In vitro evaluation of antiviral activity of single and combined repurposable drugs against SARS-CoV-2

Andrés Pizzorno, Blandine Padey, Julia Dubois, Thomas Julien, Aurélien Traversier, Victoria Dulière, Pauline Brun, Bruno Lina, Manuel Rosa-Calatrava, Olivier Terrier, Andrés Pizzorno, Blandine Padey, Julia Dubois, Thomas Julien, Aurélien Traversier, Victoria Dulière, Pauline Brun, Bruno Lina, Manuel Rosa-Calatrava, Olivier Terrier

Abstract

In response to the current pandemic caused by the novel SARS-CoV-2, identifying and validating effective therapeutic strategies is more than ever necessary. We evaluated the in vitro antiviral activities of a shortlist of compounds, known for their cellular broad-spectrum activities, together with drugs that are currently under evaluation in clinical trials for COVID-19 patients. We report the antiviral effect of remdesivir, lopinavir, chloroquine, umifenovir, berberine and cyclosporine A in Vero E6 cells model of SARS-CoV-2 infection, with estimated 50% inhibitory concentrations of 0.99, 5.2, 1.38, 3.5, 10.6 and 3 μM, respectively. Virus-directed plus host-directed drug combinations were also investigated. We report a strong antagonism between remdesivir and berberine, in contrast with remdesivir/diltiazem, for which we describe high levels of synergy, with mean Loewe synergy scores of 12 and peak values above 50. Combination of host-directed drugs with direct acting antivirals underscore further validation in more physiological models, yet they open up interesting avenues for the treatment of COVID-19.

Keywords: Antivirals; Berberine; COVID-19; Diltiazem; Drug combination; Remdesivir.

Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved.

Figures

Fig. 1
Fig. 1
Evaluation of antiviral activity of six drug candidates against SARS-CoV-2 in vitro. Vero E6 cells were infected by SARS-CoV-2 at a MOI of 0.01 and treated 1 h post infection (hpi) with serial dilutions of remdesivir, lopinavir, chloroquine, berberine, cyclosporine A and arbidol (umifenovir). Viral production was measured 48 hpi and expressed in relative values compared to the vehicle-treated control. The impact of treatment on cell viability was assessed by MTS assay (CellTiter 96® AQueous One Solution Cell Proliferation Assay, Promega), and expressed in relative values compared to control. Cell viability measurements were performed to ensure that molecular viral quantification was performed within a non-cytotoxic concentration range that could bias the measurement.
Fig. 2
Fig. 2
Evaluation of remdesivir-berberine combined treatment against SARS-CoV-2 in vitro. A. Vero E6 cells were infected by SARS-CoV-2 at a MOI of 0.01 and treated 1 hpi with serial dilutions of remdesivir in the presence of different fixed concentrations of berberine (A, left panel) or, alternatively, serial dilutions of berberine in the presence of different fixed concentrations of remdesivir (A, right panel). Viral production was measured 48 hpi and expressed in relative values compared to the vehicle-treated control. B. Dose-response percent inhibition matrix of single and combined remdesivir-berberine treatments C. Interaction landscape between remdesivir and berberine as calculated using the Loewe additive model. Areas with synergy scores of −10 or lower (green) represent zones of drug antagonism.
Fig. 3
Fig. 3
Synergistic effect of remdesivir-diltiazem combined treatment against SARS-CoV-2 in vitro. A. Vero E6 cells were infected by SARS-CoV-2 at a MOI of 0.01 and treated 1 hpi with serial dilutions of remdesivir in the presence of different fixed concentrations of diltiazem (A, left panel) or, alternatively, serial dilutions of diltiazem in the presence of different fixed concentrations of remdesivir (A, right panel). Viral production was measured 48 hpi and expressed in relative values compared to the vehicle-treated control. B. Dose-response percent inhibition matrix of single and combined remdesivir-diltiazem treatments C. Interaction landscape between remdesivir and diltiazem as calculated using the Loewe additive model. Areas with synergy scores of 10 or higher (red) represent zones of drug synergy.

