Natural history, outcome measures and trial readiness in LAMA2-related muscular dystrophy and SELENON-related myopathy in children and adults: protocol of the LAST STRONG study

Karlijn Bouman, Jan T Groothuis, Jonne Doorduin, Nens van Alfen, Floris E A Udink Ten Cate, Frederik M A van den Heuvel, Robin Nijveldt, Willem C M van Tilburg, Stan C F M Buckens, Anne T M Dittrich, Jos M T Draaisma, Mirian C H Janssen, Erik-Jan Kamsteeg, Esmee S B van Kleef, Saskia Koene, Jan A M Smeitink, Benno Küsters, Florence H J van Tienen, Hubert J M Smeets, Baziel G M van Engelen, Corrie E Erasmus, Nicol C Voermans, Karlijn Bouman, Jan T Groothuis, Jonne Doorduin, Nens van Alfen, Floris E A Udink Ten Cate, Frederik M A van den Heuvel, Robin Nijveldt, Willem C M van Tilburg, Stan C F M Buckens, Anne T M Dittrich, Jos M T Draaisma, Mirian C H Janssen, Erik-Jan Kamsteeg, Esmee S B van Kleef, Saskia Koene, Jan A M Smeitink, Benno Küsters, Florence H J van Tienen, Hubert J M Smeets, Baziel G M van Engelen, Corrie E Erasmus, Nicol C Voermans

Abstract

Background: SELENON (SEPN1)-related myopathy (SELENON-RM) is a rare congenital myopathy characterized by slowly progressive proximal muscle weakness, early onset spine rigidity and respiratory insufficiency. A muscular dystrophy caused by mutations in the LAMA2 gene (LAMA2-related muscular dystrophy, LAMA2-MD) has a similar clinical phenotype, with either a severe, early-onset due to complete Laminin subunit α2 deficiency (merosin-deficient congenital muscular dystrophy type 1A (MDC1A)), or a mild, childhood- or adult-onset due to partial Laminin subunit α2 deficiency. For both muscle diseases, no curative treatment options exist, yet promising preclinical studies are ongoing. Currently, there is a paucity on natural history data and appropriate clinical and functional outcome measures are needed to reach trial readiness.

Methods: LAST STRONG is a natural history study in Dutch-speaking patients of all ages diagnosed with SELENON-RM or LAMA2-MD, starting August 2020. Patients have four visits at our hospital over a period of 1.5 year. At all visits, they undergo standardized neurological examination, hand-held dynamometry (age ≥ 5 years), functional measurements, questionnaires (patient report and/or parent proxy; age ≥ 2 years), muscle ultrasound including diaphragm, pulmonary function tests (spirometry, maximal inspiratory and expiratory pressure, sniff nasal inspiratory pressure; age ≥ 5 years), and accelerometry for 8 days (age ≥ 2 years); at visit one and three, they undergo cardiac evaluation (electrocardiogram, echocardiography; age ≥ 2 years), spine X-ray (age ≥ 2 years), dual-energy X-ray absorptiometry (DEXA-)scan (age ≥ 2 years) and full body magnetic resonance imaging (MRI) (age ≥ 10 years). All examinations are adapted to the patient's age and functional abilities. Correlation between key parameters within and between subsequent visits will be assessed.

Discussion: Our study will describe the natural history of patients diagnosed with SELENON-RM or LAMA2-MD, enabling us to select relevant clinical and functional outcome measures for reaching clinical trial-readiness. Moreover, our detailed description (deep phenotyping) of the clinical features will optimize clinical management and will establish a well-characterized baseline cohort for prospective follow-up.

Conclusion: Our natural history study is an essential step for reaching trial readiness in SELENON-RM and LAMA2-MD.

Trial registration: This study has been approved by medical ethical reviewing committee Region Arnhem-Nijmegen (NL64269.091.17, 2017-3911) and is registered at ClinicalTrial.gov ( NCT04478981 ).

Keywords: All ages; LAMA2; Laminin subunit α2 deficiency; Merosin-deficient congenital muscular dystrophy type 1A (MDC1A); Natural history; Outcome measures; SELENON; SEPN1; Trial readiness.

