The entropic brain: a theory of conscious states informed by neuroimaging research with psychedelic drugs

Robin L Carhart-Harris, Robert Leech, Peter J Hellyer, Murray Shanahan, Amanda Feilding, Enzo Tagliazucchi, Dante R Chialvo, David Nutt, Robin L Carhart-Harris, Robert Leech, Peter J Hellyer, Murray Shanahan, Amanda Feilding, Enzo Tagliazucchi, Dante R Chialvo, David Nutt

Abstract

Entropy is a dimensionless quantity that is used for measuring uncertainty about the state of a system but it can also imply physical qualities, where high entropy is synonymous with high disorder. Entropy is applied here in the context of states of consciousness and their associated neurodynamics, with a particular focus on the psychedelic state. The psychedelic state is considered an exemplar of a primitive or primary state of consciousness that preceded the development of modern, adult, human, normal waking consciousness. Based on neuroimaging data with psilocybin, a classic psychedelic drug, it is argued that the defining feature of "primary states" is elevated entropy in certain aspects of brain function, such as the repertoire of functional connectivity motifs that form and fragment across time. Indeed, since there is a greater repertoire of connectivity motifs in the psychedelic state than in normal waking consciousness, this implies that primary states may exhibit "criticality," i.e., the property of being poised at a "critical" point in a transition zone between order and disorder where certain phenomena such as power-law scaling appear. Moreover, if primary states are critical, then this suggests that entropy is suppressed in normal waking consciousness, meaning that the brain operates just below criticality. It is argued that this entropy suppression furnishes normal waking consciousness with a constrained quality and associated metacognitive functions, including reality-testing and self-awareness. It is also proposed that entry into primary states depends on a collapse of the normally highly organized activity within the default-mode network (DMN) and a decoupling between the DMN and the medial temporal lobes (which are normally significantly coupled). These hypotheses can be tested by examining brain activity and associated cognition in other candidate primary states such as rapid eye movement (REM) sleep and early psychosis and comparing these with non-primary states such as normal waking consciousness and the anaesthetized state.

Keywords: 5-HT2A receptor; REM sleep; consciousness; criticality; default mode network; entropy; metastability; serotonin.

Figures

Figure 1
Figure 1
Relative publications on psychoanalysis and cognitive psychology. Annual publications in major medical science journals referenced in the leading database, PubMed. Articles were retrieved by entering the search terms “psychoanalysis” and “cognitive psychology” in separate searches using the default search parameters of PubMed. It is worth noting that psychoanalysis has a different publication culture to cognitive neuroscience. Articles on psychoanalysis are not always available via PubMed and many psychoanalytic writings are published in books rather than academic journals. With these caveats entered however, the publication count shown above still helps to illustrate the general point that psychoanalysis has failed to gain a significant foothold in mainstream analytical science.
Figure 2
Figure 2
The effect of psilocybin on fMRI and MEG measures of brain activity. (A) Decreased CBF post-psilocybin. (B) Ventromedial PFC (red) resting state functional connectivity (RSFC) at baseline (top, orange) and decreases post-psilocybin (bottom, blue). (C) Dorsolateral PFC (red) RSFC at baseline (top, orange) and decreases post-psilocybin (bottom, blue). (D) Hippocampal (red) RSFC at baseline (top, orange) and decreases post-psilocybin (bottom, blue). (E) Decreases in oscillatory power (purple) post-psilocybin measured with MEG. All spatial maps were whole-brain cluster corrected Z > 2.3. p < 0.05.
Figure 3
Figure 3
Increased variance/amplitude fluctuations in the hippocampus post-psilocybin. The charts on the left show the complete time series from the hippocampus (left in blue, right in green) in 3 different individual subjects during the 12 min scan in which they received psilocybin. The transparent red vertical line indicates the beginning and duration of the 60 s infusion of psilocybin. The images on the right show the right hippocampal region where the increases in variance were especially marked.
Figure 4
Figure 4
Decreased PCC alpha power predicts ego-disintegration and magical thinking after psilocybin. Top: Decreased PCC alpha power v ratings of ego-disintegration. Bottom: Decreased PCC alpha power vs. ratings of magical/supernatural thinking. Both correlations were significant after correction for multiple comparisons (0.05/23 = 0.002). These charts are derived from data discussed in Muthukumaraswamy et al. (2013).
Figure 5
Figure 5
Psilocybin promotes unconstrained thinking and decreases blood flow, venous oxygenation and oscillatory power in the DMN. This chart shows the average (+SE) ratings for the item “my thoughts wandered freely” in 3 neuroimaging studies, each involving the administration of psilocybin and placebo to 15 healthy volunteers. Ratings were given within 30 min of the end of the relevant resting state scans. This particular item was one of the highest rated items in all 3 studies and nicely communicates the quality of cognition that predominates in the psychedelic state. The brain image on the left displays the mean regional decreases in CBF post-psilocybin in the ASL study; the central image displays the mean regional decreases in BOLD signal post-psilocybin in the BOLD study; and the image on the right displays the mean regional decreases in alpha power post-psilocybin in the MEG study. All images were derived using a whole brain corrected threshold of p < 0.05.
Figure 6
Figure 6
Changes in network metastability and entropy post-infusion of psilocybin. (A) This chart displays the mean variance of the internal synchrony of 9 brain networks for the sample of 15 healthy volunteers, as a percentage change post vs. pre-infusion. A post-infusion increase in metastability for a specific network indicates that the mean signal in that network is a poor model of the activity in its constituent voxels, implying that the network is behaving more “chaotically” post-infusion than pre. Bonferonni correction gave a revised statistical threshold of p < 0.006 (0.05/9). One-sample (2-tailed) t-tests were performed, comparing the % change against zero. The significant networks are labeled with an asterisk. (B,C) These probability distributions were derived from data from the same single subject, by discretizing a measure of the internal synchrony of the DMN across time into bins. These bins reflect the distance a data point is from the mean and this gives a probability distribution of the variance of internal synchrony within a network for a given time period (e.g., a 5 min period of scanning). The probability distributions shown in Chart B were produced from placebo data where it is clear that prediction of internal network synchrony of the DMN across time is similar before and after infusion (i.e., the blue and green curves). The probability distributions shown in Chart C were derived using psilocybin data and here it is evident that following infusion of psilocybin (i.e., the green curve), prediction of internal network synchrony within the DMN is more difficult compared to pre infusion (the blue curve). When the entropy change was calculated for the group, significantly greater increases in entropy were found in the same networks highlighted in (A) (post-psilocybin vs. pre) vs. (post-placebo vs. pre).
