Music in Research and Rehabilitation of Disorders of Consciousness: Psychological and Neurophysiological Foundations

Boris Kotchoubey, Yuri G Pavlov, Boris Kleber, Boris Kotchoubey, Yuri G Pavlov, Boris Kleber

Abstract

According to a prevailing view, the visual system works by dissecting stimuli into primitives, whereas the auditory system processes simple and complex stimuli with their corresponding features in parallel. This makes musical stimulation particularly suitable for patients with disorders of consciousness (DoC), because the processing pathways related to complex stimulus features can be preserved even when those related to simple features are no longer available. An additional factor speaking in favor of musical stimulation in DoC is the low efficiency of visual stimulation due to prevalent maladies of vision or gaze fixation in DoC patients. Hearing disorders, in contrast, are much less frequent in DoC, which allows us to use auditory stimulation at various levels of complexity. The current paper overviews empirical data concerning the four main domains of brain functioning in DoC patients that musical stimulation can address: perception (e.g., pitch, timbre, and harmony), cognition (e.g., musical syntax and meaning), emotions, and motor functions. Music can approach basic levels of patients' self-consciousness, which may even exist when all higher-level cognitions are lost, whereas music induced emotions and rhythmic stimulation can affect the dopaminergic reward-system and activity in the motor system respectively, thus serving as a starting point for rehabilitation.

Keywords: DoC; consciousness; music; neurophysiology; psychology; rehabilitation.

References

    1. Abrams D. A., Nicol T., Zecker S., Kraus N. (2011). A possible role for a paralemniscal auditory pathway in the coding of slow temporal information. Hear. Res. 272, 125–134. 10.1016/j.heares.2010.10.009
    1. Aftanas L. I., Golocheikine S. A. (2001). Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: high-resolution EEG investigation of meditation. Neurosci. Lett. 310, 57–60. 10.1016/S0304-3940(01)02094-8
    1. Andrews K., Murphy L., Munday R., Littlewood C. (1996). Misdiagnosis of the vegetative state: retrospective study in a rehabilitation unit. BMJ 313, 13–16. 10.1136/bmj.313.7048.13
    1. Angelucci F., Fiore M., Ricci E., Padua L., Sabino A., Tonali P. A. (2007). Investigating the neurobiology of music: brain-derived neurotrophic factor modulation in the hippocampus of young adult mice. Behav. Pharmacol. 18, 491–496. 10.1097/FBP.0b013e3282d28f50
    1. Angulo-Perkins A., Concha L. (2014). “Music perception: information flow within the human auditory cortices,” in Neurobiology of Interval Timing, eds Merchant H., de Lafuente V. (New York: Springer Science+Business Media; ), 293–303.
    1. Bales J. W., Wagner A. K., Kline A. E., Dixon C. E. (2009). Persistent cognitive dysfunction after traumatic brain injury: a dopamine hypothesis. Neurosci. Biobehav. Rev. 33, 981–1003. 10.1016/j.neubiorev.2009.03.011
    1. Baumgartner T., Esslen M., Jäncke L. (2006). From emotion perception to emotion experience: emotions evoked by pictures and classical music. Int. J. Psychophysiol. 60, 34–43. 10.1016/j.ijpsycho.2005.04.007
    1. Bekinschtein T. A., Shalom D. E., Forcato C., Herrera M., Coleman M. R., Manes F. F., et al. (2009). Classical conditioning in the vegetative and minimally conscious state. Nat. Neurosci. 12, 1343–1349. 10.1038/nn.2391
    1. Belin P., Zatorre R. J., Lafaille P., Ahad P., Pike B. (2000). Voice-selective areas in human auditory cortex. Nature 403, 309–312. 10.1038/35002078
    1. Bengtsson S. L., Ullen F. (2005). Dissociation between melodic and rhythmic processing during piano performance from musical scores. Neuroimage 30, 272–284. 10.1016/j.neuroimage.2005.09.019
    1. Berridge K. C., Kringelbach M. L. (2013). Neuroscience of affect: brain mechanisms of pleasure and displeasure. Curr. Opin. Neurobiol. 23, 294–303. 10.1016/j.conb.2013.01.017
    1. Besson M., Faïta F. (1995). An event-related potential (ERP) study of musical expectancy: comparison of musicians with nonmusicians. J. Exp. Psychol. Hum. Percept. Perform. 21, 1278–1296. 10.1037/0096-1523.21.6.1278
    1. Blood A. J., Zatorre R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc. Natl. Acad. Sci. U.S.A. 98, 11818–11823. 10.1073/pnas.191355898
    1. Brattico E., Tervaniemi M., Näätänen R., Peretz I. (2006). Musical scale properties are automatically processed in the human auditory cortex. Brain Res. 1117, 162–174. 10.1016/j.brainres.2006.08.023
    1. Bruno M. A., Vanhaudenhuyse A., Thibaut A., Moonen G., Laureys S. (2011). From unresponsive wakefulness to minimally conscious PLUS and functional locked-in syndromes: recent advances in our understanding of disorders of consciousness. J. Neurol. 258, 1373–1384. 10.1007/s00415-011-6114-x
