An open-label pilot trial of minocycline in children as a treatment for Angelman syndrome

Joseph C Grieco, Stephanie L Ciarlone, Maria Gieron-Korthals, Mike R Schoenberg, Amanda G Smith, Rex M Philpot, Helen S Heussler, Jessica L Banko, Edwin J Weeber, Joseph C Grieco, Stephanie L Ciarlone, Maria Gieron-Korthals, Mike R Schoenberg, Amanda G Smith, Rex M Philpot, Helen S Heussler, Jessica L Banko, Edwin J Weeber

Abstract

Background: Minocycline, a member of the tetracycline family, has a low risk of adverse effects and an ability to improve behavioral performance in humans with cognitive disruption. We performed a single-arm open-label trial in which 25 children diagnosed with Angelman syndrome (AS) were administered minocycline to assess the safety and tolerability of minocycline in this patient population and determine the drug's effect on the cognitive and behavioral manifestations of the disorder.

Methods: Participants, age 4-12 years old, were randomly selected from a pool of previously screened children for participation in this study. Each child received 3 milligrams of minocycline per kilogram of body weight per day for 8 weeks. Participants were assessed during 3 study visits: baseline, after 8-weeks of minocycline treatment and after an 8-week wash out period. The primary outcome measure was the Bayley Scales of Infant and Toddler Development 3rd Edition (BSID-III). Secondary outcome measures included the Clinical Global Impressions Scale (CGI), Vineland Adaptive Behavior Scales 2nd Edition (VABS-II), Preschool Language Scale 4th Edition (PLS-IV) and EEG scores. Observations were considered statistically significant if p < 0.05 using ANOVA and partial eta squared (η(2)) was calculated to show effect size. Multiple comparisons testing between time points were carried out using Dunnett's post hoc testing.

Results: Significant improvement in the mean raw scores of the BSID-III subdomains communication and fine motor ability as well as the subdomains auditory comprehension and total language ability of the PLS-IV when baseline scores were compared to scores after the washout period. Further, improvements were observed in the receptive communication subdomain of the VABS-II after treatment with minocycline. Finally, mean scores of the BSID-III self-direction subdomain and CGI scale score were significantly improved both after minocycline treatment and after the wash out period.

Conclusion: The clinical and neuropsychological measures suggest minocycline was well tolerated and causes improvements in the adaptive behaviors of this sample of children with Angelman syndrome. While the optimal dosage and the effects of long-term use still need to be determined, these findings suggest further investigation into the effect minocycline has on patients with Angelman syndrome is warranted.

Trial registration: NCT01531582 - clinicaltrials.gov.

Figures

Figure 1
Figure 1
Minocycline restores the synaptic plasticity defect in the AS mouse model. 3-month-old UBE3A maternal deficient (AS) mice show increase in long-term potentiation (LTP) after 21 days of treatment with minocycline. Field extracellular postsynaptic potentials (fEPSPs) were recorded and their slopes are conveyed as a percentage of the pre-theta burst stimulation (TBS) baseline. Representative traces before (bold) and 30 minutes after TBS are shown for saline treated (control) and minocycline treated AS mice.