Figure 7
Figure 7
Spectrum of cognitive states. This schematic is intended to summarize much of what this paper has tried to communicate. It shows an “inverted u” relationship between entropy and cognition such that too high a value implies high flexibility but high disorder, whereas too low a value implies ordered but inflexible cognition. It is proposed that normal waking consciousness inhabits a position that is close to criticality but slightly sub-critical and primary states move brain activity and associated cognition toward a state of increased system entropy i.e., brain activity becomes more random and cognition becomes more flexible. It is proposed that primary states may actually be closer to criticality proper than secondary consciousness/normal waking consciousness.
Figure 8
Figure 8
Gas expansion post-release of constraints as a metaphor for increased entropy in primary states. (A) Entropy is low while the gas is constrained. (B) Entropy increases once constraints are released. In an information theoretical sense, entropy/uncertainty is increased post-expansion because it is more difficult to predict the spatial location of a single molecule. In primary vs. secondary states, it is hypothesized that the biological parameters known to define key brain states (e.g., the default-mode) become more variant or less predictable, thus causing the subject to become less certain in themselves and their experience of the world.

References

    1. (1957). PSYCHODYNAMIC and therapeutic aspects of mescaline and lysergic acid diethylamide: round table. J. Nerv. Ment. Dis. 125, 423–424 10.1097/00005053-195707000-00011
    1. Abramson H. A. (1967). The Use of LSD in Psychotherapy and Alcoholism. Indianapolis, IN: Bobbs-Merrill
    1. Adelstein J. S., Shehzad Z., Mennes M., Deyoung C. G., Zuo X. N., Kelly C., et al. (2011). Personality is reflected in the brain's intrinsic functional architecture. PLoS ONE 6:e27633 10.1371/journal.pone.0027633
    1. Aghajanian G. K., Foote W. E., Sheard M. H. (1968). Lysergic acid diethylamide: sensitive neuronal units in the midbrain raphe. Science 161, 706–708 10.1126/science.161.3842.706
    1. Aghajanian G. K., Marek G. J. (1997). Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells. Neuropharmacology 36, 589–599 10.1016/S0028-3908(97)00051-8
    1. Aghajanian G. K., Vandermaelen C. P. (1982). Intracellular recordings from serotonergic dorsal raphe neurons: pacemaker potentials and the effect of LSD. Brain Res. 238, 463–469 10.1016/0006-8993(82)90124-X
    1. Andrade K. C., Spoormaker V. I., Dresler M., Wehrle R., Holsboer F., Samann P. G., et al. (2011). Sleep spindles and hippocampal functional connectivity in human NREM sleep. J. Neurosci. 31, 10331–10339 10.1523/JNEUROSCI.5660-10.2011
    1. Andrade R. (2011). Serotonergic regulation of neuronal excitability in the prefrontal cortex. Neuropharmacology 61, 382–386 10.1016/j.neuropharm.2011.01.015
    1. Andrews-Hanna J. R., Reidler J. S., Huang C., Buckner R. L. (2010). Evidence for the default network's role in spontaneous cognition. J. Neurophysiol. 104, 322–335 10.1152/jn.00830.2009
    1. Axmacher N., Cohen M. X., Fell J., Haupt S., Dumpelmann M., Elger C. E., et al. (2010). Intracranial EEG correlates of expectancy and memory formation in the human hippocampus and nucleus accumbens. Neuron 65, 541–549 10.1016/j.neuron.2010.02.006
    1. Axmacher N., Elger C. E., Fell J. (2008). Ripples in the medial temporal lobe are relevant for human memory consolidation. Brain 131, 1806–1817 10.1093/brain/awn103
    1. Baars B. J. (2005). Global workspace theory of consciousness: toward a cognitive neuroscience of human experience. Prog. Brain Res. 150, 45–53 10.1016/S0079-6123(05)50004-9
    1. Bak P., Tang C., Wiesenfeld K. (1987). Self-organized criticality: an explanation of the 1/f noise. Phys. Rev. Lett. 59, 381–384 10.1103/PhysRevLett.59.381
    1. Ban T. A. (2001a). Pharmacotherapy of depression: a historical analysis. J. Neural Transm. 108, 707–716 10.1007/s007020170047
    1. Ban T. A. (2001b). Pharmacotherapy of mental illness–a historical analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 25, 709–727 10.1016/S0278-5846(01)00160-9
    1. Bartolomei F., Barbeau E. J., Nguyen T., McGonigal A., Regis J., Chauvel P., et al. (2012). Rhinal-hippocampal interactions during deja vu. Clin. Neurophysiol. 123, 489–495 10.1016/j.clinph.2011.08.012
    1. Basar E., Guntekin B. (2009). Darwin's evolution theory, brain oscillations, and complex brain function in a new “Cartesian view.” Int. J. Psychophysiol. 71, 2–8 10.1016/j.ijpsycho.2008.07.018
    1. Bassett D. S., Bullmore E., Verchinski B. A., Mattay V. S., Weinberger D. R., Meyer-Lindenberg A. (2008). Hierarchical organization of human cortical networks in health and schizophrenia. J. Neurosci. 28, 9239–9248 10.1523/JNEUROSCI.1929-08.2008
    1. Beggs J. M., Plenz D. (2003). Neuronal avalanches in neocortical circuits. J. Neurosci. 23, 11167–11177
    1. Ben-Naim A. (2008). A farewell to Entropy: Statistical Thermodynamics Based on Information: S=logW. London: World Scientific, Hackensack, N.J
    1. Ben-Naim A. (2012). Entropy and the Second Law: Interpretation and Misss-Interpretationsss. New Jersey; London: World Scientific
    1. Berman M. G., Peltier S., Nee D. E., Kross E., Deldin P. J., Jonides J. (2011). Depression, rumination and the default network. Soc. Cogn. Affect. Neurosci. 6, 548–555 10.1093/scan/nsq080