    1. Buchsbaum B. R., Hickok G., Humphries C. (2001). Role of left posterior superior temporal gyrus in phonological processing for speech perception and production. Cogn. Sci. 25, 663–678. 10.1207/s15516709cog2505_2
    1. Bush G., Luu P., Posner M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn. Sci. 4, 215–222. 10.1016/S1364-6613(00)01483-2
    1. Castro M., Tillmann B., Luaute J., Corneyllie A., Dailler F., Andre-Obadia N., et al. (2015). Boosting cognition with music in patients with disorders of consciousness. Neurorehabil. Neural Repair 29, 734–742. 10.1177/1545968314565464
    1. Cavanagh J. F., Frank M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends Cogn. Sci. 18, 414–421. 10.1016/j.tics.2014.04.012
    1. Champoux F., Shiller D. M., Zatorre R. J. (2011). Feel what you say: an auditory effect on somatosensory perception. PLoS ONE 6:e22829. 10.1371/journal.pone.0022829
    1. Chang E. F., Rieger J. W., Johnson K., Berger M. S., Barbaro N. M., Knight R. T. (2010). Categorical speech representation in human superior temporal gyrus. Nat. Neurosci. 13, 1428–1432. 10.1038/nn.2641
    1. Chen J. L., Penhune V. B., Zatorre R. J. (2008a). Listening to musical rhythms recruits motor regions of the brain. Cereb. Cortex 18, 2844–2854. 10.1093/cercor/bhn042
    1. Chen J. L., Penhune V. B., Zatorre R. J. (2008b). Moving on time: brain network for auditory-motor synchronization is modulated by rhythm complexity and musical training. J. Cogn. Neurosci. 20, 226–239. 10.1162/jocn.2008.20018
    1. Chen J. L., Zatorre R. J., Penhune V. B. (2006). Interactions between auditory and dorsal premotor cortex during synchronization to musical rhythms. Neuroimage 32, 1771–1781. 10.1016/j.neuroimage.2006.04.207
    1. Cools R., D’Esposito M. (2011). Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol. Psychiatry 69, e113–e125. 10.1016/j.biopsych.2011.03.028
    1. Daltrozzo J., Conway C. M., Smith G. N. (2013). Rehabilitating language disorders by improving sequential processing: a review. J. Macro Trends Health Med. 1, 41–57.
    1. Daltrozzo J., Schön D. (2009a). Conceptual processing in music as revealed by N400 effects on words and musical targets. J. Cogn. Neurosci. 21, 1882–1892. 10.1162/jocn.2009.21113
    1. Daltrozzo J., Schön D. (2009b). Is conceptual processing in music automatic? An electrophysiological approach. Brain Res. 1270, 88–94. 10.1016/j.brainres.2009.03.019
    1. Daltrozzo J., Wioland N., Mutschler V., Kotchoubey B. (2007). Predicting coma and other low responsive patients outcome using event-related brain potentials: a meta-analysis. Clin. Neurophysiol. 118, 606–614. 10.1016/j.clinph.2006.11.019
    1. Darwin C. J. (2008). Listening to speech in the presence of other sounds. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 1011–1021. 10.1098/rstb.2007.2156
    1. de Tommaso M., Navarro J., Lanzillotti C., Ricci K., Buonocunto F., Livrea P., et al. (2015). Cortical responses to salient nociceptive and not nociceptive stimuli in vegetative and minimal conscious state. Front. Hum. Neurosci. 9:17. 10.3389/fnhum.2015.00017
    1. Doppelmayr M., Klimesch W., Schwaiger J., Stadler W., Rohm D. (2000). The time locked theta response reflects interindividual differences in human memory performance. Neurosci. Lett. 278, 141–144. 10.1016/S0304-3940(99)00925-8
    1. El Haj M., Postal V., Allain P. (2012). Music enhances autobiographical memory in mild Alzheimer’s disease. Educ. Gerontol. 38, 30–41. 10.1080/03601277.2010.515897
    1. Erlbeck H., Kübler A., Kotchoubey B., Veser S. (2014). Task instructions modulate the attentional mode affecting the auditory MMN and the semantic N400. Front. Hum. Neurosci. 8:654. 10.3389/fnhum.2014.00654
    1. Eschrich S., Munte T. F., Altenmuller E. O. (2008). Unforgettable film music: the role of emotion in episodic long-term memory for music. BMC Neurosci. 9:48. 10.1186/1471-2202-9-48
    1. Fancourt D., Ockelford A., Belai A. (2014). The psychoneuroimmunological effects of music: a systematic review and a new model. Brain Behav. Immun. 36, 15–26. 10.1016/j.bbi.2013.10.014
    1. Fellerhoff B., Laumbacher B., Wank R. (2012). Responsiveness of a patient in a persistent vegetative state after a coma to weekly injections of autologous activated immune cells: a case report. J. Med. Case Rep. 6, 6. 10.1186/1752-1947-6-6
    1. Fisk J. E., Sharp C. A. (2004). Age-related impairment in executive functioning: updating, inhibition, shifting, and access. J. Clin. Exp. Neuropsychol. 26, 874–890. 10.1080/13803390490510680
    1. Formisano E., Kim D. S., Di Salle F., van de Moortele P. F., Ugurbil K., Goebel R. (2003). Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron 40, 859–869. 10.1016/S0896-6273(03)00669-X
    1. Formisano R., Vinicola V., Penta F., Matteis M., Brunelli S., Weckel J. W. (2001). Active music therapy in the rehabilitation of severe brain injured patients during coma recovery. Ann. Ist. Super. Sanita 37, 627–630.
