Regulation of acute reflectory hyperinflammation in viral and other diseases by means of stellate ganglion block. A conceptual view with a focus on Covid-19

Lorenz Fischer, Hans Barop, Sabina Maria Ludin, Hans-Georg Schaible, Lorenz Fischer, Hans Barop, Sabina Maria Ludin, Hans-Georg Schaible

Abstract

Whereas the autonomic nervous system (ANS) and the immune system used to be assigned separate functions, it has now become clear that the ANS and the immune system (and thereby inflammatory cascades) work closely together. During an acute immune response (e. g., in viral infection like Covid-19) the ANS and the immune system establish a fast interaction resulting in "physiological" inflammation. Based on our knowledge of the modulation of inflammation by the ANS we propose that a reflectory malfunction of the ANS with hyperactivity of the sympathetic nervous system (SNS) may be involved in the generation of acute hyperinflammation. We believe that sympathetic hyperactivity triggers a hyperresponsiveness of the immune system ("cytokine storm") with consecutive tissue damage. These reflectory neuroimmunological and inflammatory cascades constitute a general reaction principle of the organism under the leadership of the ANS and does not only occur in viral infections, although Covid-19 is a typical current example therefore. Within the overreaction several interdependent pathological positive feedback loops can be detected in which the SNS plays an important part. Consequently, there is a chance to regulate the hyperinflammation by influencing the SNS. This can be achieved by a stellate ganglion block (SGB) with local anesthetics, temporarily disrupting the pathological positive feedback loops. Thereafter, the complex neuroimmune system has the chance to reorganize itself. Previous clinical and experimental data have confirmed a favorable outcome in hyperinflammation (including pneumonia) after SGB (measurable e. g. by a reduction in proinflammatory cytokines).

Keywords: Autonomic nervous system; Covid-19; Cytokine storm; Hyperinflammation; Local anesthetics; Stellate ganglion block.

Conflict of interest statement

None.

Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.

Figures

Fig. 1
Fig. 1
Overview of affected systems, e. g. following a virus infection like Covid-19. The grey area symbolizes that the autonomic nervous system (ANS) is integrated in the communication of all systems and has a coordinating function. The black arrows symbolize that the systems are connected to each other via neuronal and non-neuronal feedback loops and are therefore interdependent. The same neuronal and non-neuronal substances can have both activating and inhibiting effects, depending on the current state of the system as well as on the point in time. (For literature, see text). Interestingly, the reactions in this system take place in principle in the same way, regardless of whether the initial stimulus was a viral infection, mechanical trauma, psychological stress, or other cause. The clinical picture – the disease – is then determined by the organ or organ system mainly affected (see text). In our opinion, the consequences of acute hyperinflammation such as ARDS, endothelial dysfunction, microcirculation disturbance, and coagulopathy are not different entities in a viral infection, but an expression of a malfunction of the ANS with sympathetic hyperactivity.
Fig. 2
Fig. 2
Autonomic nervous system and immune system: central and peripheral communication (more details in Fig. 3). Positive feedback loops exist between AND within the central and peripheral communication. Example: Elements of peripheral communication sensitize each other: Thus, immune cells AND nerve fibers produce cytokines and substance P (SP), which in turn induce the immune cells and nerve fibers to produce even more cytokines and SP (positive feedback loop). The brain is then informed of the cytokine and SP concentration; it knows via the afferent nerve fibers the site of tissue damage and the incipient inflammation. Now, this information is processed (central communication) and the resulting output is then communicated to the periphery by means of the efferents shown here (communication between center and periphery).
Fig. 3
Fig. 3
Schematic and simplified overview of the autonomic nervous system and immune system and influence of the stellate ganglion block (direct and indirect) on several systems simultaneously (blue fields; see Section 3). Representation of different levels of the “crosstalk” between nervous system and immune system (described step by step in the text). Each “part” is dependent on the whole system, and the function of the “parts” can hardly be considered in isolation. In addition to negative feedback loops, several positive feedback loops (iterations) are formed so that the system gets a high complexity. The “reset” by means of stellate ganglion block not only affects the fibers of the autonomic nervous system, but also the subsequent reactions triggered by it, such as the regulation of the immune and inflammatory system and thus, cytokine production, too (see Table 1). CP: Celiac plexus; HPA: hypothalamic-pituitary-adrenal; RVLM: rostral ventrolateral medulla; SGB: stellate ganglion block. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 4
Fig. 4
The stellate ganglion block (SGB) simultaneously regulates the systems linked to the autonomic nervous system (ANS).

References

    1. Affleck V.S., Coote J.H., Pyner S. The projection and synaptic organisation of NTS afferent connections with presympathetic neurons, GABA and nNOS neurons in the paraventricular nucleus of the hypothalamus. Neuroscience. 2012;219(1–2):48–61. doi: 10.1016/j.neuroscience.2012.05.070.
    1. Alston E.N., Parrish D.C., Hasan W., Tharp K., Pahlmeyer L., Habecker B.A. Cardiac ischemia-reperfusion regulates sympathetic neuropeptide expression through gp130-dependent and independent mechanisms. Neuropeptides. 2011;45(1):33–42. doi: 10.1016/j.npep.2010.10.002.
    1. Amino M., Yoshioka K., Morita S., et al. Is the combination therapy of IKr-channel blocker and left stellate ganglion block effective for intractable ventricular arrhythmia in a cardiopulmonary arrest patient? Cardiol. J. 2007;14(4):355–365.
    1. Amiya E., Watanabe M., Komuro I. The relationship between vascular function and the autonomic nervous system. Ann. Vasc. Dis. 2014;7(2):109–119. doi: 10.3400/avd.ra.14-00048.
    1. Ansel J.C., Brown J.R., Payan D.G., Brown M.A. Substance P selectively activates TNF-alpha gene expression in murine mast cells. J. Immunol. 1993;150(10):4478–4485.