References

    1. Angelman H. ‘Puppet’ children a report on three cases. Dev Med Child Neurol. 1965;7(6):681–688. doi: 10.1111/j.1469-8749.1965.tb07844.x.
    1. Barry RJ, Leitner RP, Clarke AR, Einfeld SL. Behavioral aspects of Angelman syndrome: a case control study. Am J Med Genet A. 2005;132A(1):8–12. doi: 10.1002/ajmg.a.30154.
    1. Williams CA. Neurological aspects of the Angelman syndrome. Brain Dev. 2005;27(2):88–94. doi: 10.1016/j.braindev.2003.09.014.
    1. Horsler K, Oliver C. The behavioural phenotype of Angelman syndrome. J Intellect Disabil Res. 2006;50(Pt 1):33–53. doi: 10.1111/j.1365-2788.2005.00730.x.
    1. Williams CA. The behavioral phenotype of the Angelman syndrome. Am J Med Genet C: Semin Med Genet. 2010;154C(4):432–437. doi: 10.1002/ajmg.c.30278.
    1. Pelc K, Cheron G, Dan B. Behavior and neuropsychiatric manifestations in Angelman syndrome. Neuropsychiatr Dis Treat. 2008;4(3):577.
    1. Clayton-Smith J, Laan L. Angelman syndrome: a review of the clinical and genetic aspects. J Med Genet. 2003;40(2):87–95. doi: 10.1136/jmg.40.2.87.
    1. Boyd SG, Harden A, Patton MA. The EEG in early diagnosis of the Angelman (happy puppet) syndrome. Eur J Pediatr. 1988;147(5):508–513. doi: 10.1007/BF00441976.
    1. Laan LA, Renier WO, Arts WF, Buntinx IM, Vd Burgt IJ, Stroink H, Beuten J, Zwinderman KH, van Dijk JG, Brouwer OF. Evolution of epilepsy and EEG findings in Angelman syndrome. Epilepsia. 1997;38(2):195–199. doi: 10.1111/j.1528-1157.1997.tb01097.x.
    1. Laan LA, Vein AA. Angelman syndrome: is there a characteristic EEG? Brain Dev. 2005;27(2):80–87. doi: 10.1016/j.braindev.2003.09.013.
    1. Vendrame M, Loddenkemper T, Zarowski M, Gregas M, Shuhaiber H, Sarco DP, Morales A, Nespeca M, Sharpe C, Haas K, Barnes G, Glaze D, Kothare SV. Analysis of EEG patterns and genotypes in patients with Angelman syndrome. Epilepsy Behav. 2012;23(3):261–265. doi: 10.1016/j.yebeh.2011.11.027.
    1. Pelc K, Boyd SG, Cheron G, Dan B. Epilepsy in Angelman syndrome. Seizure. 2008;17(3):211–217. doi: 10.1016/j.seizure.2007.08.004.
    1. Williams C. Angelman syndrome scientific symposium on the structure and function of UBE3A/E6AP. J Child Neurol. 2009;24(7):904–908. doi: 10.1177/0883073809332767.
    1. Kishino T, Lalande M, Wagstaff J. UBE3A/E6-AP mutations cause Angelman syndrome. Nat Genet. 1997;15(1):70–73. doi: 10.1038/ng0197-70.
    1. Margolis SS, Salogiannis J, Lipton DM, Mandel-Brehm C, Wills ZP, Mardinly AR, Hu L, Greer PL, Bikoff JB, Ho HY, Soskis MJ, Sahin M, Greenberg ME. EphB-mediated degradation of the RhoA GEF Ephexin5 relieves a developmental brake on excitatory synapse formation. Cell. 2010;143(3):442–455. doi: 10.1016/j.cell.2010.09.038.
    1. Dindot SV, Antalffy BA, Bhattacharjee MB, Beaudet AL. The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. Hum Mol Genet. 2008;17(1):111–118. doi: 10.1093/hmg/ddm288.
    1. Rogers JT, Rusiana I, Trotter J, Zhao L, Donaldson E, Pak DT, Babus LW, Peters M, Banko JL, Chavis P. Reelin supplementation enhances cognitive ability, synaptic plasticity, and dendritic spine density. Learn Mem. 2011;18(9):558–564. doi: 10.1101/lm.2153511.
    1. Daily JL, Nash K, Jinwal U, Golde T, Rogers J, Peters MM, Burdine RD, Dickey C, Banko JL, Weeber EJ. Adeno-associated virus-mediated rescue of the cognitive defects in a mouse model for Angelman syndrome. PLoS One. 2011;6(12):e27221. doi: 10.1371/journal.pone.0027221.
    1. Huang H-S, Allen JA, Mabb AM, King IF, Miriyala J, Taylor-Blake B, Sciaky N, Dutton JW, Lee H-M, Chen X. Topoisomerase inhibitors unsilence the dormant allele of Ube3a in neurons. Nature. 2012;481(7380):185–189. doi: 10.1038/nature10726.