    1. Foster N. A., Valentine E. R. (2001). The effect of auditory stimulation on autobiographical recall in dementia. Exp. Aging Res. 27, 215–228. 10.1080/036107301300208664
    1. Franceschini R., Tenconi G. L., Zoppoli F., Barreca T. (2001). Endocrine abnormalities and outcome of ischaemic stroke. Biomed. Pharmacother. 55, 458–465. 10.1016/S0753-3322(01)00086-5
    1. Francois C., Schön D. (2014). Neural sensitivity to statistical regularities as a fundamental biological process that underlies auditory learning: the role of musical practice. Hear. Res. 308, 122–128. 10.1016/j.heares.2013.08.018
    1. Galton C. J., Gomez-Anson B., Antoun N., Scheltens P., Patterson K., Graves M., et al. (2001). Temporal lobe rating scale: application to Alzheimer’s disease and frontotemporal dementia. J. Neurol. Neurosurg. Psychiatry 70, 165–173. 10.1136/jnnp.70.2.165
    1. García J. M. M., Iodice R., Carro J., Sánchez J. A., Palmero F., Mateos A. M. (2012). Improvement of autobiographic memory recovery by means of sad music in Alzheimer’s disease type dementia. Aging Clin. Exp. Res. 24, 227–232. 10.3275/7874
    1. Giacino J. T., Whyte J., Bagiella E., Kalmar K., Childs N., Khademi A., et al. (2012). Placebo-controlled trial of amantadine for severe traumatic brain injury. N. Engl. J. Med. 366, 819–826. 10.1056/NEJMoa1102609
    1. Gick B., Derrick D. (2009). Aero-tactile integration in speech perception. Nature 462, 502–504. 10.1038/nature08572
    1. Goerlich K. S., Witteman J., Aleman A., Martens S. (2011). Hearing feelings: affective categorization of music and speech in alexithymia, an ERP study. PLoS ONE 6:e19501. 10.1371/journal.pone.0019501
    1. Grahn J. A., Brett M. (2007). Rhythm and beat perception in motor areas of the brain. J. Cogn. Neurosci. 19, 893–906. 10.1162/jocn.2007.19.5.893
    1. Grewe O., Nagel F., Kopiez R., Altenmuller E. (2007a). Listening to music as a re-creative process: physiological, psychological, and psychoacoustical correlates of chills and strong emotions. Music Percept. 24, 297–314. 10.1525/mp.2007.24.3.297
    1. Grewe O., Nagel F., Kopiez R., Altenmüller E. (2007b). Emotions over time: synchronicity and development of subjective, physiological, and facial affective reactions to music. Emotion 7, 774–788. 10.1037/1528-3542.7.4.774
    1. Griffiths T. D. (2001). The neural processing of complex sounds. Ann. N. Y. Acad. Sci. 930, 133–142. 10.1111/j.1749-6632.2001.tb05729.x
    1. Gruendler T. O., Ullsperger M., Huster R. J. (2011). Event-related potential correlates of performance-monitoring in a lateralized time-estimation task. PLoS ONE 6:e25591. 10.1371/journal.pone.0025591
    1. Haig A. J., Ruess J. M. (1990). Recovery from vegetative state of six months’ duration associated with Sinemet (levodopa/carbidopa). Arch. Phys. Med. Rehabil. 71, 1081–1083.
    1. Hayashi N., Moriya T., Kinoshita K., Utagawa A., Sakurai A. (2004). “Persistent vegetation means unconsciousness? how to manage vegetation and memory disturbances following severe brain damage,” in Hypothermia for Acute Brain Damage, eds Hayashi N., Bullock M. R., Dietrich D., Maekawa T., Tamura A. (Japan: Springer; ), 327–342.
    1. Hebb D. O. (1949). The Organization of Behavior: A Neuropsychological Theory. New York: Wiley.
    1. Herholz S. C., Zatorre R. J. (2012). Musical training as a framework for brain plasticity: behavior, function, and structure. Neuron 76, 486–502. 10.1016/j.neuron.2012.10.011
    1. Irish M., Cunningham C. J., Walsh J. B., Coakley D., Lawlor B. A., Robertson I. H., et al. (2006). Investigating the enhancing effect of music on autobiographical memory in mild Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 22, 108–120. 10.1159/000093487
    1. Ito T., Ostry D. J. (2010). Somatosensory contribution to motor learning due to facial skin deformation. J. Neurophysiol. 104, 1230–1238. 10.1152/jn.00199.2010
    1. Ito T., Ostry D. J. (2012). Speech sounds alter facial skin sensation. J. Neurophysiol. 107, 442–447. 10.1152/jn.00029.2011
    1. Ito T., Tiede M., Ostry D. J. (2009). Somatosensory function in speech perception. Proc. Natl. Acad. Sci. U.S.A. 106, 1245–1248. 10.1073/pnas.0810063106
    1. Janata P. (1995). ERP measures assay the degree of expectancy violation of harmonic contexts in music. J. Cogn. Neurosci. 7, 153–164. 10.1162/jocn.1995.7.2.153
    1. Janata P. (2014). Neural basis of music perception. Handb. Clin. Neurol. 129, 187–205. 10.1016/B978-0-444-62630-1.00011-1
    1. Kleber B., Veit R., Birbaumer N., Gruzelier J., Lotze M. (2010). The brain of opera singers: experience-dependent changes in functional activation. Cereb. Cortex 20, 1144–1152. 10.1093/cercor/bhp177
    1. Kleber B., Zeitouni A. G., Friberg A., Zatorre R. J. (2013). Experience-dependent modulation of feedback integration during singing: role of the right anterior insula. J. Neurosci. 33, 6070–6080. 10.1523/JNEUROSCI.4418-12.2013
    1. Klimesch W. (1997). EEG-alpha rhythms and memory processes. Int. J. Psychophysiol. 26, 319–340. 10.1016/S0167-8760(97)00773-3
    1. Klimesch W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Brain Res. Rev. 29, 169–195. 10.1016/S0165-0173(98)00056-3
    1. Koelsch S. (2006). Significance of Broca’s area and ventral premotor cortex for music-syntactic processing. Cortex 42, 518–520. 10.1016/S0010-9452(08)70390-3
