Lessons from Recent Advances in Ischemic Stroke Management and Targeting Kv2.1 for Neuroprotection

Chung-Yang Yeh, Anthony J Schulien, Bradley J Molyneaux, Elias Aizenman, Chung-Yang Yeh, Anthony J Schulien, Bradley J Molyneaux, Elias Aizenman

Abstract

Achieving neuroprotection in ischemic stroke patients has been a multidecade medical challenge. Numerous clinical trials were discontinued in futility and many were terminated in response to deleterious treatment effects. Recently, however, several positive reports have generated the much-needed excitement surrounding stroke therapy. In this review, we describe the clinical studies that significantly expanded the time window of eligibility for patients to receive mechanical endovascular thrombectomy. We further summarize the results available thus far for nerinetide, a promising neuroprotective agent for stroke treatment. Lastly, we reflect upon aspects of these impactful trials in our own studies targeting the Kv2.1-mediated cell death pathway in neurons for neuroprotection. We argue that recent changes in the clinical landscape should be adapted by preclinical research in order to continue progressing toward the development of efficacious neuroprotective therapies for ischemic stroke.

Keywords: Kv2.1; ischemic stroke; nerinetide; neuroprotection; reperfusion.

Conflict of interest statement

E.A. has been awarded a patent for the use of TAT-C1aB as a neuroprotective agent. The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
A timeline summary of the clinical trials discussed in this review.
Figure 2
Figure 2
Kv2.1-mediated neuronal cell death and two strategies for neuroprotection. (A) In a healthy neuron, Kv2.1 forms somatodendritic clusters with the ER proteins VAPA/B. (B) After exposure to proapoptotic stimuli, a zinc-mediated phosphorylation cascade leads to enhanced Kv2.1–syntaxin interaction, thus increasing channel insertion at Kv2.1 channel clusters, enhancing potassium efflux, and enabling cell death mechanisms. This process can be halted to provide neuroprotection in several ways, including (C) disrupting Kv2.1–syntaxin binding with TAT-C1aB and (D) dispersing Kv2.1 channel cluster with TAT-DP-2 that interferes with Kv2.1-VAPA/B association. MT: metallothionine; ER: endoplasmic reticulum; ROS: reactive oxygen species.

References

    1. Johnson C.O., Nguyen M., Roth G.A., Nichols E., Alam T., Abate D., Abd-Allah F., Abdelalim A., Abraha H.N., Abu-Rmeileh N.M. Global, regional, and national burden of stroke, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:439–458. doi: 10.1016/S1474-4422(19)30034-1.
    1. Benjamin E.J., Blaha M.J., Chiuve S.E., Cushman M., Das S.R., Deo R., Floyd J., Fornage M., Gillespie C., Isasi C. Heart disease and stroke statistics-2017 update: A report from the American Heart Association. Circulation. 2017;135:e146–e603. doi: 10.1161/CIR.0000000000000485.
    1. Savitz S.I., Baron J.-C., Yenari M.A., Sanossian N., Fisher M. Reconsidering Neuroprotection in the Reperfusion Era. Stroke. 2017;48:3413–3419. doi: 10.1161/STROKEAHA.117.017283.
    1. Savitz S.I., Fisher M. Future of neuroprotection for acute stroke: In the aftermath of the SAINT trials. Ann. Neurol. 2007;61:396–402. doi: 10.1002/ana.21127.
    1. Straka M., Albers G.W., Bammer R. Real-time diffusion-perfusion mismatch analysis in acute stroke. J. Magn. Reson. Imaging. 2010;32:1024–1037. doi: 10.1002/jmri.22338.
    1. Hakim A.M. The cerebral ischemic penumbra. Can. J. Neurol. Sci. 1987;14:557–559.
    1. van der Worp H.B., van Gijn J. Acute Ischemic Stroke. N. Engl. J. Med. 2007;357:572–579. doi: 10.1056/NEJMcp072057.
    1. Bråtane B.T., Cui H., Cook D.J., Bouley J., Tymianski M., Fisher M. Neuroprotection by freezing ischemic penumbra evolution without cerebral blood flow augmentation with a postsynaptic density-95 protein inhibitor. Stroke. 2011;42:3265–3270. doi: 10.1161/STROKEAHA.111.618801.