Conflict of interest statement

Professor Jan A.M. Smeitink is Chief Executive Officer of Khondrion. All other authors declare that they have no competing interests.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Flow chart of recruitment and inclusion of SELENON-RM or LAMA2-MD patients

References

    1. Witting N, Werlauff U, Duno M, Vissing J. Phenotypes, genotypes, and prevalence of congenital myopathies older than 5 years in Denmark. Neurol Genet. 2017;3(2):e140. doi: 10.1212/NXG.0000000000000140.
    1. Villar-Quiles RN, von der Hagen M, Métay C, Gonzalez V, Donkervoort S, Bertini E, Castiglioni C, Chaigne D, Colomer J, Cuadrado ML, de Visser M, Desguerre I, Eymard B, Goemans N, Kaindl A, Lagrue E, Lütschg J, Malfatti E, Mayer M, Merlini L, Orlikowski D, Reuner U, Salih MA, Schlotter-Weigel B, Stoetter M, Straub V, Topaloglu H, Urtizberea JA, van der Kooi A, Wilichowski E, Romero NB, Fardeau M, Bönnemann CG, Estournet B, Richard P, Quijano-Roy S, Schara U, Ferreiro A. The clinical, histologic, and genotypic spectrum of. Neurology. 2020;95(11):e1512–e1e27. doi: 10.1212/WNL.0000000000010327.
    1. Nguyen Q, Lim KRQ, Yokota T. Current understanding and treatment of cardiac and skeletal muscle pathology in laminin-α2 chain-deficient congenital muscular dystrophy. Appl Clin Genet. 2019;12:113–130. doi: 10.2147/TACG.S187481.
    1. Geranmayeh F, Clement E, Feng LH, Sewry C, Pagan J, Mein R, Abbs S, Brueton L, Childs AM, Jungbluth H, de Goede CG, Lynch B, Lin JP, Chow G, Sousa C, O’Mahony O, Majumdar A, Straub V, Bushby K, Muntoni F. Genotype-phenotype correlation in a large population of muscular dystrophy patients with LAMA2 mutations. Neuromuscul Disord. 2010;20(4):241–250. doi: 10.1016/j.nmd.2010.02.001.
    1. Sarkozy A, Foley AR, Zambon AA, Bönnemann CG, Muntoni F. LAMA2-related dystrophies: clinical phenotypes, disease biomarkers, and clinical trial readiness. Front Mol Neurosci. 2020;13:123. doi: 10.3389/fnmol.2020.00123.
    1. Moghadaszadeh B, Petit N, Jaillard C, Brockington M, Quijano Roy S, Merlini L, et al. Mutations in SEPN1 cause congenital muscular dystrophy with spinal rigidity and restrictive respiratory syndrome. Nat Genet. 2001;29(1):17–18. doi: 10.1038/ng713.
    1. Ferreiro A, Quijano-Roy S, Pichereau C, Moghadaszadeh B, Goemans N, Bönnemann C, Jungbluth H, Straub V, Villanova M, Leroy JP, Romero NB, Martin JJ, Muntoni F, Voit T, Estournet B, Richard P, Fardeau M, Guicheney P. Mutations of the selenoprotein N gene, which is implicated in rigid spine muscular dystrophy, cause the classical phenotype of multiminicore disease: reassessing the nosology of early-onset myopathies. Am J Hum Genet. 2002;71(4):739–749. doi: 10.1086/342719.
    1. Clarke NF, Kidson W, Quijano-Roy S, Estournet B, Ferreiro A, Guicheney P, Manson JI, Kornberg AJ, Shield LK, North KN. SEPN1: associated with congenital fiber-type disproportion and insulin resistance. Ann Neurol. 2006;59(3):546–552. doi: 10.1002/ana.20761.
    1. Ferreiro A, Ceuterick-de Groote C, Marks JJ, Goemans N, Schreiber G, Hanefeld F, Fardeau M, Martin JJ, Goebel HH, Richard P, Guicheney P, Bönnemann CG. Desmin-related myopathy with Mallory body-like inclusions is caused by mutations of the selenoprotein N gene. Ann Neurol. 2004;55(5):676–686. doi: 10.1002/ana.20077.