    1. Koelsch S. (2012). Brain and Music. Hoboken, NJ: Wiley-Blackwell.
    1. Koelsch S. (2014). Brain correlates of music-evoked emotions. Nat. Rev. Neurosci. 15, 170–180. 10.1038/nrn3666
    1. Koelsch S., Fritz T., Schlaug G. (2008). Amygdala activity can be modulated by unexpected chord functions during music listening. Neuroreport 19, 1815–1819. 10.1097/WNR.0b013e32831a8722
    1. Koelsch S., Fritz T., V Cramon D. Y., Muller K., Friederici A. D. (2006). Investigating emotion with music: an fMRI study. Hum. Brain Mapp. 27, 239–250. 10.1002/hbm.20180
    1. Koelsch S., Gunter T., Friederici A. D., Schröger E. (2000). Brain indices of music processing: “nonmusicians” are musical. J. Cogn. Neurosci. 12, 520–541. 10.1162/089892900562183
    1. Koelsch S., Gunter T. C., Schröger E., Tervaniemi M., Sammler D., Friederici A. D. (2001). Differentiating ERAN and MMN: an ERP study. Neuroreport 12, 1385–1389. 10.1097/00001756-200105250-00019
    1. Koelsch S., Jentschke S. (2010). Differences in electric brain responses to melodies and chords. J. Cogn. Neurosci. 22, 2251–2262. 10.1162/jocn.2009.21338
    1. Koelsch S., Kasper E., Sammler D., Schulze K., Gunter T., Friederici A. D. (2004). Music, language and meaning: brain signatures of semantic processing. Nat. Neurosci. 7, 302–307. 10.1038/nn1197
    1. Koelsch S., Siebel W. A. (2005). Towards a neural basis of music perception. Trends Cogn. Sci. 9, 578–584. 10.1016/j.tics.2005.10.001
    1. Kotchoubey B. (2005). Apallic syndrome is not apallic: is vegetative state vegetative? Neuropsychol. Rehabil. 15, 333–356. 10.1080/09602010443000416
    1. Kotchoubey B. (2006). Event-related potentials, cognition, and behavior: a biological approach. Neurosci. Biobehav. Rev. 30, 42–65. 10.1016/j.neubiorev.2005.04.002
    1. Kotchoubey B. (2015). “Event-related potentials in disorders of consciousness,” in Clinical Neurophysiology in Disorders of Consciousness, eds Rossetti A. O., Laureys S. (Vienna: Springer; ), 107–123.
    1. Kotchoubey B., Kaiser J., Bostanov V., Lutzenberger W., Birbaumer N. (2009). Recognition of affective prosody in brain-damaged patients and healthy controls: a neurophysiological study using EEG and whole-head MEG. Cogn. Affect. Behav. Neurosci. 9, 153–167. 10.3758/CABN.9.2.153
    1. Kotchoubey B., Lang S., Baales R., Herb E., Maurer P., Mezger G., et al. (2001). Brain potentials in human patients with extremely severe diffuse brain damage. Neurosci. Lett. 301, 37–40. 10.1016/S0304-3940(01)01600-7
    1. Kotchoubey B., Lang S., Herb E., Maurer P., Schmalohr D., Bostanov V., et al. (2003). Stimulus complexity enhances auditory discrimination in patients with extremely severe brain injuries. Neurosci. Lett. 352, 129–132. 10.1016/j.neulet.2003.08.045
    1. Kotchoubey B., Lang S., Mezger G., Schmalohr D., Schneck M., Semmler A., et al. (2005). Information processing in severe disorders of consciousness: vegetative state and minimally conscious state. Clin. Neurophysiol. 116, 2441–2453. 10.1016/j.clinph.2005.03.028
    1. Kotchoubey B., Veser S., Real R., Herbert C., Lang S., Kübler A. (2013). Towards a more precise neurophysiological assessment of cognitive functions in patients with disorders of consciousness. Restor. Neurol. Neurosci. 31, 473–485. 10.3233/RNN-120307
    1. Kotchoubey B., Yu T., Mueller F., Vogel D., Veser S., Lang S. (2014). True or false? Activations of language-related areas in patients with disorders of consciousness. Curr. Pharm. Des. 20, 4239–4247.