    1. Baron J.-C. Protecting the ischaemic penumbra as an adjunct to thrombectomy for acute stroke. Nat. Rev. Neurol. 2018;14:325–337. doi: 10.1038/s41582-018-0002-2.
    1. Wufuer A., Wubuli A., Mijiti P., Zhou J., Tuerxun S., Cai J., Ma J., Zhang X. Impact of collateral circulation status on favorable outcomes in thrombolysis treatment: A systematic review and meta-analysis. Exp. Ther. Med. 2018;15:707–718. doi: 10.3892/etm.2017.5486.
    1. Iwasawa E., Ichijo M., Ishibashi S., Yokota T. Acute development of collateral circulation and therapeutic prospects in ischemic stroke. Neural Regen. Res. 2016;11:368–371. doi: 10.4103/1673-5374.179033.
    1. Bornstein N.M., Saver J.L., Diener H.C., Gorelick P.B., Shuaib A., Solberg Y., Thackeray L., Savic M., Janelidze T., Zarqua N., et al. An injectable implant to stimulate the sphenopalatine ganglion for treatment of acute ischaemic stroke up to 24 h from onset (ImpACT-24B): An international, randomised, double-blind, sham-controlled, pivotal trial. Lancet Lond. Engl. 2019;394:219–229. doi: 10.1016/S0140-6736(19)31192-4.
    1. Bang O.Y., Chung J.W., Kim S.K., Kim S.J., Lee M.J., Hwang J., Seo W.K., Ha Y.S., Sung S.M., Kim E.G., et al. Therapeutic-induced hypertension in patients with noncardioembolic acute stroke. Neurology. 2019;93:e1955–e1963. doi: 10.1212/WNL.0000000000008520.
    1. Sattler R., Tymianski M. Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol. Neurobiol. 2001;24:107–129. doi: 10.1385/MN:24:1-3:107.
    1. Broughton B.R., Reutens D.C., Sobey C.G. Apoptotic mechanisms after cerebral ischemia. Stroke. 2009;40:e331–e339. doi: 10.1161/STROKEAHA.108.531632.
    1. Nour M., Scalzo F., Liebeskind D.S. Ischemia-reperfusion injury in stroke. Interv. Neurol. 2012;1:185–199. doi: 10.1159/000353125.
    1. Disorders N.I.o.N., Group S.r.-P.S.S. Tissue plasminogen activator for acute ischemic stroke. N. Engl. J. Med. 1995;333:1581–1588.
    1. Powers W.J., Rabinstein A.A., Ackerson T., Adeoye O.M., Bambakidis N.C., Becker K., Biller J., Brown M., Demaerschalk B.M., Hoh B. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2019;50:e344–e418.
    1. Emberson J., Lees K.R., Lyden P., Blackwell L., Albers G., Bluhmki E., Brott T., Cohen G., Davis S., Donnan G. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: A meta-analysis of individual patient data from randomised trials. Lancet. 2014;384:1929–1935. doi: 10.1016/S0140-6736(14)60584-5.
    1. Del Zoppo G.J., Poeck K., Pessin M.S., Wolpert S.M., Furlan A.J., Ferbert A., Alberts M.J., Zivin J.A., Wechsler L., Busse O. Recombinant tissue plasminogen activator in acute thrombotic and embolic stroke. Ann. Neurol. 1992;32:78–86. doi: 10.1002/ana.410320113.
    1. Mori E., Yoneda Y., Tabuchi M., Yoshida T., Ohkawa S., Ohsumi Y., Kitano K., Tsutsumi A., Yamadori A. Intravenous recombinant tissue plasminogen activator in acute carotid artery territory stroke. Neurology. 1992;42:976. doi: 10.1212/WNL.42.5.976.
    1. Menon B.K., Al-Ajlan F.S., Najm M., Puig J., Castellanos M., Dowlatshahi D., Calleja A., Sohn S.-I., Ahn S.H., Poppe A. Association of clinical, imaging, and thrombus characteristics with recanalization of visible intracranial occlusion in patients with acute ischemic stroke. JAMA. 2018;320:1017–1026. doi: 10.1001/jama.2018.12498.