    1. Wang CH, Bonnemann CG, Rutkowski A, Sejersen T, Bellini J, Battista V, Florence JM, Schara U, Schuler PM, Wahbi K, Aloysius A, Bash RO, Béroud C, Bertini E, Bushby K, Cohn RD, Connolly AM, Deconinck N, Desguerre I, Eagle M, Estournet-Mathiaud B, Ferreiro A, Fujak A, Goemans N, Iannaccone ST, Jouinot P, Main M, Melacini P, Mueller-Felber W, Muntoni F, Nelson LL, Rahbek J, Quijano-Roy S, Sewry C, Storhaug K, Simonds A, Tseng B, Vajsar J, Vianello A, Zeller R, International Standard of Care Committee for Congenital Muscular Dystrophy Consensus statement on standard of care for congenital muscular dystrophies. J Child Neurol. 2010;25(12):1559–1581. doi: 10.1177/0883073810381924.
    1. Smeets HJM, Verbrugge B, Springuel P, Voermans NC, group MAW. International Workshop Report Congenital muscular dystrophy 1A: the road to therapy. Neuromuscul Disord. 2021.
    1. Janssen MCH, Koene S, de Laat P, Hemelaar P, Pickkers P, Spaans E, et al. The KHENERGY study: safety and efficacy of KH176 in mitochondrial m.3243A>G Spectrum disorders. Clin Pharmacol Ther. 2019;105(1):101–111. doi: 10.1002/cpt.1197.
    1. Moulin M, Ferreiro A. Muscle redox disturbances and oxidative stress as pathomechanisms and therapeutic targets in early-onset myopathies. Semin Cell Dev Biol. 2017;64:213–223. doi: 10.1016/j.semcdb.2016.08.003.
    1. Arbogast S, Beuvin M, Fraysse B, Zhou H, Muntoni F, Ferreiro A. Oxidative stress in SEPN1-related myopathy: from pathophysiology to treatment. Ann Neurol. 2009;65(6):677–686. doi: 10.1002/ana.21644.
    1. Arbogast S, Ferreiro A. Selenoproteins and protection against oxidative stress: selenoprotein N as a novel player at the crossroads of redox signaling and calcium homeostasis. Antioxid Redox Signal. 2010;12(7):893–904. doi: 10.1089/ars.2009.2890.
    1. Filipe A, Chernorudskiy A, Arbogast S, Varone E, Villar-Quiles RN, Pozzer D, Moulin M, Fumagalli S, Cabet E, Dudhal S, de Simoni MG, Denis R, Vadrot N, Dill C, Giovarelli M, Szweda L, de Palma C, Pinton P, Giorgi C, Viscomi C, Clementi E, Missiroli S, Boncompagni S, Zito E, Ferreiro A. Defective endoplasmic reticulum-mitochondria contacts and bioenergetics in SEPN1-related myopathy. Cell Death Differ. 2021;28(1):123–138. doi: 10.1038/s41418-020-0587-z.
    1. Pozzer D, Varone E, Chernorudskiy A, Schiarea S, Missiroli S, Giorgi C, Pinton P, Canato M, Germinario E, Nogara L, Blaauw B, Zito E. A maladaptive ER stress response triggers dysfunction in highly active muscles of mice with SELENON loss. Redox Biol. 2019;20:354–366. doi: 10.1016/j.redox.2018.10.017.
    1. Kemaladewi DU, Bassi PS, Erwood S, Al-Basha D, Gawlik KI, Lindsay K, et al. A mutation-independent approach for muscular dystrophy via upregulation of a modifier gene. Nature. 2019;572(7767):125–130. doi: 10.1038/s41586-019-1430-x.
    1. Reinhard JR, Lin S, McKee KK, Meinen S, Crosson SC, Sury M, et al. Linker proteins restore basement membrane and correct LAMA2-related muscular dystrophy in mice. Sci Transl Med. 2017;9(396).