    1. Bhagwagar Z., Hinz R., Taylor M., Fancy S., Cowen P., Grasby P. (2006). Increased 5-HT(2A) receptor binding in euthymic, medication-free patients recovered from depression: a positron emission study with [(11)C]MDL 100,907. Am. J. Psychiatry 163, 1580–1587 10.1176/appi.ajp.163.9.1580
    1. Bowers M. B., Jr., Freedman D. X. (1966). “Psychedelic” experiences in acute psychoses. Arch. Gen. Psychiatry 15, 240–248 10.1001/archpsyc.1966.01730150016003
    1. Braga R. S. D., Leeson C., Wise R., Leech R. (2013). Echoes of the brain within default mode, association and heteromodal cortices. J. Neurosci. 33, 14031–14039 10.1523/JNEUROSCI.0570-13.2013
    1. Brewer J. A., Worhunsky P. D., Gray J. R., Tang Y. Y., Weber J., Kober H. (2011). Meditation experience is associated with differences in default mode network activity and connectivity. Proc. Natl. Acad. Sci. U.S.A. 108, 20254–20259 10.1073/pnas.1112029108
    1. Buckner R. L., Carroll D. C. (2007). Self-projection and the brain. Trends Cogn. Sci. 11, 49–57 10.1016/j.tics.2006.11.004
    1. Busch A. K., Johnson W. C. (1950). L.S.D. 25 as an aid in psychotherapy; preliminary report of a new drug. Dis. Nerv. Syst. 11, 241–243
    1. Buzsaki G. (2002). Theta oscillations in the hippocampus. Neuron 33, 325–340 10.1016/S0896-6273(02)00586-X
    1. Buzsaki G., Draguhn A. (2004). Neuronal oscillations in cortical networks. Science 304, 1926–1929 10.1126/science.1099745
    1. Cahir M., Ardis T., Reynolds G. P., Cooper S. J. (2007). Acute and chronic tryptophan depletion differentially regulate central 5-HT1A and 5-HT 2A receptor binding in the rat. Psychopharmacology 190, 497–506 10.1007/s00213-006-0635-5
    1. Cantero J. L., Atienza M., Stickgold R., Kahana M. J., Madsen J. R., Kocsis B. (2003). Sleep-dependent theta oscillations in the human hippocampus and neocortex. J. Neurosci. 23, 10897–10903
    1. Carhart-Harris R. (2007). Waves of the unconscious: the neurophysiology of dreamlike phenomena and its implications for the psychodynamic model of the mind. Neuropsychoanalysis 9, 183–211 10.1080/15294145.2007.10773557
    1. Carhart-Harris R. L., Erritzoe D., Williams T., Stone J. M., Reed L. J., Colasanti A., et al. (2012a). Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proc. Natl. Acad. Sci. U.S.A. 109, 2138–2143 10.1073/pnas.1119598109
    1. Carhart-Harris R. L., Leech R., Erritzoe D., Williams T. M., Stone J. M., Evans J., et al. (2012b). Functional connectivity measures after psilocybin inform a novel hypothesis of early psychosis. Schizophr. Bull. 39, 1343–1351 10.1093/schbul/sbs117
    1. Carhart-Harris R. L., Friston K. J. (2010). The default-mode, ego-functions and free-energy: a neurobiological account of Freudian ideas. Brain 133, 1265–1283 10.1093/brain/awq010
    1. Carhart-Harris R. L., Mayberg H. S., Malizia A. L., Nutt D. (2008). Mourning and melancholia revisited: correspondences between principles of Freudian metapsychology and empirical findings in neuropsychiatry. Ann. Gen. Psychiatry 7, 9 10.1186/1744-859X-7-9
    1. Carhart-Harris R. L., Nutt D. J. (2010). User perceptions of the benefits and harms of hallucinogenic drug use: a web-based questionnaire study. J. Subst. Use 15, 283–300 10.3109/14659890903271624
    1. Carhart-Harris R. L., Williams T. M., Sessa B., Tyacke R. J., Rich A. S., Feilding A., et al. (2011). The administration of psilocybin to healthy, hallucinogen-experienced volunteers in a mock-functional magnetic resonance imaging environment: a preliminary investigation of tolerability. J. Psychopharmacol. 25, 1562–1567 10.1177/0269881110367445
    1. Cattell J. P. (1954). The influence of mescaline on psychodynamic material. J. Nerv. Ment. Dis. 119, 233–244 10.1097/00005053-195403000-00003
    1. Chialvo D. R., Balenzuela P., Fraiman D. (2007). The brain: what is critical about it? in Collective Dynamics: Topics on Competition and Cooperation in the Biosciences, eds Ricciardi L.M., Buonocore A., Pirozzi E. (New York, NY: Vietri sul Mare; ), 28–45
    1. Cohen S. (1964). The Beyond Within: The LSD Story. New York, NY: Atheneum
    1. Cohen S. (1967). The Beyond Within: The LSD Story. New York, NY: Atheneum
    1. Cohen S. (1972). Beyond Within: The LSD Story. New York, NY: Atheneum, SL; 1967
    1. Cole D. M., Beckmann C. F., Long C. J., Matthews P. M., Durcan M. J., Beaver J. D. (2010). Nicotine replacement in abstinent smokers improves cognitive withdrawal symptoms with modulation of resting brain network dynamics. Neuroimage 52, 590–599 10.1016/j.neuroimage.2010.04.251
    1. Corbetta M., Akbudak E., Conturo T. E., Snyder A. Z., Ollinger J. M., Drury H. A., et al. (1998). A common network of functional areas for attention and eye movements. Neuron 21, 761–773 10.1016/S0896-6273(00)80593-0
    1. Costa P. T., Jr., McCrae R. R. (1997). Stability and change in personality assessment: the revised NEO Personality Inventory in the year 2000. J. Pers. Assess. 68, 86–94 10.1207/s15327752jpa6801_7
    1. Crocket R., Sandison R. A., Walk A. (1963). Hallucinogenic Drugs and Their Psychotherapeutic Use. New York, NY: H. K. Lewis and Co Ltd SL
    1. Dayan P., Hinton G. E., Neal R. M., Zemel R. S. (1995). The helmholtz machine. Neural Comput. 7, 889–904 10.1162/neco.1995.7.5.889
    1. de Pasquale F., Della Penna S., Snyder A. Z., Marzetti L., Pizzella V., Romani G. L., et al. (2012). A cortical core for dynamic integration of functional networks in the resting human brain. Neuron 74, 753–764 10.1016/j.neuron.2012.03.031
    1. Deakin J. F., Lees J., McKie S., Hallak J. E., Williams S. R., Dursun S. M. (2008). Glutamate and the neural basis of the subjective effects of ketamine: a pharmaco-magnetic resonance imaging study. Arch. Gen. Psychiatry 65, 154–164 10.1001/archgenpsychiatry.2007.37