    1. Adeoye O., Hornung R., Khatri P., Kleindorfer D. Recombinant tissue-type plasminogen activator use for ischemic stroke in the United States: A doubling of treatment rates over the course of 5 years. Stroke. 2011;42:1952–1955. doi: 10.1161/STROKEAHA.110.612358.
    1. Munich S.A., Vakharia K., Levy E.I. Overview of mechanical thrombectomy techniques. Neurosurgery. 2019;85:S60–S67. doi: 10.1093/neuros/nyz071.
    1. Saver J.L., Goyal M., Bonafe A., Diener H.-C., Levy E.I., Pereira V.M., Albers G.W., Cognard C., Cohen D.J., Hacke W. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N. Engl. J. Med. 2015;372:2285–2295. doi: 10.1056/NEJMoa1415061.
    1. Campbell B.C., Mitchell P.J., Kleinig T.J., Dewey H.M., Churilov L., Yassi N., Yan B., Dowling R.J., Parsons M.W., Oxley T.J. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N. Engl. J. Med. 2015;372:1009–1018. doi: 10.1056/NEJMoa1414792.
    1. Goyal M., Demchuk A.M., Menon B.K., Eesa M., Rempel J.L., Thornton J., Roy D., Jovin T.G., Willinsky R.A., Sapkota B.L. Randomized assessment of rapid endovascular treatment of ischemic stroke. N. Engl. J. Med. 2015;372:1019–1030. doi: 10.1056/NEJMoa1414905.
    1. Jovin T.G., Chamorro A., Cobo E., de Miquel M.A., Molina C.A., Rovira A., San Román L., Serena J., Abilleira S., Ribó M. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N. Engl. J. Med. 2015;372:2296–2306. doi: 10.1056/NEJMoa1503780.
    1. Berkhemer O.A., Fransen P.S., Beumer D., Van Den Berg L.A., Lingsma H.F., Yoo A.J., Schonewille W.J., Vos J.A., Nederkoorn P.J., Wermer M.J. A randomized trial of intraarterial treatment for acute ischemic stroke. N. Engl. J. Med. 2015;372:11–20. doi: 10.1056/NEJMoa1411587.
    1. Goyal M., Menon B.K., van Zwam W.H., Dippel D.W., Mitchell P.J., Demchuk A.M., Dávalos A., Majoie C.B., van der Lugt A., De Miquel M.A. Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. Lancet. 2016;387:1723–1731. doi: 10.1016/S0140-6736(16)00163-X.
    1. Chia N.H., Leyden J.M., Newbury J., Jannes J., Kleinig T.J. Determining the number of ischemic strokes potentially eligible for endovascular thrombectomy: A population-based study. Stroke. 2016;47:1377–1380. doi: 10.1161/STROKEAHA.116.013165.
    1. McMeekin P., White P., James M.A., Price C.I., Flynn D., Ford G.A. Estimating the number of UK stroke patients eligible for endovascular thrombectomy. Eur. Stroke J. 2017;2:319–326. doi: 10.1177/2396987317733343.
    1. Albers G.W., Marks M.P., Kemp S., Christensen S., Tsai J.P., Ortega-Gutierrez S., McTaggart R.A., Torbey M.T., Kim-Tenser M., Leslie-Mazwi T. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N. Engl. J. Med. 2018;378:708–718. doi: 10.1056/NEJMoa1713973.
    1. Nogueira R.G., Jadhav A.P., Haussen D.C., Bonafe A., Budzik R.F., Bhuva P., Yavagal D.R., Ribo M., Cognard C., Hanel R.A. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N. Engl. J. Med. 2018;378:11–21. doi: 10.1056/NEJMoa1706442.
    1. Jauch E.C., Saver J.L., Adams Jr H.P., Bruno A., Connors J., Demaerschalk B.M., Khatri P., McMullan Jr P.W., Qureshi A.I., Rosenfield K. Guidelines for the early management of patients with acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44:870–947. doi: 10.1161/STR.0b013e318284056a.
    1. Committee E.S.O.E., Committee E.W. Guidelines for management of ischaemic stroke and transient ischaemic attack 2008. Cerebrovasc. Dis. 2008;25:457–507.
    1. Hill K. Australian Clinical Guidelines for Acute Stroke Management 2007: Acute Stroke Guidelines Writing Subgroup on behalf of the National Stroke Foundation Clinical Guidelines for Acute Stroke Management Expert Working Group. Int. J. Stroke. 2008;3:120–129. doi: 10.1111/j.1747-4949.2008.00189.x.