    1. Rooney JE, Knapp JR, Hodges BL, Wuebbles RD, Burkin DJ. Laminin-111 protein therapy reduces muscle pathology and improves viability of a mouse model of merosin-deficient congenital muscular dystrophy. Am J Pathol. 2012;180(4):1593–1602. doi: 10.1016/j.ajpath.2011.12.019.
    1. Barraza-Flores P, Bates CR, Oliveira-Santos A, Burkin DJ. Laminin and integrin in LAMA2-related congenital muscular dystrophy: from disease to therapeutics. Front Mol Neurosci. 2020;13:1. doi: 10.3389/fnmol.2020.00001.
    1. Chernorudskiy A, Varone E, Colombo SF, Fumagalli S, Cagnotto A, Cattaneo A, Briens M, Baltzinger M, Kuhn L, Bachi A, Berardi A, Salmona M, Musco G, Borgese N, Lescure A, Zito E. Selenoprotein N is an endoplasmic reticulum calcium sensor that links luminal calcium levels to a redox activity. Proc Natl Acad Sci U S A. 2020;117(35):21288–21298. doi: 10.1073/pnas.2003847117.
    1. Patton BL, Miner JH, Chiu AY, Sanes JR. Distribution and function of laminins in the neuromuscular system of developing, adult, and mutant mice. J Cell Biol. 1997;139(6):1507–1521. doi: 10.1083/jcb.139.6.1507.
    1. Petrof BJ, Shrager JB, Stedman HH, Kelly AM, Sweeney HL. Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci U S A. 1993;90(8):3710–3714. doi: 10.1073/pnas.90.8.3710.
    1. Fontes-Oliveira CC, Steinz M, Schneiderat P, Mulder H, Durbeej M. Bioenergetic impairment in congenital muscular dystrophy type 1A and Leigh syndrome muscle cells. Sci Rep. 2017;7(1):45272. doi: 10.1038/srep45272.
    1. Harandi VM, Oliveira BMS, Allamand V, Friberg A, Fontes-Oliveira CC, Durbeej M. Antioxidants Reduce Muscular Dystrophy. Antioxidants. 2020;9(3).
    1. Kemaladewi D, Hyatt E, Ivakine Z, Cohn R. CRISPR/Cas9-mediated exon inclusion in Lama2 gene alleviates dystrophic pathology in MDC1A mouse model in title abstract keyword. Neuromuscul Disord. 2016;26:S190. doi: 10.1016/j.nmd.2016.06.376.
    1. Wright M. Calcium handling in a zebrafish model of SELENON congenital muscular dystrophy: World Muscle Society: Neuromuscular Disorders; 2020. p. S149–S50.
    1. Deniziak M, Thisse C, Rederstorff M, Hindelang C, Thisse B, Lescure A. Loss of selenoprotein N function causes disruption of muscle architecture in the zebrafish embryo. Exp Cell Res. 2007;313(1):156–167. doi: 10.1016/j.yexcr.2006.10.005.
    1. Bachmann C, Noreen F, Voermans NC, Schär PL, Vissing J, Fock JM, Bulk S, Kusters B, Moore SA, Beggs AH, Mathews KD, Meyer M, Genetti CA, Meola G, Cardani R, Mathews E, Jungbluth H, Muntoni F, Zorzato F, Treves S. Aberrant regulation of epigenetic modifiers contributes to the pathogenesis in patients with selenoprotein N-related myopathies. Hum Mutat. 2019;40(7):962–974. doi: 10.1002/humu.23745.
    1. Marino M, Stoilova T, Giorgi C, Bachi A, Cattaneo A, Auricchio A, Pinton P, Zito E. SEPN1, an endoplasmic reticulum-localized selenoprotein linked to skeletal muscle pathology, counteracts hyperoxidation by means of redox-regulating SERCA2 pump activity. Hum Mol Genet. 2015;24(7):1843–1855. doi: 10.1093/hmg/ddu602.
