Beta-Alanine Supplementation Improved 10-km Running Time Trial in Physically Active Adults

Jeferson O Santana, Marcelo C de Freitas, Diana M Dos Santos, Fabrício E Rossi, Fabio S Lira, José C Rosa-Neto, Erico C Caperuto, Jeferson O Santana, Marcelo C de Freitas, Diana M Dos Santos, Fabrício E Rossi, Fabio S Lira, José C Rosa-Neto, Erico C Caperuto

Abstract

The purpose of this study was to investigate the effects of β-alanine supplementation on a 10 km running time trial and lactate concentration in physically active adults. Sixteen healthy subjects were divided randomly into two groups: β-alanine (n = 8) and placebo group (n = 8). The experimental group ingested 5 g/day of β-alanine plus 1 g of resistant starch, and control group ingested 6 g of resistant starch, both for 23 days. Time to complete a 10-km running time trial and lactate concentration following the test were assessed at baseline and post 23 days. The running training program was performed three times per week on non-consecutive days (day 1: running 7 km; day 2: six sprints of 500 m at maximum speed with 2 min of recovery; day 3: running 12 km). The time to complete a 10-km running time trial decreased significantly only for the β-alanine group (Pre = 3441 ± 326.7, Post = 3209 ± 270.5 s, p < 0.05). When analyzing the delta (Time post minus Time at baseline value) there was a statistically significant difference between the β-alanine vs placebo group (-168.8 ± 156.6 vs. -53.60 ± 78.81 s, p = 0.007), respectively. In addition, the β-alanine group presented lower blood lactate concentration after the 10-km test (β-alanine: Pre = 8.45 ± 1.94 vs. Post = 6.95 ± 2.44 mmol/L; Placebo: Pre = 8.7 ± 3.0 vs. Post = 10.8 ± 2.5 mmol/L, p = 0.03). In conclusion, β-alanine supplementation improved the 10-km running time trial and reduced lactate concentration in physically active adults.

Keywords: endurance training; performance; running exercise; sport nutrition; supplementation.

Figures

FIGURE 1
FIGURE 1
Experimental design.
FIGURE 2
FIGURE 2
Comparison between placebo and beta-alanine group according to 10-km running performance. 1-A = Time to complete the 10-km at baseline and final (seconds); 1-B (Delta, time post-final minus time at the baseline value). #Bonferroni’s test with p < 0.05 compared to baseline.
FIGURE 3
FIGURE 3
Comparison between placebo and beta-alanine group according to lactate concentration after 10 km running. 3-A = Lactate concentrations after 10-km at baseline and final (mmol/L); 3-B = Delta lactate concentrations after 10-km (post-final minus baseline value, mmol/L). ∗significant difference between group.