    1. Deco G., Corbetta M. (2011). The dynamical balance of the brain at rest. Neuroscientist 17, 107–123 10.1177/1073858409354384
    1. Deco G., Jirsa V. K. (2012). Ongoing cortical activity at rest: criticality, multistability, and ghost attractors. J. Neurosci. 32, 3366–3375 10.1523/JNEUROSCI.2523-11.2012
    1. Denber H. C. (1958). Studies on mescaline. VIII. Psychodynamic observations. Am. J. Psychiatry 115, 239–244
    1. Doblin R. (1991). Pahnke good-friday experiment - a long-term follow-up and methodological critique. J. Transpers. Psychol. 23, 1–28
    1. Dyck E. (2005). Flashback: psychiatric experimentation with LSD in historical perspective. Can. J. Psychiatry 50, 381–388
    1. Dykman B. M., Abramson L. Y., Alloy L. B., Hartlage S. (1989). Processing of ambiguous and unambiguous feedback by depressed and nondepressed college students: schematic biases and their implications for depressive realism. J. Pers. Soc. Psychol. 56, 431–445 10.1037/0022-3514.56.3.431
    1. Edelman G. M. (2004). Wider Than the Sky: The Phenomenal Gift of Consciousness. New Haven, CT: Yale University Press
    1. Erritzoe D., Frokjaer V. G., Haugbol S., Marner L., Svarer C., Holst K., et al. (2009). Brain serotonin 2A receptor binding: relations to body mass index, tobacco and alcohol use. Neuroimage 46, 23–30 10.1016/j.neuroimage.2009.01.050
    1. Eysenck H. J. (1973). Uses and Abuses of Psychology. London: Penguin
    1. Fair D. A., Cohen A. L., Dosenbach N. U., Church J. A., Miezin F. M., Barch D. M., et al. (2008). The maturing architecture of the brain's default network. Proc. Natl. Acad. Sci. U.S.A. 105, 4028–4032 10.1073/pnas.0800376105
    1. Farb N. A., Anderson A. K., Bloch R. T., Segal Z. V. (2011). Mood-linked responses in medial prefrontal cortex predict relapse in patients with recurrent unipolar depression. Biol. Psychiatry 70, 366–372 10.1016/j.biopsych.2011.03.009
    1. Farb N. A., Segal Z. V., Mayberg H., Bean J., McKeon D., Fatima Z., et al. (2007). Attending to the present: mindfulness meditation reveals distinct neural modes of self-reference. Soc. Cogn. Affect. Neurosci. 2, 313–322 10.1093/scan/nsm030
    1. Fell J., Ludowig E., Staresina B. P., Wagner T., Kranz T., Elger C. E., et al. (2011). Medial temporal theta/alpha power enhancement precedes successful memory encoding: evidence based on intracranial EEG. J. Neurosci. 31, 5392–5397 10.1523/JNEUROSCI.3668-10.2011
    1. Fell J., Staresina B. P., Do Lam A. T., Widman G., Helmstaedter C., Elger C. E., et al. (2012). Memory modulation by weak synchronous deep brain stimulation: a pilot study. Brain Stimul. 6, 270–273 10.1016/j.brs.2012.08.001
    1. Fink M. (2010). Remembering the lost neuroscience of pharmaco-EEG. Acta Psychiatr. Scand. 121, 161–173 10.1111/j.1600-0447.2009.01467.x
    1. Fleming S. M., Dolan R. J., Frith C. D. (2012). Metacognition: computation, biology and function. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367, 1280–1286 10.1098/rstb.2012.0021
    1. Fleming S. M., Weil R. S., Nagy Z., Dolan R. J., Rees G. (2010). Relating introspective accuracy to individual differences in brain structure. Science 329, 1541–1543 10.1126/science.1191883
    1. Foster B. L., Parvizi J. (2012). Resting oscillations and cross-frequency coupling in the human posteromedial cortex. Neuroimage 60, 384–391 10.1016/j.neuroimage.2011.12.019
    1. Fox M. D., Corbetta M., Snyder A. Z., Vincent J. L., Raichle M. E. (2006). Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc. Natl. Acad. Sci. U.S.A. 103, 10046–10051 10.1073/pnas.0604187103
    1. Fox M. D., Snyder A. Z., Vincent J. L., Corbetta M., Van Essen D. C., Raichle M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U.S.A. 102, 9673–9678 10.1073/pnas.0504136102
    1. Frazer J. G. (1900). The Golden Bough: A Study in Magic and Religion. London; New York: Macmillan and Co. The Macmillan Company
    1. Freud S. (1927). The Ego and the id. London: L. and Virginia Woolf at the Hogarth press, The Institute of psycho-analysis
    1. Freud S. (1930). Civilization and its Discontents. London: Hogarth Press
    1. Freud S. (1937). The Interpretation of Dreams. London: Allen and Unwin
    1. Freud S. (1949). An Outline of Psycho-Analysis. Hogarth Press, [S.l.].
    1. Freud S., Freud A., Strachey A., Strachey J., Tyson A. W. (1957). On the History of the Psycho-Analytic Movement, Papers on Metapsychology, and Other Works; Translated Under the General Editorship of James Strachey in Collaboration with Anna Freud, Assisted By Alix Strachey And Alan Tyson. London: Hogarth Press
    1. Freud S., Strachey J., Freud A., Rothgeb C. L., Richards A., Scientific Literature Corporation. (1953). The Standard Edition of the Complete Psychological Works of Sigmund Freud. London: Hogarth Press
    1. Friston K. (2010). The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 10.1038/nrn2787
    1. Friston K., Thornton C., Clark A. (2012a). Free-energy minimization and the dark-room problem. Front. Psychol. 3:130 10.3389/fpsyg.2012.00130
    1. Friston K., Breakspear M., Deco G. (2012b). Perception and self-organized instability. Front. Comput. Neurosci. 6:44 10.3389/fncom.2012.00044
    1. Froeliger B., Garland E. L., Kozink R. V., Modlin L. A., Chen N. K., McClernon F. J., et al. (2012). Meditation-state functional connectivity (msFC): strengthening of the dorsal attention network and beyond. Evi. Based Complement. Alternat. Med. 2012, 680407 10.1155/2012/680407