    1. Baral P., Umans B.D., Li L., et al. Nociceptor sensory neurons suppress neutrophil and γδ T cell responses in bacterial lung infections and lethal pneumonia. Nat. Med. 2018;24(4):417–426. doi: 10.1038/nm.4501.
    1. Barop H. Thieme; Stuttgart, New York: 2017. Textbook an Atlas of Neural Therapy. Diagnosis and Therapy With Local Anesthetics.
    1. Bellinger D.L., Lorton D. Autonomic regulation of cellular immune function. Auton. Neurosci. 2014;182:15–41. doi: 10.1016/j.autneu.2014.01.006.
    1. Bellinvia S., Edwards C.J., Schisano M., Banfi P., Fallico M., Murabito P. The unleashing of the immune system in COVID-19 and sepsis: the calm before the storm? Inflamm. Res. 2020;69(8):757–763. doi: 10.1007/s00011-020-01366-6.
    1. Benias P.C., Wells R.G., Sackey-Aboagye B., et al. Structure and distribution of an unrecognized interstitium in human tissues. Sci. Rep. 2018;8(1):4947. doi: 10.1038/s41598-018-23062-6.
    1. Bill A., Stjernschantz J., Mandahl A., Brodin E., Nilsson G. Substance P: release on trigeminal nerve stimulation, effects in the eye. Acta Physiol. Scand. 1979;106(3):371–373. doi: 10.1111/j.1748-1716.1979.tb06412.x.
    1. Boettger M.K., Weber K., Gajda M., Bräuer R., Schaible H.G. Spinally applied ketamine or morphine attenuate peripheral inflammation and hyperalgesia in acute and chronic phases of experimental arthritis. Brain Behav. Immun. 2010;24(3):474–485. doi: 10.1016/j.bbi.2009.12.002.
    1. Boettger M.K., Weber K., Grossmann D., Gajda M., Bauer R., Bär K.J., et al. Spinal tumor necrosis factor alpha neutralization reduces peripheral inflammation and hyperalgesia and suppresses autonomic responses in experimental arthritis: a role for spinal tumor necrosis factor alpha during induction and maintenance of peripheral inflammation. Arthritis Rheum. 2010;62(5):1308–1318. doi: 10.1002/art.27380. PMID: 20213802.
    1. Borovikova L.V., Ivanova S., Zhang M., et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405(6785):458–462. doi: 10.1038/35013070.
    1. Breit S., Kupferberg A., Rogler G., Hasler G. Vagus nerve as modulator of the brain-gut axis in psychiatric and inflammatory disorders. Front. Psych. 2018;9:44. doi: 10.3389/fpsyt.2018.00044.
    1. Brown R.H., Robbins W., Staats P., Hirshman C. Prevention of bronchoconstriction by an orally active local anesthetic. Am. J. Respir. Crit. Care Med. 1995;151(4):1239–1243. doi: 10.1164/ajrccm/151.4.1239.
    1. Burke H., Freeman A., Cellura D.C., et al. REACT COVID investigators: inflammatory phenotyping predicts clinical outcome in COVID-19. Respir. Res. 2020;21(1):245. doi: 10.1186/s12931-020-01511-z.
    1. Caravaca A.S., Gallina A.L., Tarnawski L., et al. An effective method for acute vagus nerve stimulation in experimental inflammation. Front. Neurosci. 2019;13:877. doi: 10.3389/fnins.2019.00877.
    1. Caricchio R., Gallucci M., Dass C., et al. Temple University COVID-19 research group. Preliminary predictive criteria for COVID-19 cytokine storm. Ann. Rheum. Dis. 2021;80(1):88–95. doi: 10.1136/annrheumdis-2020-218323.
    1. Cassuto J., Sinclair R., Bonderovic M. Anti-inflammatory properties of local anesthetics and their present and potential clinical implications. Acta Anaesthesiol. Scand. 2006;50(3):265–282. doi: 10.1111/j.1399-6576.2006.00936.x.
    1. Chavan S.S., Pavlov V.A., Tracey K.J. Mechanisms and therapeutic relevance of neuro-immune communication. Immunity. 2017;46(6):927–942. doi: 10.1016/j.immuni.2017.06.008.
    1. Chen Y.Q., Hu G.X., Fu Q., Jin X.J. Effects of stellate ganglion block on blood pressure in spontaneously hypertensive rats. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2012;41(1):65–68.
    1. Chen Y., Guo L., Lang H., et al. Effect of a stellate ganglion block on acute lung injury in septic rats. Inflammation. 2018;41(5):1601–1609. doi: 10.1007/s10753-018-0803-x.
    1. Chiu I.M., von Hehn C.A., Woolf C.J. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nat. Neurosci. 2012;15(8):1063–1067. doi: 10.1038/nn.3144.
    1. Chiu I.M., Heesters B.A., Ghasemlou N., et al. Bacteria activate sensory neurons that modulate pain and inflammation. Nature. 2013;501(7465):52–57. doi: 10.1038/nature12479.
    1. Clark I.A., Vissel B. The meteorology of cytokine storms, and the clinical usefulness of this knowledge. Semin. Immunopathol. 2017;39(5):505–516. doi: 10.1007/s00281-017-0628-y.
    1. Coperchini F., Chiovato L., Croce L., Magri F., Rotondi M. The cytokine storm in COVID-19: an overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev. 2020;53:25–32. doi: 10.1016/j.cytogfr.2020.05.003.
    1. Damiani E., Carsetti A., Casarotta E., et al. Microvascular alterations in patients with SARS-COV-2 severe pneumonia. Ann. Intensive Care. 2020;10(1):60. doi: 10.1186/s13613-020-00680-w.
    1. Das G., Mukherjee N., Ghosh S. Neurological insights of COVID-19 pandemic. ACS Chem. Neurosci. 2020;11(9):1206–1209. doi: 10.1021/acschemneuro.0c00201.