References

    1. Al-Bari MdA.A. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacol. Res. Perspect. 2017;5 doi: 10.1002/prp2.293.
    1. Blaising J., Polyak S.J., Pécheur E.-I. Arbidol as a broad-spectrum antiviral: an update. Antivir. Res. 2014;107:84–94. doi: 10.1016/j.antiviral.2014.04.006.
    1. Cao B., Wang Y., Wen D., Liu W., Wang Jingli, Fan G., Ruan L., Song B., Cai Y., Wei M., Li X., Xia J., Chen N., Xiang J., Yu T., Bai T., Xie X., Zhang L., Li C., Yuan Y., Chen H., Li Huadong, Huang H., Tu S., Gong F., Liu Y., Wei Y., Dong C., Zhou F., Gu X., Xu J., Liu Z., Zhang Y., Li Hui, Shang L., Wang K., Li K., Zhou X., Dong X., Qu Z., Lu S., Hu X., Ruan S., Luo S., Wu J., Peng L., Cheng F., Pan L., Zou J., Jia C., Wang Juan, Liu X., Wang S., Wu X., Ge Q., He J., Zhan H., Qiu F., Guo L., Huang C., Jaki T., Hayden F.G., Horby P.W., Zhang D., Wang C. A trial of lopinavir–ritonavir in adults hospitalized with severe covid-19. N. Engl. J. Med. 2020;382(19):1787–1799. doi: 10.1056/NEJMoa2001282.
    1. Chen C., Zhang Yi, Huang J., Yin P., Cheng Z., Wu J., Chen S., Zhang Yongxi, Chen B., Lu M., Luo Y., Ju L., Zhang J., Wang X. Favipiravir versus arbidol for COVID-19: a randomized clinical trial. medRxiv. 2020;2020 doi: 10.1101/2020.03.17.20037432. 03.17.20037432.
    1. Chen Z., Hu J., Zhang Zongwei, Jiang S., Han S., Yan D., Zhuang R., Hu B., Zhang Zhan. Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial. medRxiv. 2020;2020 doi: 10.1101/2020.03.22.20040758. 03.22.20040758.
    1. Choy K.-T., Wong A.Y.-L., Kaewpreedee P., Sia S.F., Chen D., Hui K.P.Y., Chu D.K.W., Chan M.C.W., Cheung P.P.-H., Huang X., Peiris M., Yen H.-L. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antivir. Res. 2020;178 doi: 10.1016/j.antiviral.2020.104786.
    1. Chu C.M. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004;59:252–256. doi: 10.1136/thorax.2003.012658.
    1. Covid-19 living Data. 2020. [WWW Document] (accessed 5.4.20)
    1. Crotty S., Maag D., Arnold J.J., Zhong W., Lau J.Y.N., Hong Z., Andino R., Cameron C.E. The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen. Nat. Med. 2000;6:1375–1379. doi: 10.1038/82191.
    1. de Wilde A.H., Zevenhoven-Dobbe J.C., van der Meer Y., Thiel V., Narayanan K., Makino S., Snijder E.J., van Hemert M.J. Cyclosporin A inhibits the replication of diverse coronaviruses. J. Gen. Virol. 2011;92:2542–2548. doi: 10.1099/vir.0.034983-0.
    1. Dunning J., Baillie J.K., Cao B., Hayden F.G. Antiviral combinations for severe influenza. Lancet Infect. Dis. 2014;14:1259–1270. doi: 10.1016/S1473-3099(14)70821-7.
    1. Furuta Y., Gowen B.B., Takahashi K., Shiraki K., Smee D.F., Barnard D.L. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antivir. Res. 2013;100:446–454. doi: 10.1016/j.antiviral.2013.09.015.
    1. Furuta Y., Takahashi K., Fukuda Y., Kuno M., Kamiyama T., Kozaki K., Nomura N., Egawa H., Minami S., Watanabe Y., Narita H., Shiraki K. In vitro and in vivo activities of anti-influenza virus compound T-705. Antimicrob. Agents Chemother. 2002;46:977–981. doi: 10.1128/AAC.46.4.977-981.2002.
    1. Haviernik J., Štefánik M., Fojtíková M., Kali S., Tordo N., Rudolf I., Hubálek Z., Eyer L., Ruzek D. Arbidol (umifenovir): a broad-spectrum antiviral drug that inhibits medically important arthropod-borne flaviviruses. Viruses. 2018;10:184. doi: 10.3390/v10040184.
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J., Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet Lond. Engl. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5.
    1. Ianevski A., He L., Aittokallio T., Tang J. SynergyFinder: a web application for analyzing drug combination dose–response matrix data. Bioinformatics. 2017;33:2413–2415. doi: 10.1093/bioinformatics/btx162.
    1. Liu Q., Fang X., Tian L., Chen X., Chung U., Wang K., Li D., Dai X., Zhu Q., Xu F., Shen L., Wang B., Yao L., Peng P. The effect of Arbidol Hydrochloride on reducing mortality of Covid-19 patients: a retrospective study of real world date from three hospitals in Wuhan. medRxiv. 2020;2020 doi: 10.1101/2020.04.11.20056523. 04.11.20056523.