    1. Frokjaer V. G., Mortensen E. L., Nielsen F. A., Haugbol S., Pinborg L. H., Adams K. H., et al. (2008). Frontolimbic serotonin 2A receptor binding in healthy subjects is associated with personality risk factors for affective disorder. Biol. Psychiatry 63, 569–576 10.1016/j.biopsych.2007.07.009
    1. Gao W., Zhu H., Giovanello K. S., Smith J. K., Shen D., Gilmore J. H., et al. (2009). Evidence on the emergence of the brain's default network from 2-week-old to 2-year-old healthy pediatric subjects. Proc. Natl. Acad. Sci. U.S.A. 106, 6790–6795 10.1073/pnas.0811221106
    1. Glennon R. A., Titeler M., McKenney J. D. (1984). Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sci. 35, 2505–2511 10.1016/0024-3205(84)90436-3
    1. Goldapple K., Segal Z., Garson C., Lau M., Bieling P., Kennedy S., et al. (2004). Modulation of cortical-limbic pathways in major depression: treatment-specific effects of cognitive behavior therapy. Arch. Gen. Psychiatry 61, 34–41 10.1001/archpsyc.61.1.34
    1. Gonzalez-Maeso J., Sealfon S. C. (2009). Agonist-trafficking and hallucinogens. Curr. Med. Chem. 16, 1017–1027 10.2174/092986709787581851
    1. Gonzalez-Maeso J., Weisstaub N. V., Zhou M., Chan P., Ivic L., Ang R., et al. (2007). Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron 53, 439–452 10.1016/j.neuron.2007.01.008
    1. Greicius M. D., Flores B. H., Menon V., Glover G. H., Solvason H. B., Kenna H., et al. (2007). Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol. Psychiatry 62, 429–437 10.1016/j.biopsych.2006.09.020
    1. Greicius M. D., Krasnow B., Reiss A. L., Menon V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. U.S.A. 100, 253–258 10.1073/pnas.0135058100
    1. Griffiths R., Richards W., Johnson M., McCann U., Jesse R. (2008). Mystical-type experiences occasioned by psilocybin mediate the attribution of personal meaning and spiritual significance 14 months later. J. Psychopharmacol. 22, 621–632 10.1177/0269881108094300
    1. Griffiths R. R., Johnson M. W., Richards W. A., Richards B. D., McCann U., Jesse R. (2011). Psilocybin occasioned mystical-type experiences: immediate and persisting dose-related effects. Psychopharmacology 218, 649–65 10.1007/s00213-011-2358-5
    1. Griffiths R. R., Richards W. A., McCann U., Jesse R. (2006). Psilocybin can occasion mystical-type experiences having substantial and sustained personal meaning and spiritual significance. Psychopharmacology 187, 268–283 discussion: 284–292. 10.1007/s00213-006-0457-5
    1. Grinspoon L., Bakalar J. B. (1979). Psychedelic Drugs Reconsidered. New York, NY: Basic Books
    1. Grinspoon L., Bakalar J. B. (1981). Psychedelic drug therapies - should their use be reconsidered. Interdiscipl. Sci. Rev. 6, 191–194
    1. Grob C. S., Danforth A. L., Chopra G. S., Hagerty M., McKay C. R., Halberstadt A. L., et al. (2011). Pilot study of psilocybin treatment for anxiety in patients with advanced-stage cancer. Arch. Gen. Psychiatry 68, 71–78 10.1001/archgenpsychiatry.2010.116
    1. Grof S. (1980). LSD Psychotherapy. Pomona, CA: Hunter House
    1. Grof S. (1982). Realms of the unconscious - the enchanted frontier - nalimov,Vv. J. Transpers. Psychol. 14, 186–188
    1. Guldenmund P., Vanhaudenhuyse A., Boly M., Laureys S., Soddu A. (2012). A default mode of brain function in altered states of consciousness. Arch. Ital. Biol. 150, 107–121
    1. Haaga D. A., Beck A. T. (1995). Perspectives on depressive realism: implications for cognitive theory of depression. Behav. Res. Ther. 33, 41–48 10.1016/0005-7967(94)E0016-C
    1. Hagmann P., Cammoun L., Gigandet X., Meuli R., Honey C. J., Wedeen V. J., et al. (2008). Mapping the structural core of human cerebral cortex. PLoS Biol. 6:e159 10.1371/journal.pbio.0060159
    1. Hasenkamp W., Wilson-Mendenhall C. D., Duncan E., Barsalou L. W. (2012). Mind wandering and attention during focused meditation: a fine-grained temporal analysis of fluctuating cognitive states. Neuroimage 59, 750–760 10.1016/j.neuroimage.2011.07.008
    1. Hassin R. R., Uleman J. S., Bargh J. A. (2005). The New Unconscious. Oxford; New York: Oxford University Press
    1. Hausner M., Dolezal V. (1965). Psychodynamics of LSD hallucinations and their bearing on individual psychotherapy. Act. Nerv. Super. 7, 308–309
    1. Hintzen A., Passie T. (2010). The Pharmacology of LSD: A Critical Review. Oxford: Beckley Foundation Press & Oxford University Press
    1. Hoekzema E., Carmona S., Ramos-Quiroga J. A., Richarte Fernandez V., Bosch R., Soliva J. C., et al. (2013). An independent components and functional connectivity analysis of resting state fMRI data points to neural network dysregulation in adult ADHD. Hum. Brain Mapp. [Epub ahead of print]. 10.1002/hbm.22250
    1. Hofmann A. (1980). LSD: My Problem Child. NewYork, NY: McGraw-Hill
    1. Holden C. (1980). Arguments heard for psychedelics probe. Science 209, 256–257 10.1126/science.7384800
    1. Holtzheimer P. E., Mayberg H. S. (2011). Stuck in a rut: rethinking depression and its treatment. Trends Neurosci. 34, 1–9 10.1016/j.tins.2010.10.004
    1. Hutson M. (2012). The 7 Laws of Magical Thinking: How Irrational Beliefs Keep Us Happy, Healthy, and Sane. New York, NY: Hudson Street Press
    1. Huxley A. (1954). The Doors of Perception. On the Author's Sensations Under the Influence of the Drug Mescalin. London: Chatto and Windus
    1. Huxley A. (1959). The Doors of Perception and Heaven and Hell. London: Penguin Books
    1. Huxley A., Palmer C., Horowitz M. (1977). Moksha: Writings on Psychedelics and the Visionary Experience (1931-1963). New York, NY: Stonehill
