports Exerc. 2011;43:1725–1734. doi: 10.1249/MSS.0b013e318213f880.
    1. Garnacho-Castaño MV, Domínguez R, Maté-Muñoz JL. Understanding the meaning of the lactate threshold in resistance exercises. Int J Sports Med. 2015;36:371–377. doi: 10.1055/s-0034-1398495.
    1. Garnacho-Castaño MV, Domínguez R, Ruiz-Solano P, Maté-Muñoz JL. Acute physiological and mechanical responses during resistance exercise executed at the lactate threshold workload. J Strength Cond Res. 2015;29:2867–2873. doi: 10.1519/JSC.0000000000000956.
    1. Maté-Muñoz JL, Lougedo JH, Barba M, García-Fernández P, Garnacho-Castaño MV, Domínguez R. Muscular fatigue in response to different modalities of CrossFit sessions. PLoS One. 2017;12(7):e0181855. doi: 10.1371/journal.pone.0181855.
    1. Lozano Estevan MC, Martínez RC. Cápsulas gelatinosas rígidas. In: Lozano MC, Córdoba D, Córdoba M, editors. Manual de Tecnología Farmacéutica. Elsevier: Barcelona; 2012. pp. 343–353.
    1. Kern B, Robinson T. Effects of beta-alanine supplementation on performance and body composition in collegiate wrestlers and football players. J Int Soc Sports Nutr. 2009;6(Suppl 1):2. doi: 10.1186/1550-2783-6-S1-P2.
    1. Carpentier A, Olbrechts N, Vieillevoye SR, Poortmans J. β-Alanine supplementation slightly enhances repeated plyometric performance after high-intensity training in humans. Amino Acids. 2015;47:1479–1483. doi: 10.1007/s00726-015-1981-6.
    1. Borg G. Subjective effort and physical abilities. Scand J Rehabil Med Suppl. 1978;6:105–113.
    1. Maté-Muñoz JL, Domínguez R, Lougedo JH, Garnacho-Castaño MV. The lactate and ventilatory thresholds in resistance training. Clin Physiol Funct Imaging. 2017;37:518–524. doi: 10.1111/cpf.12327.
    1. Maté-Muñoz JL, Isidori E, Garnacho-Castaño MV. Efectos a corto plazo en variables cardiorrespiratorias de 2 programas de entrenamiento de fuerza prescribiendo intensidad de ejercicio con la RPE. Cultura, Ciencia, Deporte. 2015;10:41–53.
    1. Garnacho-Castaño MV, López-Lastra S, Maté-Muñoz JL. Reliability and validity assessment of a linear position transducer. J Sports Sci Med. 2015;14:128–136.
    1. Lake JP, Lauder MA, Smith NA. Barbell kinematics should not be used to estimate power output applied to the barbell and-body system center of mass during lower-body resistance exercise. J Strength Cond Res. 2012;26:1302–1307. doi: 10.1519/JSC.0b013e31822e7b48.
    1. McBride JM, Haines TL, Kirby TJ. Effect of loading on peak power of the bar, body, and system during power cleans, squats, and jump squats. J Sports Sci. 2011;29:1215–1221. doi: 10.1080/02640414.2011.587444.
    1. Baechle TR, Eaerle RW, Wathen D. Resistance training, chapter 18. In: Baechle TR, Earle RW, editors. Essential of strength training and conditioning (NSCA) Champaign IL: Human Kinetics; 2000. pp. 395–325.
    1. Field A. Discovering statistics using IBM SPSS statistics. 4. London: Sage; 2013. pp. 473–474.
    1. González-Badillo JJ, Sánchez-Medina L. Movement velocity as a measure of loading intensity in resistance training. Int J Sports Med. 2010;31:347–352. doi: 10.1055/s-0030-1248333.
    1. Domínguez R, Hernández-Lougedo J, Maté-Muñoz JL, Garnacho-Castaño MV. Effects of ß-alanine supplementation on athletic performance. Nutr Hosp. 2015;31:155–169.
    1. Tomlin DL, Wenger HA. The relationship between aerobic fitness and recovery from high intensity intermittent exercise. Sports Med. 2001;31:1–11. doi: 10.2165/00007256-200131010-00001.
    1. Maté-Muñoz JL, Domínguez R, Barba M, Monroy AJ, Ruiz-Solano P, Garnacho-Castaño MV. Cardiporrespiratory and metabolic responses to loaded half squat corresponding to the lactate threshold. J Sport Sci Med. 2015;14:648–656.
    1. Domínguez R, Garnacho-Castaño MV, Maté-Muñoz JL. Metodología de determinación de la transición aeróbica-anaeróbica en la evaluación funcional. Archivos de Medicina del Deporte. 2015;32:387–392.
    1. Cornish RS, Bolam KA, Skiner TL. Effect of caffeine on exercise capacity and function in prostate Cancer survivors. Med Sci Sports Exerc. 2015;47:468–475. doi: 10.1249/MSS.0000000000000429.
    1. Medbo JI, Tabata I. Anaerobic energy release in working muscle during 30 s to 3 min of exhausting bicycling. J Applied Physiol. 1993;75:1654–1660. doi: 10.1152/jappl.1993.75.4.1654.
    1. McNaughton L, Siegler J, Midgley A. Ergogenic effects of sodium bicarbonate. Curr Sports Med Rep. 2008;7:230–236. doi: 10.1249/JSR.0b013e31817ef530.
    1. Carr BM, Webster MJ, Boyd JC, Hudson GM, Scheett TP. Sodium bicarbonate supplementation improves hypertrophy-type resistance exercise performance. Eur J Appli Physiol. 2013;113:743–752. doi: 10.1007/s00421-012-2484-8.
    1. Duncan MJ, Weldon A, Price MJ. The effect of sodium bicarbonate ingestion on back squat and bench press exercise to failure. J Strength Cond Res. 2014;28:1358–1366. doi: 10.1519/JSC.0000000000000277.

Source: PubMed

3
Iratkozz fel