    1. Van Woerden GM, Harris KD, Hojjati MR, Gustin RM, Qiu S, de Avila FR, Jiang Y-h, Elgersma Y, Weeber EJ. Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of αCaMKII inhibitory phosphorylation. Nat Neurosci. 2007;10(3):280–282. doi: 10.1038/nn1845.
    1. Ulgen BO, Field MG, Qureshi W, Knight RA, Stephanou A, Latchman DS, Vasquez D, Barry SP, Saravolatz L, 2nd, Scarabelli GM, Faggian G, Mazzucco A, Saravolatz L, Chen-Scarabelli C, Scarabelli TM. The role of minocycline in ischemia-reperfusion injury: a comprehensive review of an old drug with new implications. Recent Pat Cardiovasc Drug Discov. 2011;6(2):123–132. doi: 10.2174/157489011795933783.
    1. Macdonald H, Kelly RG, Allen ES, Noble JF, Kanegis LA. Pharmacokinetic studies on minocycline in man. Clin Pharmacol Ther. 1973;14(5):852–861.
    1. Bilousova TV, Dansie L, Ngo M, Aye J, Charles JR, Ethell DW, Ethell IM. Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J Med Genet. 2009;46(2):94–102. doi: 10.1136/jmg.2008.061796.
    1. Kernt M, Neubauer AS, Eibl KH, Wolf A, Ulbig MW, Kampik A, Hirneiss C. Minocycline is cytoprotective in human trabecular meshwork cells and optic nerve head astrocytes by increasing expression of XIAP, survivin, and Bcl-2. Clin Ophthalmol (Auckland, NZ) 2010;4:591. doi: 10.2147/OPTH.S11216.
    1. Mehrotra S, Pecaut MJ, Gridley DS. Minocycline modulates cytokine and gene expression profiles in the brain after whole-body exposure to radiation. In vivo. 2014;28(1):21–32.
    1. Thomas GM, Huganir RL. MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci. 2004;5(3):173–183. doi: 10.1038/nrn1346.
    1. Jin LJ, Schlesinger F, Guan Q, Song YP, Nie ZY. The two different effects of the potential neuroprotective compound minocycline on AMPA-type glutamate receptors. Pharmacology. 2012;89(3–4):156–162. doi: 10.1159/000336773.
    1. Chen H, Manev H. Effects of minocycline on cocaine sensitization and phosphorylation of GluR1 receptors in 5-lipoxygenase deficient mice. Neuropharmacology. 2011;60(7–8):1058–1063. doi: 10.1016/j.neuropharm.2010.09.006.
    1. Manev H, Manev R. Interactions with GluR1 AMPA receptors could influence the therapeutic usefulness of minocycline in ALS. Amyotroph Lateral Scler. 2009;10(5–6):416–417. doi: 10.3109/17482960802702288.
    1. Goni-Allo B, Ramos M, Jordán J, Aguirre N. In vivo studies on the protective role of minocycline against excitotoxicity caused by malonate or N−methyl-D-aspartate. Exp Neurol. 2005;191(2):326–330. doi: 10.1016/j.expneurol.2004.10.010.
    1. Greer PL, Hanayama R, Bloodgood BL, Mardinly AR, Lipton DM, Flavell SW, Kim T-K, Griffith EC, Waldon Z, Maehr R. The Angelman Syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell. 2010;140(5):704–716. doi: 10.1016/j.cell.2010.01.026.
    1. Fujita Y, Ishima T, Kunitachi S, Hagiwara H, Zhang L, Iyo M, Hashimoto K. Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of the antibiotic drug minocycline. Prog Neuro-Psychopharmacol Biol Psychiatry. 2008;32(2):336–339. doi: 10.1016/j.pnpbp.2007.08.031.
    1. Pignatelli M, Piccinin S, Molinaro G, Di Menna L, Riozzi B, Cannella M, Motolese M, Vetere G, Catania MV, Battaglia G. Changes in mGlu5 receptor-dependent synaptic plasticity and coupling to homer proteins in the hippocampus of Ube3A hemizygous mice modeling angelman syndrome. The Journal of neuroscience. 2014;34(13):4558–4566. doi: 10.1523/JNEUROSCI.1846-13.2014.
    1. Weeber EJ, Jiang Y-H, Elgersma Y, Varga AW, Carrasquillo Y, Brown SE, Christian JM, Mirnikjoo B, Silva A, Beaudet AL. Derangements of hippocampal calcium/calmodulin-dependent protein kinase II in a mouse model for Angelman mental retardation syndrome. The Journal of neuroscience. 2003;23(7):2634–2644.