    1. Kriegstein K. V., Giraud A. L. (2004). Distinct functional substrates along the right superior temporal sulcus for the processing of voices. Neuroimage 22, 948–955. 10.1016/j.neuroimage.2004.02.020
    1. Krimchansky B. Z., Keren O., Sazbon L., Groswasser Z. (2004). Differential time and related appearance of signs, indicating improvement in the state of consciousness in vegetative state traumatic brain injury (VS-TBI) patients after initiation of dopamine treatment. Brain Inj. 18, 1099–1105. 10.1080/02699050310001646206
    1. Kübler A., Kotchoubey B. (2007). Brain-computer interfaces in the continuum of consciousness. Curr. Opin. Neurol. 20, 643–649. 10.1097/WCO.0b013e3282f14782
    1. Kuck H., Grossbach M., Bangert M., Altenmuller E. (2003). Brain processing of meter and rhythm in music. Electrophysiological evidence of a common network. Ann. N. Y. Acad. Sci. 999, 244–253. 10.1196/annals.1284.035
    1. Lametti D. R., Nasir S. M., Ostry D. J. (2012). Sensory preference in speech production revealed by simultaneous alteration of auditory and somatosensory feedback. J. Neurosci. 32, 9351–9358. 10.1523/JNEUROSCI.0404-12.2012
    1. Lau E. F., Phillips C., Poeppel D. (2008). A cortical network for semantics: (de)constructing the N400. Nat. Rev. Neurosci. 9, 920–933. 10.1038/nrn2532
    1. Leardi S., Pietroletti R., Angeloni G., Necozione S., Ranalletta G., Del Gusto B. (2007). Randomized clinical trial examining the effect of music therapy in stress response to day surgery. Br. J. Surg. 94, 943–947. 10.1002/bjs.5914
    1. Lee B. K., Glass T. A., McAtee M. J., Wand G. S., Bandeen-Roche K., Bolla K. I., et al. (2007). Associations of salivary cortisol with cognitive function in the Baltimore memory study. Arch. Gen. Psychiatry 64, 810–818. 10.1001/archpsyc.64.7.810
    1. Lee Y. C., Lei C. Y., Shih Y. S., Zhang W. C., Wang H. M., Tseng C. L., et al. (2011). HRV response of vegetative state patient with music therapy. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 1701–1704. 10.1109/IEMBS.2011.6090488
    1. Li L., Kang X. G., Qi S., Xu X. X., Xiong L. Z., Zhao G., et al. (2015). Brain response to thermal stimulation predicts outcome of patients with chronic disorders of consciousness. Clin. Neurophysiol. 126, 1539–1547. 10.1016/j.clinph.2014.10.148
    1. Liegeois-Chauvel C., Peretz I., Babai M., Laguitton V., Chauvel P. (1998). Contribution of different cortical areas in the temporal lobes to music processing. Brain 121(Pt 10), 1853–1867. 10.1093/brain/121.10.1853
    1. Linnemann A., Ditzen B., Strahler J., Doerr J. M., Nater U. M. (2015). Music listening as a means of stress reduction in daily life. Psychoneuroendocrinology 60, 82–90. 10.1016/j.psyneuen.2015.06.008
    1. Lombardi F., Taricco M., De Tanti A., Telaro E., Liberati A. (2002). Sensory stimulation of brain-injured individuals in coma or vegetative state: results of a Cochrane systematic review. Clin. Rehabil. 16, 464–472. 10.1191/0269215502cr519oa
    1. Lupien S. J., Gaudreau S., Tchiteya B. M., Maheu F., Sharma S., Nair N. P., et al. (1997). Stress-induced declarative memory impairment in healthy elderly subjects: relationship to cortisol reactivity. J. Clin. Endocrinol. Metab. 82, 2070–2075. 10.1210/jcem.82.7.4075
    1. Magee W. L. (2005). Music therapy with patients in low awareness states: approaches to assessment and treatment in multidisciplinary care. Neuropsychol. Rehabil. 15, 522–536. 10.1080/09602010443000461
    1. Magee W. L., O’Kelly J. (2015). Music therapy with disorders of consciousness: current evidence and emergent evidence-based practice. Ann. N. Y. Acad. Sci. 1337, 256–262. 10.1111/nyas.12633
    1. Marchina S., Zhu L. L., Norton A., Zipse L., Wan C. Y., Schlaug G. (2011). Impairment of speech production predicted by lesion load of the left arcuate fasciculus. Stroke 42, 2251–2256. 10.1161/STROKEAHA.110.606103
    1. Marina D., Klose M., Nordenbo A., Liebach A., Feldt-Rasmussen U. (2015). Early endocrine alterations reflect prolonged stress and relate to 1-year functional outcome in patients with severe brain injury. Eur. J. Endocrinol. 172, 813–822. 10.1530/EJE-14-1152
    1. Marzban M., Shahbazi A., Tondar M., Soleimani M., Bakhshayesh M., Moshkforoush A., et al. (2011). Effect of Mozart music on hippocampal content of BDNF in postnatal rats. Basic Clin. Neurosci. 2, 21–26.
    1. Matsuda W., Komatsu Y., Yanaka K., Matsumura A. (2005). Levodopa treatment for patients in persistent vegetative or minimally conscious states. Neuropsychol. Rehabil. 15, 414–427. 10.1080/09602010443000588
    1. Matsuda W., Matsumura A., Komatsu Y., Yanaka K., Nose T. (2003). Awakenings from persistent vegetative state: report of three cases with parkinsonism and brain stem lesions on MRI. J. Neurol. Neurosurg. Psychiatry 74, 1571–1573. 10.1136/jnnp.74.11.1571
    1. McEwen B. S., Sapolsky R. M. (1995). Stress and cognitive function. Curr. Opin. Neurobiol. 5, 205–216. 10.1016/0959-4388(95)80028-X
    1. Mehta M. A., Riedel W. J. (2006). Dopaminergic enhancement of cognitive function. Curr. Pharm. Des. 12, 2487–2500. 10.2174/138161206777698891
    1. Menke P. (2006). [Basal stimulation of persons in a vegetative state–a case report: back into a more aware life]. Pflege Z. 59, 164–165.