References

    1. Bex T., Chung W., Baguet A., Stegen S., Stautemas J., Achten E., et al. (2014). Muscle carnosine loading by beta-alanine supplementation is more pronounced in trained vs. untrained muscles. J. Appl. Physiol. 116 204–209. 10.1152/japplphysiol.01033.2013
    1. Calabrese V., Colombrita C., Guagliano E., Sapienza M., Ravagna A., Cardile V., et al. (2005). Protective effect of carnosine during nitrosative stress in astroglial cell cultures. Neurochem. Res. 30 797–807. 10.1007/s11064-005-6874-8
    1. Culbertson J. Y., Kreider R. B., Greenwood M., Cooke M. (2010). Effects of beta-alanine on muscle carnosine and exercise performance: a review of the current literature. Nutrient 2 75–98. 10.3390/nu2010075
    1. Davies C. T., Thompson M. W. (1986). Physiological responses to prolonged exercise in ultramarathon athletes. J. Appl. Physiol. 61 611–617. 10.1152/jappl.1986.61.2.611
    1. Derave W., Ozdemir M. S., Harris R. C., Pottier A., Reyngoudt H., Koppo K., et al. (2007). Beta-Alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. J. Appl. Physiol. 103 1736–1743. 10.1152/japplphysiol.00397.2007
    1. Ducker K. J., Dawson B., Wallman K. E. (2013). Effect of beta-alanine supplementation on 800-m running performance. Int. J. Sport Nutr. Exerc. Metab. 23 554–561. 10.1123/ijsnem.23.6.554
    1. Duhamel T. A., Perco J. G., Green H. J. (2006). Manipulation of dietary carbohydrates after prolonged effort modifies muscle sarcoplasmic reticulum responses in exercising males. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291 R1100–R1110. 10.1152/ajpregu.00858.2005
    1. Dutka T. L., Lamb G. D. (2004). Effect of carnosine on excitation-contraction coupling in mechanically-skinned rat skeletal muscle. J. Muscle Res. Cell Motil. 25 203–213. 10.1023/B:JURE.0000038265.37022.c5
    1. Dutka T. L., Lamboley C. R., McKenna M. J., Murphy R. M., Lamb G. D. (2012). Effects of carnosine on contractile apparatus Ca(2)(+) sensitivity and sarcoplasmic reticulum Ca(2)(+) release in human skeletal muscle fibers. J. Appl. Physiol. 112 728–736. 10.1152/japplphysiol.01331.2011
    1. Fohrenbach R., Mader A., Hollmann W. (1987). Determination of endurance capacity and prediction of exercise intensities for training and competition in marathon runners. Int. J. Sports Med. 8 11–18. 10.1055/s-2008-1025633
    1. Ghiasvand R., Askari G., Malekzadeh J., Hajishafiee M., Daneshvar P., Akbari F., et al. (2012). Effects of six weeks of beta-alanine administration on VO(2) max, time to exhaustion and lactate concentrations in physical education students. Int. J. Prev. Med. 3 559–563.
    1. Giandolini M., Vernillo G., Samozino P., Horvais N., Edwards W. B., Morin J. B., et al. (2016). Fatigue associated with prolonged graded running. Eur. J. Appl. Physiol. 116 1859–1873. 10.1007/s00421-016-3437-4
    1. Glenn J. M., Gray M., Stewart R., Moyen N. E., Kavouras S. A., DiBrezzo R., et al. (2015). Incremental effects of 28 days of beta-alanine supplementation on high-intensity cycling performance and blood lactate in masters female cyclists. Amino Acids 47 2593–2600. 10.1007/s00726-015-2050-x
    1. Gomez-Cabrera M. C., Martinez A., Santangelo G., Pallardo F. V., Sastre J., Vina J. (2006). Oxidative stress in marathon runners: interest of antioxidant supplementation. Br. J. Nutr. 96(Suppl. 1), S31–S33. 10.1079/BJN20061696
    1. Harris R. C., Tallon M. J., Dunnett M., Boobis L., Coakley J., Kim H. J., et al. (2006). The absorption of orally supplied beta-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids 30 279–289. 10.1007/s00726-006-0299-9
    1. Hipkiss A. R. (2010). Aging, proteotoxicity, mitochondria, glycation, NAD and carnosine: possible inter-relationships and resolution of the oxygen paradox. Front. Aging Neurosci. 2:10. 10.3389/fnagi.2010.00010
    1. Hobson R. M., Saunders B., Ball G., Harris R. C., Sale C. (2012). Effects of beta-alanine supplementation on exercise performance: a meta-analysis. Amino Acids 43 25–37. 10.1007/s00726-011-1200-z