    1. De Giorgio R., Tazzari P.L., Barbara G., Stanghellini V., Corinaldesi R. Detection of substance P immunoreactivity in human peripheral leukocytes. J. Neuroimmunol. 1998;82(2):175–181. doi: 10.1016/s0165-5728(97)00201-4.
    1. Dosch P. 12. Aufl. Haug; Stuttgart: 1986. Lehrbuch der Neuraltherapie nach Huneke.
    1. Dreher M., Kersten A., Bickenbach J., Balfanz P., Hartmann B., Cornelissen C., et al. The characteristics of 50 hospitalized COVID-19 patients with and without ARDS. Dtsch. Arztebl. Int. 2020;117:271–278. doi: 10.3238/arztebl.2020.0271.
    1. Elenkov I.J., Wilder R.L., Chrousos G.P., Vizi E.S. The sympathetic nerve–an integrative interface between two supersystems: the brain and the immune system. Pharmacol. Rev. 2000;52(4):595–638.
    1. Esch T., Stefano G. Proinflammation: a common denominator or initiator of different pathophysiological disease processes. Med. Sci. Monit. 2002;8(5)
    1. Fajgenbaum D.C., June C.H. Cytokine storm. N. Engl. J. Med. 2020;383(23):2255–2273. doi: 10.1056/NEJMra2026131.
    1. Feigenbaum M.J. Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 1978;19:25–52.
    1. Fischer L. Neuraltherapie in der notfallmedizin. Ärztez f NHV. 1995;9:676–685.
    1. Fischer L. 1. Aufl. Hippokrates; Stuttgart: 1998. Neuraltherapie. Neurophysiologie, Injektionstechnik, Umsetzung in die Praxis.
    1. Fischer L. In: Neuraltherapie nach Huneke. Dosch P., Barop H., Hahn-Goddefroy J.D., editors. Haug; Stuttgart: 2002. Der Zweitschlag nach Speranski – Parallelen zu Klinik und zu neuen Wissenschaftstheorien; pp. 81–87. (Hrsg.)
    1. Fischer L. Pathophysiology of pain and neural therapy. Praxis. 2003;92(48):2051–2059. doi: 10.1024/0369-8394.92.48.2051.
    1. Fischer L. In: Foundations of Morphodynamics in Osteopathy. Liem T., van den Heede P., editors. Handspring Publishing; Edinbourgh: 2017. Physical and neurobiological principles; pp. 67–96.
    1. Fischer L. 5. Aufl. Thieme; Stuttgart: 2019. Neuraltherapie: Neurophysiologie, Injektionstechnik und Therapievorschläge.
    1. Fischer L. In: Handbuch Neuraltherapie – Diagnostik und Therapie mit Lokalanästhetika. Weinschenk S., editor. Thieme; Stuttgart: 2020. Stellate ganglion; pp. 413–416.
    1. Fischer L., Barop H., Maxion-Bergemann S. On behalf of the Swiss Federal Office of Public Health; 2005. Health Technology Assessment HTA Neural therapy according to Huneke. Program Evaluation Complementary Medicine (PEK)
    1. Fischer L., Ludin S.M., Thommen D., Hausammann R. Submitted to the Swiss Federal Office of Public Health; 2010. Application for the Adoption of Interference Field Therapy (Neural Therapy According to Huneke) Into the Health Benefit Basket of the Compulsory Health Insurance.
    1. Freidin M., Kessler J.A. Cytokine regulation of substance P expression in sympathetic neurons. Proc. Natl. Acad. Sci. U. S. A. 1991;88(8):3200–3203. doi: 10.1073/pnas.88.8.3200.
    1. Galic M.A., Riazi K., Pittman Q.J. Cytokines and brain excitability. Front. Neuroendocrinol. 2012;33(1):116–125. doi: 10.1016/j.yfrne.2011.12.002.
    1. García-Morán E., Sandín-Fuentes M.G., Álvarez López J.C., Duro-Aguado I., Urueña-Martínez N., Hernández-Luis C. Electrical storm secondary to acute myocardial infarction and heart failure treated with left stellate ganglion block. Rev. Esp. Cardiol. 2013;66(7):595–597. doi: 10.1016/j.rec.2013.01.015.
    1. Grebe K.M., Takeda K., Hickman H.D., et al. Cutting edge: sympathetic nervous system increases proinflammatory cytokines and exacerbates influenza a virus pathogenesis. J. Immunol. 2010;184(2):540–544. doi: 10.4049/jimmunol.0903395.
    1. Greiff L., Andersson M., Akerlund A., et al. Microvascular exudative hyperresponsiveness in human coronavirus-induced common cold. Thorax. 1994;49(2):121–127. doi: 10.1136/thx.49.2.121.
    1. Groeben H., Foster W.M., Brown R.H. Intravenous lidocaine and oral mexiletine block reflex bronchoconstriction in asthmatic subjects. Am. J. Respir. Crit. Care Med. 1996;154(4 Pt 1):885–888. doi: 10.1164/ajrccm.154.4.8887580.
    1. Groeben H., Silvanus M.T., Beste M., Peters J. Both intravenous and inhaled lidocaine attenuate reflex bronchoconstriction but at different plasma concentrations. Am. J. Respir. Crit. Care Med. 1999;159(2):530–535. doi: 10.1164/ajrccm.159.2.9806102.
    1. Guo W., Jin X.J., Yu J., Liu Y., Zhang J.P., Yang D.W., et al. Effects of stellate ganglion block on the peri-operative vasomotor cytokine content and intrapulmonary shunt in patients with esophagus cancer. Asian Pac. J. Cancer Prev. 2014;15(21):9505–9509. doi: 10.7314/apjcp.2014.15.21.9505. PMID: 25422247.