    1. Yurchenco PD, McKee KK, Reinhard JR, Rüegg MA. Laminin-deficient muscular dystrophy: Molecular pathogenesis and structural repair strategies. Matrix Biol. 2018;71–72:174–187. doi: 10.1016/j.matbio.2017.11.009.
    1. Hara Y, Mizobe Y, Miyatake S, Takizawa H, Nagata T, Yokota T, et al. Exon skipping using antisense oligonucleotides for laminin-Alpha2-deficient muscular dystrophy. Methods Mol Biol. 1828;2018:553–564.
    1. Hall TE, Wood AJ, Ehrlich O, Li M, Sonntag CS, Cole NJ, Huttner IG, Sztal TE, Currie PD. Cellular rescue in a zebrafish model of congenital muscular dystrophy type 1A. NPJ Regen Med. 2019;4(1):21. doi: 10.1038/s41536-019-0084-5.
    1. Meilleur KG, Jain MS, Hynan LS, Shieh CY, Kim E, Waite M, McGuire M, Fiorini C, Glanzman AM, Main M, Rose K, Duong T, Bendixen R, Linton MM, Arveson IC, Nichols C, Yang K, Fischbeck KH, Wagner KR, North K, Mankodi A, Grunseich C, Hartnett EJ, Smith M, Donkervoort S, Schindler A, Kokkinis A, Leach M, Foley AR, Collins J, Muntoni F, Rutkowski A, Bönnemann CG. Results of a two-year pilot study of clinical outcome measures in collagen VI- and laminin alpha2-related congenital muscular dystrophies. Neuromuscul Disord. 2015;25(1):43–54. doi: 10.1016/j.nmd.2014.09.010.
    1. Jain MS, Meilleur K, Kim E, Norato G, Waite M, Nelson L, McGuire M, Duong T, Keller K, Lott DJ, Glanzman A, Rose K, Main M, Fiorini C, Chrismer I, Linton M, Punjabi M, Elliott J, Tounkara F, Vasavada R, Logaraj R, Winkert J, Donkervoort S, Leach M, Dastgir J, Hynan L, Nichols C, Hartnett E, Averion GM, Collins JC, Kim ES, Kokkinis A, Schindler A, Zukosky K, Fee R, Hinton V, Mohassel P, Bharucha-Goebel D, Vuillerot C, McGraw P, Barton M, Fontana J, Rutkowski A, Foley AR, Bönnemann CG. Longitudinal changes in clinical outcome measures in COL6-related dystrophies and LAMA2-related dystrophies. Neurology. 2019;93(21):e1932–e1e43. doi: 10.1212/WNL.0000000000008517.
    1. Zambon AA, Ridout D, Main M, Mein R, Phadke R, Muntoni F, Sarkozy A. LAMA2-related muscular dystrophy: natural history of a large pediatric cohort. Ann Clin Transl Neurol. 2020;7(10):1870–1882. doi: 10.1002/acn3.51172.
    1. Beenakker EA, van der Hoeven JH, Fock JM, Maurits NM. Reference values of maximum isometric muscle force obtained in 270 children aged 4-16 years by hand-held dynamometry. Neuromuscul Disord. 2001;11(5):441–446. doi: 10.1016/S0960-8966(01)00193-6.
    1. van den Beld WA, van der Sanden GA, Sengers RC, Verbeek AL, Gabreëls FJ. Validity and reproducibility of hand-held dynamometry in children aged 4-11 years. J Rehabil Med. 2006;38(1):57–64. doi: 10.1080/16501970510044043.
    1. McKay MJ, Baldwin JN, Ferreira P, Simic M, Vanicek N, Burns J, et al. Normative reference values for strength and flexibility of 1,000 children and adults. Neurology. 2017;88(1):36–43. doi: 10.1212/WNL.0000000000003466.
    1. van der Ploeg RJ, Fidler V, Oosterhuis HJ. Hand-held myometry: reference values. J Neurol Neurosurg Psychiatry. 1991;54(3):244–247. doi: 10.1136/jnnp.54.3.244.
    1. Soucie JM, Wang C, Forsyth A, Funk S, Denny M, Roach KE, et al. Range of motion measurements: reference values and a database for comparison studies. Haemophilia. 2011;17(3):500–507. doi: 10.1111/j.1365-2516.2010.02399.x.