    1. Quinlan EM, Philpot BD, Huganir RL, Bear MF. Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nat Neurosci. 1999;2(4):352–357. doi: 10.1038/7263.
    1. Paribello C, Tao L, Folino A, Berry-Kravis E, Tranfaglia M, Ethell IM, Ethell DW. Open-label add-on treatment trial of minocycline in fragile X syndrome. BMC Neurol. 2010;10:91. doi: 10.1186/1471-2377-10-91.
    1. Yong VW, Wells J, Giuliani F, Casha S, Power C, Metz LM. The promise of minocycline in neurology. Lancet Neurol. 2004;3(12):744–751. doi: 10.1016/S1474-4422(04)00937-8.
    1. Garrido-Mesa N, Zarzuelo A, Galvez J. Minocycline: far beyond an antibiotic. Br J Pharmacol. 2013;169(2):337–352. doi: 10.1111/bph.12139.
    1. Egawa K, Kitagawa K, Inoue K, Takayama M, Takayama C, Saitoh S, Kishino T, Kitagawa M, Fukuda A. Decreased tonic inhibition in cerebellar granule cells causes motor dysfunction in a mouse model of Angelman syndrome. Sci Transl Med. 2012;4(163):163ra157–163ra157. doi: 10.1126/scitranslmed.3004655.
    1. Goulden V, Glass D, Cunliffe WJ. Safety of long-term high-dose minocycline in the treatment of acne. Br J Dermatol. 1996;134(4):693–695. doi: 10.1111/j.1365-2133.1996.tb06972.x.
    1. Fanning WL, Gump DW, Sofferman RA. Side effects of minocycline: a double-blind study. Antimicrob Agents Chemother. 1977;11(4):712–717. doi: 10.1128/AAC.11.4.712.
    1. Cohen J: Statistical Power Analysis for the Behavioral Sciences. ᅟ: Routledge; 2013.
    1. Black MM, Matula K. Essentials of Bayley Scales of Infant Development II Assessment. New York: John Wiley & Sons, Inc; 2000.
    1. NINDS Common Data Elements.National Institutes of Health 2014, ᅟ:ᅟ []. Web.
    1. Peters SU, Goddard‐Finegold J, Beaudet AL, Madduri N, Turcich M, Bacino CA. Cognitive and adaptive behavior profiles of children with Angelman syndrome. Am J Med Genet A. 2004;128(2):110–113. doi: 10.1002/ajmg.a.30065.
    1. DeWitt M, Schreck K, Mulick J. Use of bayley scales in individuals with profound mental retardation: comparison of the first and second editions. J Dev Phys Disabil. 1998;10(3):307–313. doi: 10.1023/A:1022824225502.
    1. Peters SU, Bird LM, Kimonis V, Glaze DG, Shinawi LM, Bichell TJ, Barbieri‐Welge R, Nespeca M, Anselm I, Waisbren S. Double−blind therapeutic trial in Angelman syndrome using betaine and folic acid. Am J Med Genet A. 2010;152(8):1994–2001. doi: 10.1002/ajmg.a.33509.
    1. Loring DW, Bowden SC: The STROBE statement and neuropsychology: lighting the way toward evidence-based practice.Clin Neuropsychol 2013, ᅟ:1–19. ahead-of-print.
    1. Pearson Education: Using the Bayley Scales of Infant and Toddler Development, 3rd Edition, to Assess Individuals with Severe Delays, 2008. []. Web.
    1. Loring DW, Lowenstein DH, Barbaro NM, Fureman BE, Odenkirchen J, Jacobs MP, Austin JK, Dlugos DJ, French JA, Gaillard WD. Common data elements in epilepsy research: development and implementation of the NINDS epilepsy CDE project. Epilepsia. 2011;52(6):1186–1191. doi: 10.1111/j.1528-1167.2011.03018.x.
    1. Thibert RL, Pfeifer HH, Larson AM, Raby AR, Reynolds AA, Morgan AK, Thiele EA. Low glycemic index treatment for seizures in Angelman syndrome. Epilepsia. 2012;53(9):1498–1502. doi: 10.1111/j.1528-1167.2012.03537.x.
    1. Bird LM, Tan WH, Bacino CA, Peters SU, Skinner SA, Anselm I, Barbieri-Welge R, Bauer-Carlin A, Gentile JK, Glaze DG, Horowitz LT, Mohan KN, Nespeca MP, Sahoo T, Sarco D, Waisbren SE, Beaudet AL. A therapeutic trial of pro-methylation dietary supplements in Angelman syndrome. Am J Med Genet A. 2011;155A(12):2956–2963. doi: 10.1002/ajmg.a.34297.
    1. Busner J, Targum SD. The clinical global impressions scale: applying a research tool in clinical practice. Psychiatry. 2007;4(7):28–37.

Source: PubMed

3
Iratkozz fel