    1. Hanamatsu N., Yamashiro M., Sumitomo M., Furuya H. Effectiveness of cervical sympathetic ganglia block on regeneration of the trigeminal nerve following transection in rats. Reg. Anesth. Pain Med. 2002;27(3):268–276. doi: 10.1053/rapm.2002.31206.
    1. Heijnen C.J., Rouppe van der Voort C., van de Pol M., Kavelaars A. Cytokines regulate alpha(1)-adrenergic receptor mRNA expression in human monocytic cells and endothelial cells. J. Neuroimmunol. 2002;125(1-2):66–72. doi: 10.1016/s0165-5728(02)00034-6.
    1. Heine H. In: Lehrbuch der integrativen Schmerztherapie. Fischer L., Peuker E.T., editors. Haug; Stuttgart: 2011. Grundregulation; pp. 30–34. (Hrsg.)
    1. Hollmann M.W., Durieux M.E. Local anesthetics and the inflammatory response: a new therapeutic indication? Anesthesiology. 2000;93(3):858–875. doi: 10.1097/00000542-200009000-00038.
    1. Hollmann M.W., Gross A., Jelacin N., Durieux M.E. Local anesthetic effects on priming and activation of human neutrophils. Anesthesiology. 2001;95(1):113–122. doi: 10.1097/00000542-200107000-00021.
    1. Hosoi J., Murphy G.F., Egan C.L., et al. Regulation of langerhans cell function by nerves containing calcitonin gene-related peptide. Nature. 1993;363(6425):159–163. doi: 10.1038/363159a0.
    1. Huang C., Wang Y., Li X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5.
    1. Inoue A., Ikoma K., Morioka N., et al. Interleukin-1beta induces substance P release from primary afferent neurons through the cyclooxygenase-2 system. J. Neurochem. 1999;73(5):2206–2213.
    1. Jänig W. Cambridge University Press; Cambridge: 2006. The Integrative Action of the Autonomic Nervous System.
    1. Jänig W. In: Lehrbuch Integrative Schmerztherapie. Fischer L., Peuker E.T., editors. Haug; Stuttgart: 2011. Rolle von motorischen Rückkopplungsmechanismen in der Erzeugung von Schmerzen; pp. 81–89.
    1. Jänig W. Autonomic nervous system and inflammation. Auton. Neurosci. 2014;182:1–3. doi: 10.1016/j.autneu.2014.02.002.
    1. Jänig W. Sympathetic nervous system and inflammation: a conceptual view. Auton. Neurosci. 2014;182:4–14. doi: 10.1016/j.autneu.2014.01.004.
    1. Jänig W., Baron R. In: Lehrbuch der integrativen Schmerztherapie. Fischer L., Peuker E.T., editors. Haug; Stuttgart: 2011. Pathophysiologie des Schmerzes. (Hrsg.)
    1. Ji R.R., Chamessian A., Zhang Y.Q. Pain regulation by non-neuronal cells and inflammation. Science. 2016;354(6312):572–577. doi: 10.1126/science.aaf8924.
    1. von Känel R., Dimsdale J.E. Effects of sympathetic activation by adrenergic infusions on hemostasis in vivo. Eur. J. Haematol. 2000;65(6):357–369. doi: 10.1034/j.1600-0609.2000.065006357.x.
    1. Kenney M.J., Ganta C.K. Autonomic nervous system and immune system interactions. Compr. Physiol. 2014;4(3):1177–1200. doi: 10.1002/cphy.c130051.
    1. Kim J.S., Lee J.Y., Yang J.W., et al. Immunopathogenesis and treatment of cytokine storm in COVID-19. Theranostics. 2021;11(1):316–329. doi: 10.7150/thno.49713.
    1. King K.A., Hu C., Rodriguez M.M., Romaguera R., Jiang X., Piedimonte G. Exaggerated neurogenic inflammation and substance P receptor upregulation in RSV-infected weanling rats. Am. J. Respir. Cell Mol. Biol. 2001;24(2):101–107. doi: 10.1165/ajrcmb.24.2.4264.
    1. Kluge G., Neugebauer G. Oxford; Heidelberg, Berlin: 1994. Grundlagen der Thermodynamik. Spektrum.
    1. Konrad C.J., Schuepfer G.K., Neuburger M., Schley M., Schmelz M., Schmeck J. Reduction of pulmonary edema by short-acting local anesthetics. Reg. Anesth. Pain Med. 2006;31(3):254–259. doi: 10.1016/j.rapm.2006.01.003.
    1. Koopman F.A., van Maanen M.A., Vervoordeldonk M.J., Tak P.P. Balancing the autonomic nervous system to reduce inflammation in rheumatoid arthritis. J. Intern. Med. 2017;282(1):64–75. doi: 10.1111/joim.12626.
    1. Kumagai H., Oshima N., Matsuura T., et al. Importance of rostral ventrolateral medulla neurons in determining efferent sympathetic nerve activity and blood pressure. Hypertens. Res. 2012;35(2):132–141. doi: 10.1038/hr.2011.208.
    1. Kumar N., Thapa D., Gombar S., Ahuja V., Gupta R. Analgesic efficacy of pre-operative stellate ganglion block on postoperative pain relief: a randomised controlled trial. Anaesthesia. 2014;69(9) doi: 10.1111/anae.12774. 954-660.
    1. Lai J.P., Douglas S.D., Ho W.Z. Human lymphocytes express substance P and its receptor. J. Neuroimmunol. 1998;86(1):80–86. doi: 10.1016/s0165-5728(98)00025-3.
    1. Lee L.Y. Respiratory sensations evoked by activation of bronchopulmonary C-fibers. Respir. Physiol. Neurobiol. 2009;167(1):26–35. doi: 10.1016/j.resp.2008.05.006.