    1. James W. (1968). The Varieties of Religious Experience: A Study in Human Nature. New York, NY: Collins
    1. Jann K., Dierks T., Boesch C., Kottlow M., Strik W., Koenig T. (2009). BOLD correlates of EEG alpha phase-locking and the fMRI default mode network. Neuroimage 45, 903–916 10.1016/j.neuroimage.2009.01.001
    1. Jensen H. J. (1998). Self-Organized Criticality: Emergent Complex Behavior in Physical and Biological Systems. Cambridge: Cambridge University Press; 10.1017/CBO9780511622717
    1. Jensen O., Colgin L. L. (2007). Cross-frequency coupling between neuronal oscillations. Trends Cogn. Sci. 11, 267–9 10.1016/j.tics.2007.05.003
    1. Johnson M., Richards W., Griffiths R. (2008). Human hallucinogen research: guidelines for safety. J. Psychopharmacol. 22, 603–20 10.1177/0269881108093587
    1. Josipovic Z., Dinstein I., Weber J., Heeger D. J. (2011). Influence of meditation on anti-correlated networks in the brain. Front. Hum. Neurosci. 5:183 10.3389/fnhum.2011.00183
    1. Jung C. G. (1961). Modern Man in Search of a Soul. London: Routledge and Kegan Paul
    1. Jung C. G. (1969). The Archetypes and the Collective Unconscious. New York, NY: Routledge and Kegan Paul
    1. Jung C. G. (1982a). Dreams. London: Routledge and Kegan Paul
    1. Jung C. G. (1982b). Psychology and the Occult. London: Routledge and Kegan Paul
    1. Kahn I., Andrews-Hanna J. R., Vincent J. L., Snyder A. Z., Buckner R. L. (2008). Distinct cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity. J. Neurophysiol. 100, 129–139 10.1152/jn.00077.2008
    1. Kandel E. R. (1999). Biology and the future of psychoanalysis: a new intellectual framework for psychiatry revisited. Am. J. Psychiatry 156, 505–524
    1. Kelly A. M., Uddin L. Q., Biswal B. B., Castellanos F. X., Milham M. P. (2008). Competition between functional brain networks mediates behavioral variability. Neuroimage 39, 527–537 10.1016/j.neuroimage.2007.08.008
    1. Kennedy S. H., Konarski J. Z., Segal Z. V., Lau M. A., Bieling P. J., McIntyre R. S., et al. (2007). Differences in brain glucose metabolism between responders to CBT and venlafaxine in a 16-week randomized controlled trial. Am. J. Psychiatry 164, 778–88 10.1176/appi.ajp.164.5.778
    1. Keup W. E. (1970). Origin and mechanisms of hallucinations, Plenum., [S.l.],. 10.1007/978-1-4615-8645-6
    1. Klimesch W., Fellinger R., Freunberger R. (2011). Alpha oscillations and early stages of visual encoding. Front. Psychol. 2:118 10.3389/fpsyg.2011.00118
    1. Knyazev G. G., Slobodskoj-Plusnin J. Y., Bocharov A. V., Pylkova L. V. (2011). The default mode network and EEG alpha oscillations: an independent component analysis. Brain Res. 1402, 67–79 10.1016/j.brainres.2011.05.052
    1. Kometer M., Schmidt A., Bachmann R., Studerus E., Seifritz E., Vollenweider F. X. (2012). Psilocybin biases facial recognition, goal-directed behavior, and mood state toward positive relative to negative emotions through different serotonergic subreceptors. Biol. Psychiatry 72, 898–906 10.1016/j.biopsych.2012.04.005
    1. Krebs T. S., Johansen P. O. (2012). Lysergic acid diethylamide (LSD) for alcoholism: meta-analysis of randomized controlled trials. J. Psychopharmacol. 26, 994–1002 10.1177/0269881112439253
    1. Laxton A. W., Lozano A. M. (2012). Deep brain stimulation for the treatment of alzheimer disease and dementias. World Neurosurg. 80, S28e1–S28.e8. 10.1016/j.wneu.2012.06.028
    1. Laxton A. W., Sankar T., Lozano A. M., Hamani C. (2012). Deep brain stimulation effects on memory. J. Neurosurg. Sci. 56, 341–344
    1. Laxton A. W., Tang-Wai D. F., McAndrews M. P., Zumsteg D., Wennberg R., Keren R., et al. (2010). A phase I trial of deep brain stimulation of memory circuits in Alzheimer's disease. Ann. Neurol. 68, 521–534 10.1002/ana.22089
    1. Lee M. A., Shlain B. (1985). Acid Dreams: The Complete Social History of LSD. The CIA, the Sixties and Beyond. London: Pan
    1. Leech R., Braga R., Sharp D. J. (2012). Echoes of the brain within the posterior cingulate cortex. J. Neurosci. 32, 215–222 10.1523/JNEUROSCI.3689-11.2012
    1. Lemogne C., Delaveau P., Freton M., Guionnet S., Fossati P. (2012). Medial prefrontal cortex and the self in major depression. J. Affect. Disord. 136, e1–e11 10.1016/j.jad.2010.11.034
    1. Lorincz M. L., Kekesi K. A., Juhasz G., Crunelli V., Hughes S. W. (2009). Temporal framing of thalamic relay-mode firing by phasic inhibition during the alpha rhythm. Neuron 63, 683–696 10.1016/j.neuron.2009.08.012
    1. Lyvers M., Meester M. (2012). Illicit use of LSD or psilocybin, but not MDMA or nonpsychedelic drugs, is associated with mystical experiences in a dose-dependent manner. J. Psychoact. Drugs 44, 410–417 10.1080/02791072.2012.736842
    1. MacLean K. A., Johnson M. W., Griffiths R. R. (2011). Mystical experiences occasioned by the hallucinogen psilocybin lead to increases in the personality domain of openness. J. Psychopharmacol. 25, 1453–1461 10.1177/0269881111420188
    1. Mangini M. (1998). Treatment of alcoholism using psychedelic drugs: a review of the program of research. J. Psychoact. Drugs 30, 381–418 10.1080/02791072.1998.10399714
    1. Martin V. C., Schacter D. L., Corballis M. C., Addis D. R. (2011). A role for the hippocampus in encoding simulations of future events. Proc. Natl. Acad. Sci. U.S.A. 108, 13858–13863 10.1073/pnas.1105816108
    1. Mason M. F., Norton M. I., Van Horn J. D., Wegner D. M., Grafton S. T., Macrae C. N. (2007). Wandering minds: the default network and stimulus-independent thought. Science 315, 393–395 10.1126/science.1131295