    1. Liu Y., Yan L.-M., Wan L., Xiang T.-X., Le A., Liu J.-M., Peiris M., Poon L.L.M., Zhang W. Viral dynamics in mild and severe cases of COVID-19. Lancet Infect. Dis. 2020;20(6):656–657. doi: 10.1016/S1473-3099(20)30232-2.
    1. Magagnoli J., Narendran S., Pereira F., Cummings T., Hardin J.W., Sutton S.S., Ambati J. Outcomes of hydroxychloroquine usage in United States veterans hospitalized with Covid-19. medRxiv. 2020;2020 doi: 10.1101/2020.04.16.20065920. 04.16.20065920.
    1. Mehta P., McAuley D.F., Brown M., Sanchez E., Tattersall R.S., Manson J.J. COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet. 2020;395(10229):1033–1034. doi: 10.1016/S0140-6736(20)30628-0.
    1. Mulangu S., Dodd L.E., Davey R.T., Tshiani Mbaya O., Proschan M., Mukadi D., Lusakibanza Manzo M., Nzolo D., Tshomba Oloma A., Ibanda A., Ali R., Coulibaly S., Levine A.C., Grais R., Diaz J., Lane H.C., Muyembe-Tamfum J.-J., the Palm Writing Group A randomized, controlled trial of Ebola virus disease therapeutics. N. Engl. J. Med. 2019;381:2293–2303. doi: 10.1056/NEJMoa1910993.
    1. Pizzorno A., Padey B., Julien T., Trouillet-Assant S., Traversier A., Errazuriz-Cerda E., Fouret J., Dubois J., Gaymard A., Lescure F.-X., Dulière V., Brun P., Constant S., Poissy J., Lina B., Yazdanpanah Y., Terrier O., Rosa-Calatrava M. Characterization and treatment of SARS-CoV-2 in nasal and bronchial human airway epithelia. bioRxiv. 2020;2020 doi: 10.1101/2020.03.31.017889. 03.31.017889.
    1. Pizzorno A., Terrier O., Nicolas de Lamballerie C., Julien T., Padey B., Traversier A., Roche M., Hamelin M.-E., Rhéaume C., Croze S., Escuret V., Poissy J., Lina B., Legras-Lachuer C., Textoris J., Boivin G., Rosa-Calatrava M. Repurposing of drugs as novel influenza inhibitors from clinical gene expression infection signatures. Front. Immunol. 2019;10:60. doi: 10.3389/fimmu.2019.00060.
    1. Prescott J., Hall P., Acuna-Retamar M., Ye C., Wathelet M.G., Ebihara H., Feldmann H., Hjelle B. New world hantaviruses activate IFNλ production in type I IFN-deficient Vero E6 cells. PloS One. 2010;5 doi: 10.1371/journal.pone.0011159.
    1. Sidwell R.W., Huffman J.H., Khare Lois G.P., Allen B., Witkowski Roland J.T., Robins K. Broad-spectrum antiviral activity of virazole: 1-f8- D-ribofuranosyl- 1,2,4-triazole- 3-carboxamide. Science. 1972;177:705–706. doi: 10.1126/science.177.4050.705.
    1. Solidarity Clinical trial for COVID-19 treatments. 2020. [WWW Document]. accessed 4.27.20.
    1. Varghese F.S., Kaukinen P., Gläsker S., Bespalov M., Hanski L., Wennerberg K., Kümmerer B.M., Ahola T. Discovery of berberine, abamectin and ivermectin as antivirals against chikungunya and other alphaviruses. Antivir. Res. 2016;126:117–124. doi: 10.1016/j.antiviral.2015.12.012.
    1. Varghese F.S., Thaa B., Amrun S.N., Simarmata D., Rausalu K., Nyman T.A., Merits A., McInerney G.M., Ng L.F.P., Ahola T. The antiviral alkaloid berberine reduces chikungunya virus-induced mitogen-activated protein kinase signaling. J. Virol. 2016;90:9743–9757. doi: 10.1128/JVI.01382-16.
    1. Wang M., Cao R., Zhang L., Yang X., Liu J., Xu M., Shi Z., Hu Z., Zhong W., Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30:269–271. doi: 10.1038/s41422-020-0282-0.
    1. Yan Y.-Q., Fu Y.-J., Wu S., Qin H.-Q., Zhen X., Song B.-M., Weng Y.-S., Wang P.-C., Chen X.-Y., Jiang Z.-Y. Anti-influenza activity of berberine improves prognosis by reducing viral replication in mice. Phytother. Res. PTR. 2018;32:2560–2567. doi: 10.1002/ptr.6196.
    1. Zheng S., Fan J., Yu F., Feng B., Lou B., Zou Q., Xie G., Lin S., Wang R., Yang X., Chen W., Wang Q., Zhang D., Liu Y., Gong R., Ma Z., Lu S., Xiao Y., Gu Y., Zhang J., Yao H., Xu K., Lu X., Wei G., Zhou J., Fang Q., Cai H., Qiu Y., Sheng J., Chen Y., Liang T. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: retrospective cohort study. BMJ. 2020;369:m1443. doi: 10.1136/bmj.m1443.
    1. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R., Niu P., Zhan F., Ma X., Wang D., Xu W., Wu G., Gao G.F., Tan W. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020;382:727–733. doi: 10.1056/NEJMoa2001017.

Source: PubMed

3
Iratkozz fel