    1. Lee L.Y., Yu J. Sensory nerves in lung and airways. Compr. Physiol. 2014;4(1):287–324. doi: 10.1002/cphy.c130020.
    1. Lemke D.M. Riding out the storm: sympathetic storming after traumatic brain injury. J Neurosci Nurs. 2004;36(1):4–9.
    1. Leriche R., Fontaine R. L'anesthésie du ganglion étoile: sa technique, ses indications, ses résultats. Presse Med. 1934;42:849–850.
    1. Levi M., Nieuwdorp M., van der Poll T., Stroes E. Metabolic modulation of inflammation-induced activation of coagulation. Semin. Thromb. Hemost. 2008;34(1):26–32. doi: 10.1055/s-2008-1066020.
    1. Levy C.E., Lorch F. Recovery of upper limb motor function in tetraplegia with stellate ganglion block treatment of reflex sympathetic dystrophy: a case report. Am. J. Phys. Med. Rehabil. 1996;75(6):479–482. doi: 10.1097/00002060-199611000-00018.
    1. Li Y.C., Bai W.Z., Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J. Med. Virol. 2020;92(6):552–555. doi: 10.1002/jmv.25728.
    1. Lipov E., Candido K. Efficacy and safety of stellate ganglion block in chronic ulcerative colitis. World J. Gastroenterol. 2017;23(17):3193–3194. doi: 10.3748/wjg.v23.i17.3193.
    1. Liu M.H., Tian J., Su Y.P., Wang T., Xiang Q., Wen L. Cervical sympathetic block regulates early systemic inflammatory response in severe trauma patients. Med. Sci. Monit. 2013;19:194–201. doi: 10.12659/MSM.883833.
    1. Liu Y., Tao T., Li W., Bo Y. Regulating autonomic nervous system homeostasis improves pulmonary function in rabbits with acute lung injury. BMC Pulm. Med. 2017;17(1):98. doi: 10.1186/s12890-017-0436-0.
    1. Liu J., Zheng X., Tong Q., et al. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV. J. Med. Virol. 2020;92(5):491–494. doi: 10.1002/jmv.25709.
    1. Lorenz E.N. American Association for the Advancement of Science, 139th Meeting. 1972. Predictability: does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?
    1. Lu J., Shi Z., Su Y., et al. Effect of cervical sympathetic ganglia block on the mortality of mice with combined radiation and burn injury and its possible mechanism. Chin. J. Clin. Rehab. 2006;10(34):177–181.
    1. Magro C., Mulvey J.J., Berlin D., et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl. Res. 2020;S1931–5244(20):30070. doi: 10.1016/j.trsl.2020.04.007.
    1. Maihöfner C., Handwerker H.O., Neundörfer B., Birklein F. Patterns of cortical reorganization in complex regional pain syndrome. Neurology. 2003;61(12):1707–1715. doi: 10.1212/01.wnl.0000098939.02752.8e.
    1. Mandelbrot B.B. How long is the cost of britain? Science. 1967;156:636–638.
    1. Marvar P.J., Harrison D.G. In: Primer on the Autonomic Nervous System. Third edition. Robertson D., Biaggioni I., Burnstock G., Low P.A., Paton J.F.R., editors. Academic Press; San Diego: 2012. Inflammation, immunity and the autonomic nervous system; pp. 325–329.
    1. Matsuda M., Huh Y., Ji R.R. Roles of inflammation, neurogenic inflammation, and neuroinflammation in pain. J. Anesth. 2019;33(1):131–139. doi: 10.1007/s00540-018-2579-4.
    1. McLachlan E.M. Transmission of signals through sympathetic ganglia–modulation, integration or simply distribution? Acta Physiol. Scand. 2003;177(3):227–235. doi: 10.1046/j.1365-201X.2003.01075.x.
    1. Mejías A., Chávez-Bueno S., Ramilo O. Respiratory syncytial virus pneumonia: mechanisms of inflammation and prolonged airway hyperresponsiveness. Curr. Opin. Infect. Dis. 2005;18(3):199–204. doi: 10.1097/01.qco.0000168378.07110.72.
    1. Merad M., Martin J.C. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat. Rev. Immunol. 2020:1–8. doi: 10.1038/s41577-020-0331-4.
    1. Molina P.E. Neurobiology of the stress response: contribution of the sympathetic nervous system to the neuroimmune axis in traumatic injury. Shock. 2005;24(1):3–10. doi: 10.1097/01.shk.0000167112.18871.5c.
    1. Mousa S.A., Shaqura M., Brendl U., Al-Khrasani M., Fürst S., Schäfer M. Involvement of the peripheral sensory and sympathetic nervous system in the vascular endothelial expression of ICAM-1 and the recruitment of opioid-containing immune cells to inhibit inflammatory pain. Brain Behav. Immun. 2010;24(8):1310–1323. doi: 10.1016/j.bbi.2010.06.008.
    1. Murakawa K. Changes in microcirculation in the facial nerve with electrical stimulation and chemical blockade of cervical sympathetic trunks. Masui. 1993;42(5):646–652.
    1. Myers J.L., Domkowski P.W., Wang Y., Hopkins R.A. Sympathetic blockade blunts hypercapnic pulmonary arterial vasoconstriction in newborn piglets. Eur. J. Cardiothorac. Surg. 1998;13(3):298–305. doi: 10.1016/s1010-7940(98)00007-4.
    1. Naegele M., Flammer A.J., Enseleit F., et al. Endothelial function and sympathetic nervous system activity in patients with takotsubo syndrome. Int. J. Cardiol. 2016;224:226–230. doi: 10.1016/j.ijcard.2016.09.008.
    1. Nahama A., Ramachandran R., Cisternas A.F., Ji H. The role of afferent pulmonary innervation in poor prognosis of acute respiratory distress syndrome in COVID-19 patients and proposed use of resiniferatoxin (RTX) to improve patient outcomes in advanced disease state: a review. Med. Drug Discov. 2020;5 doi: 10.1016/j.medidd.2020.100033.