    1. Menon V., Levitin D. J. (2005). The rewards of music listening: response and physiological connectivity of the mesolimbic system. Neuroimage 28, 175–184. 10.1016/j.neuroimage.2005.05.053
    1. Meythaler J. M., Brunner R. C., Johnson A., Novack T. A. (2002). Amantadine to improve neurorecovery in traumatic brain injury-associated diffuse axonal injury: a pilot double-blind randomized trial. J. Head Trauma Rehabil. 17, 300–313. 10.1097/00001199-200208000-00004
    1. Miyake A., Friedman N. P., Emerson M. J., Witzki A. H., Howerter A., Wager T. D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: a latent variable analysis. Cogn. Psychol. 41, 49–100. 10.1006/cogp.1999.0734
    1. Mizoguchi K., Yuzurihara M., Nagata M., Ishige A., Sasaki H., Tabira T. (2002). Dopamine-receptor stimulation in the prefrontal cortex ameliorates stress-induced rotarod impairment. Pharmacol. Biochem. Behav. 72, 723–728. 10.1016/S0091-3057(02)00747-5
    1. Molinari M., Leggio M. G., De Martin M., Cerasa A., Thaut M. (2003). Neurobiology of rhythmic motor entrainment. Ann. N. Y. Acad. Sci. 999, 313–321. 10.1196/annals.1284.042
    1. Munno I., Damiani S., Scardapane R., Lacedra G., Megna M., Patimo C., et al. (1998). Evaluation of hypothalamic-pituitary-adrenocortical hormones and inflammatory cytokines in patients with persistent vegetative state. Immunopharmacol. Immunotoxicol. 20, 519–529. 10.3109/08923979809031513
    1. Musacchia G., Large E. W., Schroeder C. E. (2014). Thalamocortical mechanisms for integrating musical tone and rhythm. Hear. Res. 308, 50–59. 10.1016/j.heares.2013.09.017
    1. Näätänen R. (1995). The mismatch negativity: a powerful tool for cognitive neuroscience. Ear Hear. 16, 6–18. 10.1097/00003446-199502000-00002
    1. Nelken I., Bizley J., Shamma S. A., Wang X. (2014). Auditory cortical processing in real-world listening: the auditory system going real. J. Neurosci. 34, 15135–15138. 10.1523/JNEUROSCI.2989-14.2014
    1. Nieoullon A. (2002). Dopamine and the regulation of cognition and attention. Prog. Neurobiol. 67, 53–83. 10.1016/S0301-0082(02)00011-4
    1. O’Kelly J., James L., Palaniappan R., Taborin J., Fachner J., Magee W. L. (2013). Neurophysiological and behavioral responses to music therapy in vegetative and minimally conscious states. Front. Hum. Neurosci. 7:884. 10.3389/fnhum.2013.00884
    1. O’Kelly J., Magee W. L. (2013). The complementary role of music therapy in the detection of awareness in disorders of consciousness: an audit of concurrent SMART and MATADOC assessments. Neuropsychol. Rehabil. 23, 287–298. 10.1080/09602011.2012.753395
    1. Ono K., Altmann C. F., Matsuhashi M., Mima T., Fukuyama H. (2015). Neural correlates of perceptual grouping effects in the processing of sound omission by musicians and nonmusicians. Hear. Res. 319, 25–31. 10.1016/j.heares.2014.10.013
    1. Oppl B., Michitsch G., Misof B., Kudlacek S., Donis J., Klaushofer K., et al. (2014). Low bone mineral density and fragility fractures in permanent vegetative state patients. J. Bone Miner. Res. 29, 1096–1100. 10.1002/jbmr.2122
    1. Osterhout L. (1995). Event-related brain potentials elicited by failure to agree. J. Mem. Lang. 34, 739–773. 10.1006/jmla.1995.1033
    1. Pandya D. N. (1995). Anatomy of the auditory cortex. Rev. Neurol. 151, 486–494.
    1. Pantev C., Herholz S. C. (2011). Plasticity of the human auditory cortex related to musical training. Neurosci. Biobehav. Rev. 35, 2140–2154. 10.1016/j.neubiorev.2011.06.010
    1. Pantev C., Ross B., Fujioka T., Trainor L. J., Schulte M., Schulz M. (2003). Music and learning-induced cortical plasticity. Ann. N. Y. Acad. Sci. 999, 438–450. 10.1196/annals.1284.054
    1. Patel A. D. (2003). Language, music, syntax and the brain. Nat. Neurosci. 6, 674–681. 10.1038/nn1082
    1. Patel A. D. (2008). Music, Language, and the Brain. Oxford: Oxford University Press.
    1. Patel A. D. (2011). Why would musical training benefit the neural encoding of speech? The OPERA hypothesis. Front. Psychol. 2:142. 10.3389/fpsyg.2011.00142
    1. Patel A. D., Gibson E., Ratner J., Besson M., Holcomb P. J. (1998). Processing syntactic relations in language and music: an event-related potential study. J. Cogn. Neurosci. 10, 717–733. 10.1162/089892998563121
    1. Paulraj M. P., Subramaniam K., Yaccob S. B., Adom A. H., Hema C. R. (2015). Auditory evoked potential response and hearing loss: a review. Open Biomed. Eng. J. 9, 17–24. 10.2174/1874120701509010017
    1. Pereira C. S., Teixeira J., Figueiredo P., Xavier J., Castro S. L., Brattico E. (2011). Music and emotions in the brain: familiarity matters. PLoS ONE 6:e27241. 10.1371/journal.pone.0027241
    1. Peretz I., Gaudreau D., Bonnel A. M. (1998). Exposure effects on music preference and recognition. Mem. Cogn. 26, 884–902. 10.3758/BF03201171
    1. Peretz I., Zatorre R. J. (2005). Brain organization for music processing. Annu. Rev. Psychol. 56, 89–114. 10.1146/annurev.psych.56.091103.070225