    1. Hoffman J. R., Landau G., Stout J. R., Hoffman M. W., Shavit N., Rosen P., et al. (2015). Beta-Alanine ingestion increases muscle carnosine content and combat specific performance in soldiers. Amino Acids 47 627–636. 10.1007/s00726-014-1896-7
    1. Homsher E., Kim B., Bobkova A., Tobacman L. S. (1996). Calcium regulation of thin filament movement in an in vitro motility assay. Biophys. J. 70 1881–1892. 10.1016/S0006-3495(96)79753-9
    1. Jordan T., Lukaszuk J., Misic M., Umoren J. (2010). Effect of beta-alanine supplementation on the onset of blood lactate accumulation (OBLA) during treadmill running: Pre/post 2 treatment experimental design. J. Int. Soc. Sports Nutr. 7:20. 10.1186/1550-2783-7-20
    1. Kohen R., Yamamoto Y., Cundy K. C., Ames B. N. (1988). Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc. Natl. Acad. Sci. U.S.A. 85 3175–3179. 10.1073/pnas.85.9.3175
    1. Leppik J. A., Aughey R. J., Medved I., Fairweather I., Carey M. F., McKenna M. J. (2004). Prolonged exercise to fatigue in humans impairs skeletal muscle Na+-K+-ATPase activity, sarcoplasmic reticulum Ca2+ release, and Ca2+ uptake. J. Appl. Physiol. 97 1414–1423. 10.1152/japplphysiol.00964.2003
    1. Linari M., Brunello E., Reconditi M., Fusi L., Caremani M., Narayanan T., et al. (2015). Force generation by skeletal muscle is controlled by mechanosensing in myosin filaments. Nature 528 276–279. 10.1038/nature15727
    1. Mrakic-Sposta S., Gussoni M., Moretti S., Pratali L., Giardini G., Tacchini P., et al. (2015). Effects of mountain ultra-marathon running on ros production and oxidative damage by micro-invasive analytic techniques. PLoS One 10:e0141780. 10.1371/journal.pone.0141780
    1. Osnes J. B., Hermansen L. (1972). Acid-base balance after maximal exercise of short duration. J. Appl. Physiol. 32 59–63. 10.1152/jappl.1972.32.1.59
    1. Sale C., Saunders B., Harris R. C. (2010). Effect of beta-alanine supplementation on muscle carnosine concentrations and exercise performance. Amino Acids 39 321–333. 10.1007/s00726-009-0443-4
    1. Saunders B., Elliott-Sale K., Artioli G. G., Swinton P. A., Dolan E., Roschel H., et al. (2017). Beta-alanine supplementation to improve exercise capacity and performance: a systematic review and meta-analysis. Br. J. Sports Med. 51 658–669. 10.1136/bjsports-2016-096396
    1. Sjodin B., Jacobs I. (1981). Onset of blood lactate accumulation and marathon running performance. Int. J. Sports Med. 2 23–26. 10.1055/s-2008-1034579
    1. Smith A. E., Stout J. R., Kendall K. L., Fukuda D. H., Cramer J. T. (2012). Exercise-induced oxidative stress: the effects of beta-alanine supplementation in women. Amino Acids 43 77–90. 10.1007/s00726-011-1158-x
    1. Smith A. E., Walter A. A., Graef J. L., Kendall K. L., Moon J. R., Lockwood C. M., et al. (2009). Effects of beta-alanine supplementation and high-intensity interval training on endurance performance and body composition in men; a double-blind trial. J. Int. Soc. Sports Nutr. 6:5. 10.1186/1550-2783-6-5
    1. Stout J. R., Cramer J. T., Zoeller R. F., Torok D., Costa P., Hoffman J. R., et al. (2007). Effects of beta-alanine supplementation on the onset of neuromuscular fatigue and ventilatory threshold in women. Amino Acids 32 381–386. 10.1007/s00726-006-0474-z
    1. Tanaka K. (1990). Lactate-related factors as a critical determinant of endurance. Ann. Physiol. Anthropol. 9 191–202. 10.2114/ahs1983.9.191
    1. Tiedje K. E., Stevens K., Barnes S., Weaver D. F. (2010). Beta-alanine as a small molecule neurotransmitter. Neurochem. Int. 57 177–188. 10.1016/j.neuint.2010.06.001
    1. Trexler E. T., Smith-Ryan A. E., Stout J. R., Hoffman J. R., Wilborn C. D., Sale C., et al. (2015). International society of sports nutrition position stand: Beta-Alanine. J. Int. Soc. Sports Nutr. 12:30. 10.1186/s12970-015-0090-y

Source: PubMed

3
Iratkozz fel