    1. Narita K., Murata T., Hamada T., et al. Interactions among higher trait anxiety, sympathetic activity, and endothelial function in the elderly. J. Psychiatr. Res. 2007;41(5):418–427. doi: 10.1016/j.jpsychires.2006.01.003.
    1. Nicolis G., Prigogine I. J. Wiley & Sons; New York, London, Sydney, Toronto: 1977. Self-organization in Nonequilibrium System: From Dissipative Structures to Order Through Fluctuations.
    1. O'Connor T.M., O'Connell J., O'Brien D.I., Goode T., Bredin C.P., Shanahan F. The role of substance P in inflammatory disease. J. Cell. Physiol. 2004;201(2):167–180. doi: 10.1002/jcp.20061.
    1. Ogundele O.M., Lee C.C., Francis J. Thalamic dopaminergic neurons projects to the paraventricular nucleus-rostral ventrolateral medulla/C1 neural circuit. Anat. Rec. (Hoboken) 2017;300(7):1307–1314. doi: 10.1002/ar.23528.
    1. Okada M., Guo S.Y., Hisamitsu T. Denervation of the cervical sympathetic nerve inhibited the splenic natural killer cell activity in rats. Masui. 1996;45(5):582–585.
    1. Oyama J., Node K. Sympathetic nerve activity and endothelial function. Hypertens. Res. 2014;37(12):1035–1036. doi: 10.1038/hr.2014.142.
    1. Pagano G., Corbi G., Ferrara N. Adrenergic nervous system and hemostasis. J. Hematol. Thromb. Dis. 2014;2:2. doi: 10.4172/2329-8790.1000e108.
    1. Papathanasiou G.S. Local anesthetics and Covid19 associated acute respiratory distress syndrome: a new therapeutic indication? Clin. Res. Open Access. 2020;6 doi: 10.16966/2469-6714.156.
    1. Paton J.F.R., Spyer K.M. In: Autonomic Failure: A Textbook of Clinical Disorders of the Autonomic Nervous System. 5th ed. Mathias C.J., Bannister R., editors. Oxford University Press; Oxford, New York: 2013. Central nervous control of the cardiovascular system.
    1. Pavlov V.A., Tracey K.J. Neural circuitry and immunity. Immunol. Res. 2015;63(1–3):38–57. doi: 10.1007/s12026-015-8718-1.
    1. Pavlov V.A., Chavan S.S., Tracey K.J. Bioelectronic medicine: from preclinical studies on the inflammatory reflex to new approaches in disease diagnosis and treatment. Cold Spring Harb. Perspect. Med. 2020;10(3) doi: 10.1101/cshperspect.a034140.
    1. Perez D.M., Papay R.S., Shi T. Alpha1-adrenergic receptor stimulates interleukin-6 expression and secretion through both mRNA stability and transcriptional regulation: involvement of p38 mitogen-activated protein kinase and nuclear factor-kappaB. Mol. Pharmacol. 2009;76(1):144–152.
    1. Perianin A., Snyderman R., Malfroy B. Substance P primes human neutrophil activation: a mechanism for neurological regulation of inflammation. Biochem. Biophys. Res. Commun. 1989;161(2):520–524. doi: 10.1016/0006-291x(89)92630-2.
    1. Pfister M., Fischer L. The treatment of the complex regional pain syndrome (CRPS 1 and CRPS 2) of the upper limb with repeated local anaesthesia to the stellate ganglion. Praxis. 2009;98(5):247–257.
    1. Piedimonte G., Rodriguez M.M., King K.A., McLean S., Jiang X. Respiratory syncytial virus upregulates expression of the substance P receptor in rat lungs. Am. J. Phys. 1999;277(4):L831–L840. doi: 10.1152/ajplung.1999.277.4.L831.
    1. Pierach A., Stotz K. Therapy of pulmonary edema with procaine block of the right stellate ganglion. Dtsch. Med. Wochenschr. 1952;77(44):1344–1346. doi: 10.1055/s-0028-1117238.
    1. Pischinger A. 11. Aufl. Haug; Stuttgart: 2010. Das System der Grundregulation.
    1. Pongratz G., Straub R.H. The sympathetic nervous response in inflammation. Arthritis Res. Ther. 2014;16(6):504. doi: 10.1186/s13075-014-0504-2.
    1. Puente de la Vega Costa K., Gómez Perez M.A., Roqueta C., Fischer L. Effects on hemodynamic variables and echocardiographic parameters after a stellate ganglion block in 15 healthy volunteers. Auton. Neurosci. 2016;197:46–55. doi: 10.1016/j.autneu.2016.04.002.
    1. Punj J. Multiple bilateral ultrasound-guided stellate ganglion blocks to treat acute vasculitis in a recently diagnosed patient of systemic lupus erythematosus. Indian J. Anaesth. 2019;63(10):851–855. doi: 10.4103/ija.IJA_331_19.
    1. Qin C., Zhou L., Hu Z., et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect. Dis. 2020 doi: 10.1093/cid/ciaa248.
    1. Rahimzadeh P., Mahmoudi K., Khodaverdi M., Faiz S.H.R. Effects of ultrasound guided ganglion stellate blockade on intraoperative and postoperative hemodynamic responses in laparoscopic gynecologic surgery. Videosurgery Miniinv. 2020;15(2):351–357.
    1. Ricker G. Springer; Berlin: 1924. Pathologie als Naturwissenschaft - Relationspathologie.
    1. Ross C.A., Ruggiero D.A., Reis D.J. Projections from the nucleus tractus solitarii to the rostral ventrolateral medulla. J. Comp. Neurol. 1985;242(4):511–534. doi: 10.1002/cne.902420405.
    1. Ruan Q., Yang K., Wang W., Jiang L., Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(5):846–848. doi: 10.1007/s00134-020-05991-x.