    1. Glanzman AM, Mazzone E, Main M, Pelliccioni M, Wood J, Swoboda KJ, Scott C, Pane M, Messina S, Bertini E, Mercuri E, Finkel RS. The Children's Hospital of Philadelphia infant test of neuromuscular disorders (CHOP INTEND): test development and reliability. Neuromuscul Disord. 2010;20(3):155–161. doi: 10.1016/j.nmd.2009.11.014.
    1. Glanzman AM, McDermott MP, Montes J, Martens WB, Flickinger J, Riley S, Quigley J, Dunaway S, O'Hagen J, Deng L, Chung WK, Tawil R, Darras BT, Yang M, Sproule D, de Vivo DC, Kaufmann P, Finkel RS, Pediatric Neuromuscular Clinical Research Network for Spinal Muscular Atrophy (PNCR) Muscle Study Group (MSG) Validation of the Children’s Hospital of Philadelphia infant test of neuromuscular disorders (CHOP INTEND) Pediatr Phys Ther. 2011;23(4):322–326. doi: 10.1097/PEP.0b013e3182351f04.
    1. Dubowitz L, Ricciw D, Mercuri E. The Dubowitz neurological examination of the full-term newborn. Ment Retard Dev Disabil Res Rev. 2005;11(1):52–60. doi: 10.1002/mrdd.20048.
    1. de Lattre C, Payan C, Vuillerot C, Rippert P, de Castro D, Bérard C, Poirot I, MFM-20 Study Group Motor function measure: validation of a short form for young children with neuromuscular diseases. Arch Phys Med Rehabil. 2013;94(11):2218–2226. doi: 10.1016/j.apmr.2013.04.001.
    1. Bérard C, Payan C, Hodgkinson I, Fermanian J, Group MCS A motor function measure for neuromuscular diseases. Construction and validation study. Neuromuscul Disord. 2005;15(7):463–470. doi: 10.1016/j.nmd.2005.03.004.
    1. Main M, Kairon H, Mercuri E, Muntoni F. The Hammersmith functional motor scale for children with spinal muscular atrophy: a scale to test ability and monitor progress in children with limited ambulation. Eur J Paediatr Neurol. 2003;7(4):155–159. doi: 10.1016/S1090-3798(03)00060-6.
    1. Ramsey D, Scoto M, Mayhew A, Main M, Mazzone ES, Montes J, de Sanctis R, Dunaway Young S, Salazar R, Glanzman AM, Pasternak A, Quigley J, Mirek E, Duong T, Gee R, Civitello M, Tennekoon G, Pane M, Pera MC, Bushby K, Day J, Darras BT, de Vivo D, Finkel R, Mercuri E, Muntoni F. Revised Hammersmith scale for spinal muscular atrophy: a SMA specific clinical outcome assessment tool. PLoS One. 2017;12(2):e0172346. doi: 10.1371/journal.pone.0172346.
    1. Franjoine MR, Gunther JS, Taylor MJ. Pediatric balance scale: a modified version of the berg balance scale for the school-age child with mild to moderate motor impairment. Pediatr Phys Ther. 2003;15(2):114–128. doi: 10.1097/01.PEP.0000068117.48023.18.
    1. Franchignoni F, Horak F, Godi M, Nardone A, Giordano A. Using psychometric techniques to improve the balance evaluation systems test: the mini-BESTest. J Rehabil Med. 2010;42(4):323–331. doi: 10.2340/16501977-0537.
    1. Florence JM, Pandya S, King WM, Robison JD, Signore LC, Wentzell M, Province MA. Clinical trials in Duchenne dystrophy. Standardization and reliability of evaluation procedures. Phys Ther. 1984;64(1):41–45. doi: 10.1093/ptj/64.1.41.
    1. Mayhew JE, Florence JM, Mayhew TP, Henricson EK, Leshner RT, McCarter RJ, et al. Reliable surrogate outcome measures in multicenter clinical trials of Duchenne muscular dystrophy. Muscle Nerve. 2007;35(1):36–42. doi: 10.1002/mus.20654.