    1. Casaubon L.K., Boulanger J.-M., Blacquiere D., Boucher S., Brown K., Goddard T., Gordon J., Horton M., Lalonde J., LaRivière C. Canadian stroke best practice recommendations: Hyperacute stroke care guidelines, update 2015. Int. J. Stroke. 2015;10:924–940. doi: 10.1111/ijs.12551.
    1. Albers G.W., Goyal M., Jahan R., Bonafe A., Diener H.C., Levy E.I., Pereira V.M., Cognard C., Cohen D.J., Hacke W. Ischemic core and hypoperfusion volumes predict infarct size in SWIFT PRIME. Ann. Neurol. 2016;79:76–89. doi: 10.1002/ana.24543.
    1. Wheeler H.M., Mlynash M., Inoue M., Tipirneni A., Liggins J., Zaharchuk G., Straka M., Kemp S., Bammer R., Lansberg M.G. Early diffusion-weighted imaging and perfusion-weighted imaging lesion volumes forecast final infarct size in DEFUSE 2. Stroke. 2013;44:681–685. doi: 10.1161/STROKEAHA.111.000135.
    1. Lansberg M.G., Christensen S., Kemp S., Mlynash M., Mishra N., Federau C., Tsai J.P., Kim S., Nogueria R.G., Jovin T. Computed tomographic perfusion to predict response to recanalization in ischemic stroke. Ann. Neurol. 2017;81:849–856. doi: 10.1002/ana.24953.
    1. Lansberg M.G., Straka M., Kemp S., Mlynash M., Wechsler L.R., Jovin T.G., Wilder M.J., Lutsep H.L., Czartoski T.J., Bernstein R.A. MRI profile and response to endovascular reperfusion after stroke (DEFUSE 2): A prospective cohort study. Lancet Neurol. 2012;11:860–867. doi: 10.1016/S1474-4422(12)70203-X.
    1. Chen X., Wang K. The fate of medications evaluated for ischemic stroke pharmacotherapy over the period 1995–2015. Acta Pharm. Sin. B. 2016;6:522–530. doi: 10.1016/j.apsb.2016.06.013.
    1. Lyden P., Hemmen T., Grotta J., Rapp K., Ernstrom K., Rzesiewicz T., Parker S., Concha M., Hussain S., Agarwal S. Results of the ICTuS 2 trial (intravascular cooling in the treatment of stroke 2) Stroke. 2016;47:2888–2895. doi: 10.1161/STROKEAHA.116.014200.
    1. Hill M.D., Goyal M., Menon B.K., Nogueira R.G., McTaggart R.A., Demchuk A.M., Poppe A.Y., Buck B.H., Field T.S., Dowlatshahi D. Efficacy and safety of nerinetide for the treatment of acute ischaemic stroke (ESCAPE-NA1): A multicentre, double-blind, randomised controlled trial. Lancet. 2020;395:878–887. doi: 10.1016/S0140-6736(20)30258-0.
    1. Hill M.D., Martin R.H., Mikulis D., Wong J.H., Silver F.L., Milot G., Clark W.M., MacDonald R.L., Kelly M.E., Boulton M. Safety and efficacy of NA-1 in patients with iatrogenic stroke after endovascular aneurysm repair (ENACT): A phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2012;11:942–950. doi: 10.1016/S1474-4422(12)70225-9.
    1. Hankey G.J. Nerinetide before reperfusion in acute ischaemic stroke: Déjà vu or new insights? Lancet Lond. Engl. 2020;395:843–844. doi: 10.1016/S0140-6736(20)30316-0.
    1. Tanaka E., Yamamoto S., Kudo Y., Mihara S., Higashi H. Mechanisms underlying the rapid depolarization produced by deprivation of oxygen and glucose in rat hippocampal CA1 neurons in vitro. J. Neurophysiol. 1997;78:891–902. doi: 10.1152/jn.1997.78.2.891.
    1. Siemkowicz E., Hansen A. Brain extracellular ion composition and EEG activity following 10 minutes ischemia in normo-and hyperglycemic rats. Stroke. 1981;12:236–240. doi: 10.1161/01.STR.12.2.236.