    1. Masters R., Houston J. (1972). Varieties of Psychedelic Experience. New York, NY: Holt, Rinehart and Winston
    1. Masters R. E. L., Houston J. (1966). Varieties of Psychedelic Experience. s.n. (New York, NY: ).
    1. Mayberg H. S., Lozano A. M., Voon V., McNeely H. E., Seminowicz D., Hamani C., et al. (2005). Deep brain stimulation for treatment-resistant depression. Neuron 45, 651–660 10.1016/j.neuron.2005.02.014
    1. McCrae R. R., Costa P. T., Jr. (1997). Personality trait structure as a human universal. Am. Psychol. 52, 509–516 10.1037/0003-066X.52.5.509
    1. McGlothlin W. H., Arnold D. O. (1971). LSD revisited. A ten-year follow-up of medical LSD use. Arch. Gen. Psychiatry 24, 35–49 10.1001/archpsyc.1971.01750070037005
    1. McKenna T. (1992). Food of the Gods: Search for the Original Tree of Knowledge - A Radical History of Plants, Drugs and Human Evolution. New York, NY: Rider
    1. Merkur D. (1998). The Ecstatic Imagination: Psychedelic Experiences and the Psychoanalysis of Self-Actualization. Albany, NY: State University of New York Press
    1. Meyer J. H., McMain S., Kennedy S. H., Korman L., Brown G. M., DaSilva J. N., et al. (2003). Dysfunctional attitudes and 5-HT2 receptors during depression and self-harm. Am. J. Psychiatry 160, 90–99 10.1176/appi.ajp.160.1.90
    1. Monroe R. R., Heath R. G. (1961). Effects of lysergic acid and various derivatives on depth and cortical electrograms. J. Neuropsychiatr. 3, 75–82
    1. Monroe R. R., Heath R. G., Mickle W. A., Llewellyn R. C. (1957). Correlation of rhinencephalic electrograms with behavior; a study on humans under the influence of LSD and mescaline. Electroencephalogr. Clin. Neurophysiol. 9, 623–642 10.1016/0013-4694(57)90084-6
    1. Moreno F. A., Wiegand C. B., Taitano E. K., Delgado P. L. (2006). Safety, tolerability, and efficacy of psilocybin in 9 patients with obsessive-compulsive disorder. J. Clin. Psychiatry 67, 1735–1740 10.4088/JCP.v67n1110
    1. Morgan C. J., Muetzelfeldt L., Muetzelfeldt M., Nutt D. J., Curran H. V. (2010). Harms associated with psychoactive substances: findings of the UK National Drug Survey. J. Psychopharmacol. 24, 147–153 10.1177/0269881109106915
    1. Muthukumaraswamy S. D., Carhart-Harris R. L., Moran R. J., Brookes M. J., Williams T. M., Errtizoe D., et al. (2013). Broadband cortical desynchronization underlies the human psychedelic state. J. Neurosci. 33, 15171–15183 10.1523/JNEUROSCI.2063-13.2013
    1. Neisser U. (1967). Cognitive Psychology. New York, NY: Appleton-Century-Crofts
    1. Nichols D. E. (2004). Hallucinogens. Pharmacol. Ther. 101, 131–181 10.1016/j.pharmthera.2003.11.002
    1. Nutt D. J., King L. A., Nichols D. E. (2013). Effects of Schedule I drug laws on neuroscience research and treatment innovation. Nat. Rev. Neurosci. 14, 577–585 10.1038/nrn3530
    1. Ogilvie R. D., Hunt H. T., Tyson P. D., Lucescu M. L., Jeakins D. B. (1982). Lucid dreaming and alpha activity: a preliminary report. Percept. Mot. Skills 55, 795–808 10.2466/pms.1982.55.3.795
    1. Panksepp J., Solms M. (2012). What is neuropsychoanalysis? Clinically relevant studies of the minded brain. Trends Cogn. Sci. 16, 6–8 10.1016/j.tics.2011.11.005
    1. Parvizi J., Van Hoesen G. W., Buckwalter J., Damasio A. (2006). Neural connections of the posteromedial cortex in the macaque. Proc. Natl. Acad. Sci. U.S.A. 103, 1563–1568 10.1073/pnas.0507729103
    1. Pazos A., Probst A., Palacios J. M. (1987). Serotonin receptors in the human brain–IV. Autoradiographic mapping of serotonin-2 receptors. Neuroscience 21, 123–139 10.1016/0306-4522(87)90327-7
    1. Pfefferbaum A., Chanraud S., Pitel A. L., Muller-Oehring E., Shankaranarayanan A., Alsop D. C., et al. (2011). Cerebral blood flow in posterior cortical nodes of the default mode network decreases with task engagement but remains higher than in most brain regions. Cereb. Cortex 21, 233–244 10.1093/cercor/bhq090
    1. Priesemann V., Valderrama M., Wibral M., Le Van Quyen M. (2013). Neuronal avalanches differ from wakefulness to deep sleep–evidence from intracranial depth recordings in humans. PLoS Comput. Biol. 9:e1002985 10.1371/journal.pcbi.1002985
    1. Qin P., Northoff G. (2011). How is our self related to midline regions and the default-mode network? Neuroimage 57, 1221–1233 10.1016/j.neuroimage.2011.05.028
    1. Rabinovich M., Volkovskii A., Lecanda P., Huerta R., Abarbanel H. D., Laurent G. (2001). Dynamical encoding by networks of competing neuron groups: winnerless competition. Phys. Rev. Lett. 87, 068102 10.1103/PhysRevLett.87.068102
    1. Raichle M. E. (2006). Neuroscience. The brain's dark energy. Science 314, 1249–1250 10.1126/science.1134405
    1. Raichle M. E. (2010). The brain's dark energy. Sci. Am. 302, 44–49 10.1038/scientificamerican0310-44
    1. Raichle M. E., Mintun M. A. (2006). Brain work and brain imaging. Annu. Rev. Neurosci. 29, 449–476 10.1146/annurev.neuro.29.051605.112819
    1. Raichle M. E., Snyder A. Z. (2007). A default mode of brain function: a brief history of an evolving idea. Neuroimage 37, 1083–1090 discussion: 1097–1099. 10.1016/j.neuroimage.2007.02.041
    1. Raichle M. E., MacLeod A. M., Snyder A. Z., Powers W. J., Gusnard D. A., Shulman G. L. (2001). A default mode of brain function. Proc. Natl. Acad. Sci. U.S.A. 98, 676–682 10.1073/pnas.98.2.676
    1. Ramey E. R., O'Doherty D. S. (1960). Electrical Studies on the Unanesthetized Brain. New York, NY: AFCB Press
    1. Rolls E. T., Deco G. (2010). The Noisy Brain: Stochastic Dynamics as a Principle Of Brain Function. Oxford: Oxford University Press; 10.1093/acprof:oso/9780199587865.001.0001
    1. Rumsey C. C., Abbott L. F. (2004). Equalization of synaptic efficacy by activity- and timing-dependent synaptic plasticity. J. Neurophysiol. 91, 2273–2280 10.1152/jn.00900.2003
    1. Salinas E., Sejnowski T. J. (2001). Correlated neuronal activity and the flow of neural information. Nat. Rev. Neurosci. 2, 539–5350 10.1038/35086012
    1. Sandison R. (2001). A Century of Psychiatry, Psychotherapy And Group Analysis: A Search For Integration. London: Jessica Kingsley
    1. Sandison R. A. (1954). Psychological aspects of the LSD treatment of the neuroses. J. Ment. Sci. 100, 508–515
    1. Sandison R. A., Whitelaw J. D. (1957). Further studies in the therapeutic value of lysergic acid diethylamide in mental illness. J. Ment. Sci. 103, 332–343
    1. Savage C. (1962). LSD, alcoholism and transcendence. J. Nerv. Ment. Dis. 135, 429–435