    1. Salgado D.R., Ortiz J.A., Favory R., Creteur J., Vincent J.L., De Backer D. Microcirculatory abnormalities in patients with severe influenza a (H1N1) infection. Can. J. Anaesth. 2010;57(10):940–946. doi: 10.1007/s12630-010-9365-6.
    1. Sanders J.M., Monogue M.L., Jodlowski T.Z., Cutrell J.B. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA. 2020 doi: 10.1001/jama.2020.6019.
    1. Schaible H.G. Nociceptive neurons detect cytokines in arthritis. Arthritis Res. Ther. 2014;16(5):470. doi: 10.1186/s13075-014-0470-8.
    1. Schaible H.G., Straub R.H. Function of the sympathetic supply in acute and chronic experimental joint inflammation. Auton. Neurosci. 2014;182:55–64. doi: 10.1016/j.autneu.2013.12.004. May.
    1. Schaible H.G., Ebersberger A., Natura G. Update on peripheral mechanisms of pain: beyond prostaglandins and cytokines. Arthritis Res. Ther. 2011;13(2):210. doi: 10.1186/ar3305. Apr 28.
    1. Schiffrin E.L. In: Primer on the Autonomic Nervous System. 3rd ed. Robertson D., Biaggioni I., Burnstock G., Low P.A., Paton J.F.R., editors. Academic Press; San Diego: 2012. The endothelin system; pp. 135–139.
    1. Serra M.C., Bazzoni F., Della Bianca V., Greskowiak M., Rossi F. Activation of human neutrophils by substance P. Effect on oxidative metabolism, exocytosis, cytosolic Ca2+ concentration and inositol phosphate formation. J. Immunol. 1988;141(6):2118–2124.
    1. Sheng Y., Zhu L. The crosstalk between autonomic nervous system and blood vessels. Int. J. Physiol. Pathophysiol. Pharmacol. 2018;10(1):17–28.
    1. Sinha P., Matthay M.A., Calfee C.S. Is a “Cytokine storm” relevant to COVID-19? JAMA Intern. Med. 2020;180(9):1152–1154. doi: 10.1001/jamainternmed.2020.3313.
    1. Sinisalo J., Paronen J., Mattila K.J., et al. Relation of inflammation to vascular function in patients with coronary heart disease. Atherosclerosis. 2000;149(2):403–411. doi: 10.1016/s0021-9150(99)00333-0.
    1. Speranski A.P. 2nd ed. International Publishers; New York: 1950. A Basis for the Theory of Medicine.
    1. Spiezia L., Boscolo A., Poletto F., et al. COVID-19-related severe hypercoagulability in patients admitted to intensive care unit for acute respiratory failure. Thromb. Haemost. 2020
    1. Stanisz A.M. In: NeuroImmune Biology. Vol. 1: New Foundation of Biology. Berczi I., Gorczynski R.M., editors. Elsevier; Amsterdam: 2001. Neurogenic inflammation: role of substance; pp. 373–378. doi:10.1001/jama.2020.6019.
    1. Stanisz A.M., Befus D., Bienenstock J. Differential effects of vasoactive intestinal peptide, substance P, and somatostatin on immunoglobulin synthesis and proliferations by lymphocytes from Peyer's patches, mesenteric lymph nodes, and spleen. J. Immunol. 1986;136(1):152–156.
    1. Steenblock C., Todorov V., Kanczkowski W., et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the neuroendocrine stress axis. Mol. Psychiatry. 2020:1–7. doi: 10.1038/s41380-020-0758-9.
    1. Sternberg E.M. Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat. Rev. Immunol. 2006;6(4):318–328. doi: 10.1038/nri1810.
    1. Strong J.A., Zhang J.M., Schaible H.G. In: The Oxford Handbook of the Neurobiology of Pain. Wood J.N., editor. 2018. The sympathetic nervous system and pain.
    1. Sugimoto M., Shimaoka M., Taenaka N., Kiyono H., Yoshiya I. Lymphocyte activation is attenuated by stellate ganglion block. Reg. Anesth. Pain Med. 1999;24(1):30–35. doi: 10.1016/s1098-7339(99)90162-1.
    1. Tan T., Khoo B., Mills E.G. Association between high serum total cortisol concentrations and mortality from COVID-19. Lancet Diabetes Endocrinol. 2020 doi: 10.1016/S2213-8587(20)30216-3. S2213-8587(20)30216-3.
    1. Taneyama C., Goto H. Fractal cardiovascular dynamics and baroreflex sensitivity after stellate ganglion block. Anesth. Analg. 2009;109(4):1335–1340. doi: 10.1213/ane.0b013e3181b018d8.
    1. Tracey K.J. The inflammatory reflex. Nature. 2002;420(6917):853–859. doi: 10.1038/nature01321. PMID: 12490958.
    1. Tracey K.J. Reflex control of immunity. Nat. Rev. Immunol. 2009;9(6):418–428. doi: 10.1038/nri2566.
    1. Tränkner D., Hahne N., Sugino K., Hoon M.A., Zuker C. Population of sensory neurons essential for asthmatic hyperreactivity of inflamed airways. Proc. Natl. Acad. Sci. U. S. A. 2014;111(31):11515–11520. doi: 10.1073/pnas.1411032111.
    1. Tsaava T., Datta-Chaudhuri T., Addorisio M.E., Battinelli Masi E., Silverman H.A., Newman J.E. bioRxiv; 2020. Serum Cytokine Levels are Modulated by Specific Frequencies, Amplitudes, and Pulse Widths of Vagus Nerve Stimulation. 01.08.898890.
    1. Ur A., Verma K. Cytokine storm in COVID19: a neural hypothesis. ACS Chem. Neurosci. 2020;11(13):1868–1870. doi: 10.1021/acschemneuro.0c00346.
    1. Ur A., Verma K. Pulmonary edema in COVID19-a neural hypothesis. ACS Chem. Neurosci. 2020;11(14):2048–2050. doi: 10.1021/acschemneuro.0c00370.