    1. Choi D.W. Excitotoxic cell death. J. Neurobiol. 1992;23:1261–1276. doi: 10.1002/neu.480230915.
    1. Choi D.W., Rothman S.M. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu. Rev. Neurosci. 1990;13:171–182. doi: 10.1146/annurev.ne.13.030190.001131.
    1. Ramdial K., Franco M.C., Estevez A.G. Cellular mechanisms of peroxynitrite-induced neuronal death. Brain Res. Bull. 2017;133:4–11. doi: 10.1016/j.brainresbull.2017.05.008.
    1. Ballarin B., Tymianski M. Discovery and development of NA-1 for the treatment of acute ischemic stroke. Acta Pharmacol. Sin. 2018;39:661–668. doi: 10.1038/aps.2018.5.
    1. Schwarze S.R., Ho A., Vocero-Akbani A., Dowdy S.F. In vivo protein transduction: Delivery of a biologically active protein into the mouse. Science. 1999;285:1569–1572. doi: 10.1126/science.285.5433.1569.
    1. Aarts M., Liu Y., Liu L., Besshoh S., Arundine M., Gurd J.W., Wang Y.-T., Salter M.W., Tymianski M. Treatment of ischemic brain damage by perturbing NMDA receptor-PSD-95 protein interactions. Science. 2002;298:846–850. doi: 10.1126/science.1072873.
    1. Cook D.J., Teves L., Tymianski M. Treatment of stroke with a PSD-95 inhibitor in the gyrencephalic primate brain. Nature. 2012;483:213–217. doi: 10.1038/nature10841.
    1. Cook D.J., Teves L., Tymianski M. A translational paradigm for the preclinical evaluation of the stroke neuroprotectant Tat-NR2B9c in gyrencephalic nonhuman primates. Sci. Transl. Med. 2012;4:ra133–ra154. doi: 10.1126/scitranslmed.3003824.
    1. Docagne F., Parcq J., Lijnen R., Ali C., Vivien D. Understanding the functions of endogenous and exogenous tissue-type plasminogen activator during stroke. Stroke. 2015;46:314–320. doi: 10.1161/STROKEAHA.114.006698.
    1. Shah N.H., Aizenman E. Voltage-gated potassium channels at the crossroads of neuronal function, ischemic tolerance, and neurodegeneration. Transl. Stroke Res. 2014;5:38–58. doi: 10.1007/s12975-013-0297-7.
    1. Wu K., Yang P., Li S., Liu C., Sun F. VEGF attenuated increase of outward delayed-rectifier potassium currents in hippocampal neurons induced by focal ischemia via PI3-K pathway. Neuroscience. 2015;298:94–101. doi: 10.1016/j.neuroscience.2015.04.015.
    1. Yu W., Parakramaweera R., Teng S., Gowda M., Sharad Y., Thakker-Varia S., Alder J., Sesti F. Oxidation of KCNB1 potassium channels causes neurotoxicity and cognitive impairment in a mouse model of traumatic brain injury. J. Neurosci. 2016;36:11084–11096. doi: 10.1523/JNEUROSCI.2273-16.2016.
    1. Redman P.T., Jefferson B.S., Ziegler C.B., Mortensen O.V., Torres G.E., Levitan E.S., Aizenman E. A vital role for voltage-dependent potassium channels in dopamine transporter-mediated 6-hydroxydopamine neurotoxicity. Neuroscience. 2006;143:1–6. doi: 10.1016/j.neuroscience.2006.08.039.
    1. Frazzini V., Guarnieri S., Bomba M., Navarra R., Morabito C., Mariggiò M., Sensi S. Altered Kv2.1 functioning promotes increased excitability in hippocampal neurons of an Alzheimer’s disease mouse model. Cell Death Dis. 2016;7:e2100. doi: 10.1038/cddis.2016.18.
    1. McCord M.C., Aizenman E. The role of intracellular zinc release in aging, oxidative stress, and Alzheimer’s disease. Front. Aging Neurosci. 2014;6:77. doi: 10.3389/fnagi.2014.00077.
    1. Aizenman E., Stout A.K., Hartnett K.A., Dineley K.E., McLaughlin B., Reynolds I.J. Induction of neuronal apoptosis by thiol oxidation: Putative role of intracellular zinc release. J. Neurochem. 2000;75:1878–1888. doi: 10.1046/j.1471-4159.2000.0751878.x.