    1. Pickles J. O. (1988). An Introduction to the Physiology of Hearing. London: Academic Press.
    1. Poulin-Charronnat B., Bigand E., Koelsch S. (2006). Processing of musical syntax tonic versus subdominant: an event-related potential study. J. Cogn. Neurosci. 18, 1545–1554. 10.1162/jocn.2006.18.9.1545
    1. Prasanna K. L., Mittal R. S., Gandhi A. (2015). Neuroendocrine dysfunction in acute phase of moderate-to-severe traumatic brain injury: a prospective study. Brain Inj. 29, 336–342. 10.3109/02699052.2014.955882
    1. Radley J. J., Morrison J. H. (2005). Repeated stress and structural plasticity in the brain. Ageing Res. Rev. 4, 271–287. 10.1016/j.arr.2005.03.004
    1. Raglio A., Guizzetti G. B., Bolognesi M., Antonaci D., Granieri E., Baiardi P., et al. (2014). Active music therapy approach in disorders of consciousness: a controlled observational case series. J. Neurol. 261, 2460–2462. 10.1007/s00415-014-7543-0
    1. Rauschecker J. P. (1997). Processing of complex sounds in the auditory cortex of cat, monkey, and man. Acta Otolaryngol. Suppl. 532, 34–38. 10.3109/00016489709126142
    1. Rauschecker J. P. (1999). Neuroscience—Making brain circuits listen. Science 285, 1686–1687. 10.1126/science.285.5434.1686
    1. Rauschecker J. P., Tian B., Pons T., Mishkin M. (1997). Serial and parallel processing in rhesus monkey auditory cortex. J. Comp. Neurol. 382, 89–103. 10.1002/(sici)1096-9861(19970526)382:1<89::aid-cne6>;2-g
    1. Reybrouck M., Brattico E. (2015). Neuroplasticity beyond sounds: neural adaptations following long-term musical aesthetic experiences. Brain Sci. 5, 69–91. 10.3390/brainsci5010069
    1. Rickard N. S., Toukhsati S. R., Field S. E. (2005). The effect of music on cognitive performance: insight from neurobiological and animal studies. Behav. Cogn. Neurosci. Rev. 4, 235–261. 10.1177/1534582305285869
    1. Rollnik J. D., Altenmüller E. (2014). Music in disorders of consciousness. Front. Neurosci. 8:190. 10.3389/fnins.2014.00190
    1. Romanski L. M., Tian B., Fritz J., Mishkin M., Goldman-Rakic P. S., Rauschecker J. P. (1999). Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nat. Neurosci. 2, 1131–1136. 10.1038/16056
    1. Sadagopan S., Wang X. (2009). Nonlinear spectrotemporal interactions underlying selectivity for complex sounds in auditory cortex. J. Neurosci. 29, 11192–11202. 10.1523/JNEUROSCI.1286-09.2009
    1. Salimpoor V. N., Benovoy M., Larcher K., Dagher A., Zatorre R. J. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat. Neurosci. 14, 257–262. 10.1038/nn.2726
    1. Salimpoor V. N., van den Bosch I., Kovacevic N., McIntosh A. R., Dagher A., Zatorre R. J. (2013). Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science 340, 216–219. 10.1126/science.1231059
    1. Sammler D., Grigutsch M., Fritz T., Koelsch S. (2007). Music and emotion: electrophysiological correlates of the processing of pleasant and unpleasant music. Psychophysiology 44, 293–304. 10.1111/j.1469-8986.2007.00497.x
    1. Särkämö T., Ripolles P., Vepsalainen H., Autti T., Silvennoinen H. M., Salli E., et al. (2014a). Structural changes induced by daily music listening in the recovering brain after middle cerebral artery stroke: a voxel-based morphometry study. Front. Hum. Neurosci. 8:245. 10.3389/fnhum.2014.00245
    1. Särkämö T., Tervaniemi M., Laitinen S., Numminen A., Kurki M., Johnson J. K., et al. (2014b). Cognitive, emotional, and social benefits of regular musical activities in early dementia: randomized controlled study. Gerontologist 54, 634–650. 10.1093/geront/gnt100
    1. Särkämö T., Soto D. (2012). Music listening after stroke: beneficial effects and potential neural mechanisms. Ann. N. Y. Acad. Sci. 1252, 266–281. 10.1111/j.1749-6632.2011.06405.x
    1. Scheich H., Brechmann A., Brosch M., Budinger E., Ohl F. W. (2007). The cognitive auditory cortex: task-specificity of stimulus representations. Hear. Res. 229, 213–224. 10.1016/j.heares.2007.01.025
    1. Schellenberg E. G., Peretz I., Vieillard S. (2008). Liking for happy- and sad-sounding music: effects of exposure. Cogn. Emot. 22, 218–237. 10.1080/02699930701350753
    1. Schlaug G., Norton A., Marchina S., Zipse L., Wan C. Y. (2010). From singing to speaking: facilitating recovery from nonfluent aphasia. Future Neurol. 5, 657–665. 10.2217/fnl.10.44
    1. Schmithorst V. J. (2005). Separate cortical networks involved in music perception: preliminary functional MRI evidence for modularity of music processing. Neuroimage 25, 444–451. 10.1016/j.neuroimage.2004.12.006
    1. Schön D., Gordon R., Campagne A., Magne C., Astesano C., Anton J. L., et al. (2010). Similar cerebral networks in language, music and song perception. Neuroimage 51, 450–461. 10.1016/j.neuroimage.2010.02.023
    1. Schulz M., Ross B., Pantev C. (2003). Evidence for training-induced crossmodal reorganization of cortical functions in trumpet players. Neuroreport 14, 157–161.