    1. Varga Z., Flammer A.J., Steiger P., et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–1418. doi: 10.1016/S0140-6736(20)30937-5.
    1. Velavan T.P., Meyer C.G. Mild versus severe COVID-19: laboratory markers. Int. J. Infect. Dis. 2020;95:304–307. doi: 10.1016/j.ijid.2020.04.061.
    1. Veres T.Z., Rochlitzer S., Shevchenko M., et al. Spatial interactions between dendritic cells and sensory nerves in allergic airway inflammation. Am. J. Respir. Cell Mol. Biol. 2007;37(5):553–561. doi: 10.1165/rcmb.2007-0087OC.
    1. Wang J., Wang H., Luo W., et al. Leptin-induced endothelial dysfunction is mediated by sympathetic nervous system activity. J. Am. Heart Assoc. 2013;2(5) doi: 10.1161/JAHA.113.000299.
    1. Wang Y., Yu D., Yu Y., et al. Potential role of sympathetic activity on the pathogenesis of massive pulmonary embolism with circulatory shock in rabbits. Respir. Res. 2019;20(1):97. doi: 10.1186/s12931-019-1069-z.
    1. Wang D., Hu B., Hu C., et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–1069. doi: 10.1001/jama.2020.1585.
    1. Westerhaus M.J., Loewy A.D. Central representation of the sympathetic nervous system in the cerebral cortex. Brain Res. 2001;903(1–2):117–127. doi: 10.1016/s0006-8993(01)02453-2.
    1. White F.A., Sun J., Waters S.M., et al. Excitatory monocyte chemoattractant protein-1 signaling is up-regulated in sensory neurons after chronic compression of the dorsal root ganglion. Proc. Natl. Acad. Sci. U. S. A. 2005;102(39):14092–14097. doi: 10.1073/pnas.0503496102.
    1. Xu W., Wang T., Zhou H. Substance P and its role in viral infection. Int. J. Clin. Exp. Med. 2018;11(12):12946–12955.
    1. Xu Z., Shi L., Wang Y., et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020;8(4):420–422. doi: 10.1016/S2213-2600(20)30076-X.
    1. Yamaguchi N. Role of ET(A) and ET(B) receptors in endothelin-1-induced adrenal catecholamine secretion in vivo. Am. J. Phys. 1997;272(4 Pt 2):R1290–R1297. doi: 10.1152/ajpregu.1997.272.4.R1290.
    1. Yamazaki H., Nishiyama J., Suzuki T. Use of perfusion index from pulse oximetry to determine efficacy of stellate ganglion block. Local Reg. Anesth. 2012;5:9–14. doi: 10.2147/LRA.S30257.
    1. Yanagidate F., Strichartz G.R. Local anesthetics. Handb. Exp. Pharmacol. 2007;177:95–127. doi: 10.1007/978-3-540-33823-9_4.
    1. Yang X., Shi Z., Li X., Li J. Impacts of stellate ganglion block on plasma NF-κB and inflammatory factors of TBI patients. Int. J. Clin. Exp. Med. 2015;8(9):15630–15638.
    1. Yokoyama M., Nakatsuka H., Itano Y., Hirakawa M. Stellate ganglion block modifies the distribution of lymphocyte subsets and natural-killer cell activity. Anesthesiology. 2000;92(1):109–115. doi: 10.1097/00000542-200001000-00021.
    1. Zelenka M., Schäfers M., Sommer C. Intraneural injection of interleukin-1beta and tumor necrosis factor-alpha into rat sciatic nerve at physiological doses induces signs of neuropathic pain. Pain. 2005;116(3):257–263. doi: 10.1016/j.pain.2005.04.018.
    1. Zhang L., Yao J., Zhang T., Jin J., Zeng X., Yue Z. Stellate ganglion block may prevent the development of neurogenic pulmonary edema and improve the outcome. Med. Hypotheses. 2013;80(2):158–161. doi: 10.1016/j.mehy.2012.11.017.
    1. Zhang R.M., McNerney K., Riek A.E., Bernal-Mizrachi C. Immunity and hypertension. Acta Physiol (Oxford) 2020
    1. Zhao H.Y., Yang G.T., Sun N.N., Kong Y., Liu Y.F. Efficacy and safety of stellate ganglion block in chronic ulcerative colitis. World J. Gastroenterol. 2017;23(3):533–539. doi: 10.3748/wjg.v23.i3.533.
    1. Zhao Y., Xiang R., Peng X., et al. Transection of the cervical sympathetic trunk inhibits the progression of pulmonary arterial hypertension via ERK-1/2 signalling. Respir. Res. 2019;20(1):121. doi: 10.1186/s12931-019-1090-2.
    1. Zheng Y., Hou X., Yang S. Lidocaine potentiates SOCS3 to attenuate inflammation in microglia and suppress neuropathic pain. Cell. Mol. Neurobiol. 2019;39(8):1081–1092. doi: 10.1007/s10571-019-00703-6.
    1. Zhou Y., Yi X., Xing W., Hu S., Maslov K.I., Wang L.V. Microcirculatory changes identified by photoacoustic microscopy in patients with complex regional pain syndrome type I after stellate ganglion blocks. J. Biomed. Opt. 2014;19(8) doi: 10.1117/1.JBO.19.8.086017.
    1. Zhu Z., Cai T., Fan L., et al. Clinical value of immune-inflammatory parameters to assess the severity of coronavirus disease 2019. Int. J. Infect. Dis. 2020;95:332–339. doi: 10.1016/j.ijid.2020.04.041.
    1. van der Zypen E. Elektronenmikroskopische befunde an der endausbreitung des vegetativen nervensystems und ihre deutung. Acta Anat. (Basel) 1967;67(4):481–515.

Source: PubMed

3
Iratkozz fel