    1. Redman P.T., Hartnett K.A., Aras M.A., Levitan E.S., Aizenman E. Regulation of apoptotic potassium currents by coordinated zinc-dependent signalling. J. Physiol. 2009;587:4393–4404. doi: 10.1113/jphysiol.2009.176321.
    1. Redman P.T., He K., Hartnett K.A., Jefferson B.S., Hu L., Rosenberg P.A., Levitan E.S., Aizenman E. Apoptotic surge of potassium currents is mediated by p38 phosphorylation of Kv2.1. Proc. Natl. Acad. Sci. USA. 2007;104:3568–3573. doi: 10.1073/pnas.0610159104.
    1. He K., McCord M.C., Hartnett K.A., Aizenman E. Regulation of pro-apoptotic phosphorylation of Kv2.1 K+ channels. PLoS ONE. 2015;10:e0129498. doi: 10.1371/journal.pone.0129498.
    1. Pal S., Takimoto K., Aizenman E., Levitan E.S. Apoptotic surface delivery of K+ channels. Cell Death Differ. 2006;13:661–667. doi: 10.1038/sj.cdd.4401792.
    1. Graham A.J. Toxic effects of tetraethylammonium bromide. Br. Med. J. 1950;2:321. doi: 10.1136/bmj.2.4674.321.
    1. Yeh C.-Y., Ye Z., Moutal A., Gaur S., Henton A.M., Kouvaros S., Saloman J.L., Hartnett-Scott K.A., Tzounopoulos T., Khanna R. Defining the Kv2.1–syntaxin molecular interaction identifies a first-in-class small molecule neuroprotectant. Proc. Natl. Acad. Sci. USA. 2019;116:15696–15705. doi: 10.1073/pnas.1903401116.
    1. McCord M.C., Kullmann P.H., He K., Hartnett K.A., Horn J.P., Lotan I., Aizenman E. Syntaxin-binding domain of Kv2.1 is essential for the expression of apoptotic K+ currents. J. Physiol. 2014;592:3511–3521. doi: 10.1113/jphysiol.2014.276964.
    1. Schulien A.J., Yeh C.-Y., Orange B.N., Pav O.J., Hopkins M.P., Moutal A., Khanna R., Sun D., Justice J.A., Aizenman E. Targeted disruption of Kv2.1-VAPA association provides neuroprotection against ischemic stroke in mice by declustering Kv2.1 channels. Sci. Adv. 2020;6:eaaz8110. doi: 10.1126/sciadv.aaz8110.
    1. Yeh C.-Y., Bulas A.M., Moutal A., Saloman J.L., Hartnett K.A., Anderson C.T., Tzounopoulos T., Sun D., Khanna R., Aizenman E. Targeting a Potassium Channel/Syntaxin Interaction Ameliorates Cell Death in Ischemic Stroke. J. Neurosci. 2017;37:5648–5658. doi: 10.1523/JNEUROSCI.3811-16.2017.
    1. O’Connell K.M., Loftus R., Tamkun M.M. Localization-dependent activity of the Kv2.1 delayed-rectifier K+ channel. Proc. Natl. Acad. Sci. USA. 2010;107:12351–12356. doi: 10.1073/pnas.1003028107.
    1. O’Connell K.M., Rolig A.S., Whitesell J.D., Tamkun M.M. Kv2.1 potassium channels are retained within dynamic cell surface microdomains that are defined by a perimeter fence. J. Neurosci. 2006;26:9609–9618. doi: 10.1523/JNEUROSCI.1825-06.2006.
    1. Tamkun M.M., O’Connell K.M., Rolig A.S. A cytoskeletal-based perimeter fence selectively corrals a sub-population of cell surface Kv2.1 channels. J. Cell Sci. 2007;120:2413–2423. doi: 10.1242/jcs.007351.
    1. Deutsch E., Weigel A.V., Akin E.J., Fox P., Hansen G., Haberkorn C.J., Loftus R., Krapf D., Tamkun M.M. Kv2.1 cell surface clusters are insertion platforms for ion channel delivery to the plasma membrane. Mol. Biol. Cell. 2012;23:2917–2929. doi: 10.1091/mbc.e12-01-0047.