    1. Schürmann M., Caetano G., Hlushchuk Y., Jousmaki V., Hari R. (2006). Touch activates human auditory cortex. Neuroimage 30, 1325–1331. 10.1016/j.neuroimage.2005.11.020
    1. Segerstrom S. C., Miller G. E. (2004). Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychol. Bull. 130, 601–630. 10.1037/0033-2909.130.4.601
    1. Seibert P. S., Fee L., Basom J., Zimmerman C. (2000). Music and the brain: the impact of music on an oboist’s fight for recovery. Brain Inj. 14, 295–302. 10.1080/026990500120763
    1. Simonyan K., Horwitz B. (2011). Laryngeal motor cortex and control of speech in humans. Neuroscientist 17, 197–208. 10.1177/1073858410386727
    1. Sojka P., Stålnacke B. M., Björnstig U., Karlsson K. (2006). One-year follow-up of patients with mild traumatic brain injury: occurrence of post-traumatic stress-related symptoms at follow-up and serum levels of cortisol, S-100B and neuron-specific enolase in acute phase. Brain Inj. 20, 613–620. 10.1080/02699050600676982
    1. Soto D., Funes M. J., Guzman-Garcia A., Warbrick T., Rotshtein P., Humphreys G. W. (2009). Pleasant music overcomes the loss of awareness in patients with visual neglect. Proc. Natl. Acad. Sci. U.S.A. 106, 6011–6016. 10.1073/pnas.0811681106
    1. Steinbeis N., Koelsch S. (2008). Shared neural resources between music and language indicate semantic processing of musical tension-resolution patterns. Cereb. Cortex 18, 1169–1178. 10.1093/cercor/bhm149
    1. Steinhoff N., Heine A. M., Vogl J., Weiss K., Aschraf A., Hajek P., et al. (2015). A pilot study into the effects of music therapy on different areas of the brain of individuals with unresponsive wakefulness syndrome. Front. Neurosci. 9:291. 10.3389/fnins.2015.00291
    1. Stewart L., Henson R., Kampe K., Walsh V., Turner R., Frith U. (2003). Brain changes after learning to read and play music. Neuroimage 20, 71–83. 10.1016/S1053-8119(03)00248-9
    1. Sun J., Chen W. (2015). Music therapy for coma patients: preliminary results. Eur. Rev. Med. Pharmacol. Sci. 19, 1209–1218.
    1. Tervaniemi M., Maury S., Näätänen R. (1994). Neural representations of abstract stimulus features in the human brain as reflected by the mismatch negativity. Neuroreport 5, 844–846. 10.1097/00001756-199403000-00027
    1. Tervaniemi M., Rytkonen M., Schröger E., Ilmoniemi R. J., Näätänen R. (2001). Superior formation of cortical memory traces for melodic patterns in musicians. Learn. Mem. 8, 295–300. 10.1101/lm.39501
    1. Tervaniemi M., Schröger E., Saher M., Näätänen R. (2000). Effects of spectral complexity and sound duration on automatic complex-sound pitch processing in humans—a mismatch negativity study. Neurosci. Lett. 290, 66–70. 10.1016/S0304-3940(00)01290-8
    1. Thaut M. H., Stephan K. M., Wunderlich G., Schicks W., Tellmann L., Herzog H., et al. (2009). Distinct cortico-cerebellar activations in rhythmic auditory motor synchronization. Cortex 45, 44–53. 10.1016/j.cortex.2007.09.009
    1. Tzovara A., Simonin A., Oddo M., Rossetti A. O., De Lucia M. (2015). Neural detection of complex sound sequences in the absence of consciousness. Brain 138, 1160–1166. 10.1093/brain/awv041
    1. Ugoya S. O., Akinyemi R. O. (2010). The place of L-dopa/carbidopa in persistent vegetative state. Clin. Neuropharmacol. 33, 279–284. 10.1097/WNF.0b013e3182011070
    1. Vogel H. P., Kroll M., Fritschka E., Quabbe H. J. (1990). Twenty-four-hour profiles of growth hormone, prolactin and cortisol in the chronic vegetative state. Clin. Endocrinol. (Oxf.) 33, 631–643. 10.1111/j.1365-2265.1990.tb03902.x
    1. von Stein A., Sarnthein J. (2000). Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int. J. Psychophysiol. 38, 301–313. 10.1016/S0167-8760(00)00172-0
    1. Wang T. (2015). A hypothesis on the biological origins and social evolution of music and dance. Front. Neurosci. 9:30. 10.3389/fnins.2015.00030
    1. Wang X., Walker K. M. (2012). Neural mechanisms for the abstraction and use of pitch information in auditory cortex. J. Neurosci. 32, 13339–13342. 10.1523/JNEUROSCI.3814-12.2012
    1. Wu C., Stefanescu R. A., Martel D. T., Shore S. E. (2014). Listening to another sense: somatosensory integration in the auditory system. Cell Tissue Res. 361, 233–250. 10.1007/s00441-014-2074-7
    1. Yost W. A. (2007). Perceiving sounds in the real world: an introduction to human complex sound perception. Front. Biosci. 12, 3461–3467. 10.2741/2326
    1. Zatorre R. J. (2015). Musical pleasure and reward: mechanisms and dysfunction. Ann. N. Y. Acad. Sci. 1337, 202–211. 10.1111/nyas.12677
    1. Zatorre R. J., Belin P., Penhune V. B. (2002a). Structure and function of auditory cortex: music and speech. Trends Cogn. Sci. 6, 37–46. 10.1016/S1364-6613(00)01816-7
    1. Zatorre R. J., Bouffard M., Ahad P., Belin P. (2002b). Where is ‘where’ in the human auditory cortex? Nat. Neurosci. 5, 905–909. 10.1038/nn904
    1. Zatorre R. J., Gandour J. T. (2008). Neural specializations for speech and pitch: moving beyond the dichotomies. Philos. Trans. R. Soc. Lond. 363, 1087–1104. 10.1098/rstb.2007.2161

Source: PubMed

3
Iratkozz fel