    1. Schmaal L., Goudriaan A. E., Joos L., Kruse A. M., Dom G., van den Brink W., et al. (2013). Modafinil modulates resting-state functional network connectivity and cognitive control in alcohol-dependentpatients. Biol. Psychiatry 73, 789–795 10.1016/j.biopsych.2012.12.025
    1. Schultes R. E. (1980). Plants of the Gods: Origins of Hallucinogeneic Use. London: Hutchinson
    1. Schwarz B. E., Sem-Jacobsen C. W., Petersen M. C. (1956). Effects of mescaline, LSD-25, and adrenochrome on depth electrograms in man. AMA. Arch. Neurol. Psychiatry 75, 579–587 10.1001/archneurpsyc.1956.02330240017002
    1. Schwartenbeck P., Fitzgerald T., Dolan R. J., Friston K. (2013). Exploration, novelty, surprise, and free energy minimization. Front. Psychol. 4:710 10.3389/fpsyg.2013.00710
    1. Sepulcre J., Sabuncu M. R., Yeo T. B., Liu H., Johnson K. A. (2012). Stepwise connectivity of the modal cortex reveals the multimodal organization of the human brain. J. Neurosci. 32, 10649–10661 10.1523/JNEUROSCI.0759-12.2012
    1. Serafetinides E. A. (1965). The EEG effects of LSD-25 in epileptic patients before and after temporal lobectomy. Psychopharmacologia 7, 453–460 10.1007/BF00402367
    1. Shanahan M. (2010). Embodiment and the Inner Life: Cognition and Consciousness In The Space Of Possible Minds. Oxford: Oxford University Press
    1. Shanon B. (2002). The Antipodes of the Mind: Charting the Phenomenology of the Ayahuasca Experience. Oxford: Oxford University Press
    1. Shimamura A. P. (2000). Toward a cognitive neuroscience of metacognition. Conscious. Cogn. 9, 313–323 discussion: 324–326. 10.1006/ccog.2000.0450
    1. Silva L. R., Amitai Y., Connors B. W. (1991). Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons. Science 251, 432–435 10.1126/science.1824881
    1. Smith S. M., Fox P. T., Miller K. L., Glahn D. C., Fox P. M., Mackay C. E., et al. (2009). Correspondence of the brain's functional architecture during activation and rest. Proc. Natl. Acad. Sci. U.S.A. 106, 13040–13045 10.1073/pnas.0905267106
    1. Sporns O., Chialvo D. R., Kaiser M., Hilgetag C. C. (2004). Organization, development and function of complex brain networks. Trends Cogn. Sci. 8, 418–425 10.1016/j.tics.2004.07.008
    1. Spreng R. N., Grady C. L. (2010). Patterns of brain activity supporting autobiographical memory, prospection, and theory of mind, and their relationship to the default mode network. J. Cogn. Neurosci. 22, 1112–1123 10.1162/jocn.2009.21282
    1. Spruston N. (2008). Pyramidal neurons: dendritic structure and synaptic integration. Nat. Rev. Neurosci. 9, 206–221 10.1038/nrn2286
    1. Stace W. T. (1961). Mysticism and Philosophy. London: Macmillan
    1. Studerus E., Kometer M., Hasler F., Vollenweider F. X. (2011). Acute, subacute and long-term subjective effects of psilocybin in healthy humans: a pooled analysis of experimental studies. J. Psychopharmacol. 25, 1434–1452 10.1177/0269881110382466
    1. Styron W. (1992). Darkness Visible: A Memoir of Madness, Pan. (New York, NY: ).
    1. Subbotskii E. V. (2010). Magic and the Mind: Mechanisms, Functions, and Development of Magical Thinking and Behavior. New York: NY: Oxford University Press; 10.1093/acprof:oso/9780195393873.001.0001
    1. Sun W., Dan Y. (2009). Layer-specific network oscillation and spatiotemporal receptive field in the visual cortex. Proc. Natl. Acad. Sci. U.S.A. 106, 17986–17991 10.1073/pnas.0903962106
    1. Tagliazucchi E., Balenzuela P., Fraiman D., Chialvo D. R. (2012). Criticality in large-scale brain FMRI dynamics unveiled by a novel point process analysis. Front. Physiol. 3:15 10.3389/fphys.2012.00015
    1. Tononi G. (2010). Information integration: its relevance to brain function and consciousness. Arch. Ital. Biol. 148, 299–322 10.4449/aib.v149i5.1388
    1. Tononi G., Sporns O., Edelman G. M. (1994). A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc. Natl. Acad. Sci. U.S.A. 91, 5033–5037 10.1073/pnas.91.11.5033
    1. Torda C. (1969). LSD users. Character structure and psychodynamic processes. N.Y. St. J. Med. 69, 2243–2247
    1. Trulson M. E., Jacobs B. L. (1979). Raphe unit activity in freely moving cats: correlation with level of behavioral arousal. Brain Res. 163, 135–150 10.1016/0006-8993(79)90157-4
    1. Tognoli E., Kelso J. A. (2014). The metastable brain. Neuron 81, 35–48 10.1016/j.neuron.2013.12.022
    1. van Amsterdam J., Opperhuizen A., van den Brink W. (2011). Harm potential of magic mushroom use: a review. Regul. Toxicol. Pharmacol. 59, 423–429 10.1016/j.yrtph.2011.01.006
    1. van den Heuvel M. P., Kahn R. S., Goni J., Sporns O. (2012). High-cost, high-capacity backbone for global brain communication. Proc. Natl. Acad. Sci. U.S.A. 109, 11372–1137 10.1073/pnas.1203593109
    1. Van Essen D. C., Dierker D. L. (2007). Surface-based and probabilistic atlases of primate cerebral cortex. Neuron 56, 209–225 10.1016/j.neuron.2007.10.015
    1. van Wel J. H., Kuypers K. P., Theunissen E. L., Bosker W. M., Bakker K., Ramaekers J. G. (2012). Effects of acute MDMA intoxication on mood and impulsivity: role of the 5-HT2 and 5-HT1 receptors. PLoS ONE 7:e40187 10.1371/journal.pone.0040187
    1. Vanhaudenhuyse A., Demertzi A., Schabus M., Noirhomme Q., Bredart S., Boly M., et al. (2011). Two distinct neuronal networks mediate the awareness of environment and of self. J. Cogn. Neurosci. 23, 570–578 10.1162/jocn.2010.21488
    1. Vollenweider F. X., Vollenweider-Scherpenhuyzen M. F., Babler A., Vogel H., Hell D. (1998). Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. Neuroreport 9, 3897–3902 10.1097/00001756-199812010-00024
    1. Waddington C. H. (1974). A catastrophe theory of evolution. Ann. N.Y. Acad. Sci. 231, 32–42 10.1111/j.1749-6632.1974.tb20551.x
    1. Weber E. T., Andrade R. (2010). Htr2a Gene and 5-HT(2A) Receptor expression in the cerebral cortex studied using genetically modified mice. Front. Neurosci. 4:36 10.3389/fnins.2010.00036
    1. Webster R. (1995). Why Freud was Wrong: Sin, Science and Psychoanalysis. London: HarperCollins
    1. Zeeman E. C. (1973). Catastrophe theory in brain modelling. Int. J. Neurosci. 6, 39–41 10.3109/00207457309147186
    1. Zhou J., Greicius M. D., Gennatas E. D., Growdon M. E., Jang J. Y., Rabinovici G. D., et al. (2010). Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer's disease. Brain 133, 1352–1367 10.1093/brain/awq075
    1. Zou Q., Wu C. W., Stein E. A., Zang Y., Yang Y. (2009). Static and dynamic characteristics of cerebral blood flow during the resting state. Neuroimage 48, 515–524 10.1016/j.neuroimage.2009.07.006

Source: PubMed

3
Iratkozz fel