    1. Fox P.D., Haberkorn C.J., Akin E.J., Seel P.J., Krapf D., Tamkun M.M. Induction of stable ER–plasma-membrane junctions by Kv2.1 potassium channels. J. Cell Sci. 2015;128:2096–2105. doi: 10.1242/jcs.166009.
    1. Johnson B., Leek A.N., Solé L., Maverick E.E., Levine T.P., Tamkun M.M. Kv2 potassium channels form endoplasmic reticulum/plasma membrane junctions via interaction with VAPA and VAPB. Proc. Natl. Acad. Sci. USA. 2018;115:E7331–E7340. doi: 10.1073/pnas.1805757115.
    1. Kirmiz M., Vierra N.C., Palacio S., Trimmer J.S. Identification of VAPA and VAPB as Kv2 channel-interacting proteins defining endoplasmic reticulum–plasma membrane junctions in mammalian brain neurons. J. Neurosci. 2018;38:7562–7584. doi: 10.1523/JNEUROSCI.0893-18.2018.
    1. Baver S.B., O’Connell K.M. The C-terminus of neuronal Kv2.1 channels is required for channel localization and targeting but not for NMDA-receptor-mediated regulation of channel function. Neuroscience. 2012;217:56–66. doi: 10.1016/j.neuroscience.2012.04.054.
    1. Justice J.A., Schulien A.J., He K., Hartnett K.A., Aizenman E., Shah N.H. Disruption of KV2. 1 somato-dendritic clusters prevents the apoptogenic increase of potassium currents. Neuroscience. 2017;354:158–167. doi: 10.1016/j.neuroscience.2017.04.034.
    1. Yang P., Zhang Y., Zhang L., Zhang Y., Treurniet K.M., Chen W., Peng Y., Han H., Wang J., Wang S. Endovascular Thrombectomy with or without Intravenous Alteplase in Acute Stroke. N. Engl. J. Med. 2020;382:1981–1993. doi: 10.1056/NEJMoa2001123.
    1. Wu Q.J., Tymianski M. Targeting NMDA receptors in stroke: New hope in neuroprotection. Mol. Brain. 2018;11:15. doi: 10.1186/s13041-018-0357-8.
    1. Saver J.L., Starkman S., Eckstein M., Stratton S.J., Pratt F.D., Hamilton S., Conwit R., Liebeskind D.S., Sung G., Kramer I. Prehospital use of magnesium sulfate as neuroprotection in acute stroke. N. Engl. J. Med. 2015;372:528–536. doi: 10.1056/NEJMoa1408827.
    1. Hong J.M., Choi M.H., Sohn S.-I., Hwang Y.-H., Ahn S.H., Lee Y.-B., Shin D.-I., Chamorro Á., Choi D.W. Safety and Optimal Neuroprotection of neu2000 in acute Ischemic stroke with reCanalization: Study protocol for a randomized, double-blinded, placebo-controlled, phase-II trial. Trials. 2018;19:375. doi: 10.1186/s13063-018-2746-9.
    1. Kim J.S., Lee K.B., Park J.H., Sung S.M., Oh K., Kim E.G., Chang D.i., Hwang Y.H., Lee E.J., Kim W.K. Safety and Efficacy of Otaplimastat in Patients with Acute Ischemic Stroke Requiring tPA (SAFE-TPA): A Multicenter, Randomized, Double-Blind, Placebo-Controlled Phase 2 Study. Ann. Neurol. 2019;87:233–245. doi: 10.1002/ana.25644.
    1. Darsalia V., Klein T., Nyström T., Patrone C. Glucagon-like receptor 1 agonists and DPP-4 inhibitors: Anti-diabetic drugs with anti-stroke potential. Neuropharmacology. 2018;136:280–286. doi: 10.1016/j.neuropharm.2017.08.022.
    1. Darsalia V., Johansen O.E., Lietzau G., Nyström T., Klein T., Patrone C. Dipeptidyl Peptidase-4 Inhibitors for the Potential Treatment of Brain Disorders; A Mini-Review With Special Focus on Linagliptin and Stroke. Front. Neurol. 2019;10:493. doi: 10.3389/fneur.2019.00493.

Source: PubMed

3
Iratkozz fel