    1. Enright PL. The six-minute walk test. Respir Care. 2003;48(8):783–785.
    1. Holden MK, Gill KM, Magliozzi MR, Nathan J, Piehl-Baker L. Clinical gait assessment in the neurologically impaired. Reliability and meaningfulness. Phys Ther. 1984;64(1):35–40. doi: 10.1093/ptj/64.1.35.
    1. Jung IY, Chae JH, Park SK, Kim JH, Kim JY, Kim SJ, Bang MS. The correlation analysis of functional factors and age with duchenne muscular dystrophy. Ann Rehabil Med. 2012;36(1):22–32. doi: 10.5535/arm.2012.36.1.22.
    1. Brooke MH, Griggs RC, Mendell JR, Fenichel GM, Shumate JB, Pellegrino RJ. Clinical trial in Duchenne dystrophy. I. the design of the protocol. Muscle Nerve. 1981;4(3):186–197. doi: 10.1002/mus.880040304.
    1. Lue YJ, Lin RF, Chen SS, Lu YM. Measurement of the functional status of patients with different types of muscular dystrophy. Kaohsiung J Med Sci. 2009;25(6):325–333. doi: 10.1016/S1607-551X(09)70523-6.
    1. Engelen V, Haentjens MM, Detmar SB, Koopman HM, Grootenhuis MA. Health related quality of life of Dutch children: psychometric properties of the PedsQL in the Netherlands. BMC Pediatr. 2009;9(1):68. doi: 10.1186/1471-2431-9-68.
    1. Iannaccone ST, Hynan LS, Morton A, Buchanan R, Limbers CA, Varni JW, AmSMART Group The PedsQL in pediatric patients with spinal muscular atrophy: feasibility, reliability, and validity of the pediatric quality of life inventory generic Core scales and neuromuscular module. Neuromuscul Disord. 2009;19(12):805–812. doi: 10.1016/j.nmd.2009.09.009.
    1. Gordijn M, Suzanne Gordijn M, Cremers EM, Kaspers GJ, Gemke RJ. Fatigue in children: reliability and validity of the Dutch PedsQL™ multidimensional fatigue scale. Qual Life Res. 2011;20(7):1103–1108. doi: 10.1007/s11136-010-9836-9.
    1. Aaronson NK, Muller M, Cohen PD, Essink-Bot ML, Fekkes M, Sanderman R, et al. Translation, validation, and norming of the Dutch language version of the SF-36 health survey in community and chronic disease populations. J Clin Epidemiol. 1998;51(11):1055–1068. doi: 10.1016/S0895-4356(98)00097-3.
    1. Seesing FM, van Vught LE, Rose MR, Drost G, van Engelen BG, van der Wilt GJ. The individualized neuromuscular quality of life questionnaire: cultural translation and psychometric validation for the Dutch population. Muscle Nerve. 2015;51(4):496–500. doi: 10.1002/mus.24337.
    1. Vanderiet K, Adriaensen H, Carton H, Vertommen H. The McGill pain questionnaire constructed for the Dutch language (MPQ-DV). Preliminary data concerning reliability and validity. Pain. 1987;30(3):395–408. doi: 10.1016/0304-3959(87)90027-3.
    1. Wong DL, Baker CM. Pain in children: comparison of assessment scales. Pediatr Nurs. 1988;14(1):9–17.
    1. Worm-Smeitink M, Gielissen M, Bloot L, van Laarhoven HWM, van Engelen BGM, van Riel P, Bleijenberg G, Nikolaus S, Knoop H. The assessment of fatigue: psychometric qualities and norms for the checklist individual strength. J Psychosom Res. 2017;98:40–46. doi: 10.1016/j.jpsychores.2017.05.007.
    1. Vercoulen JH, Swanink CM, Fennis JF, Galama JM, van der Meer JW, Bleijenberg G. Dimensional assessment of chronic fatigue syndrome. J Psychosom Res. 1994;38(5):383–392. doi: 10.1016/0022-3999(94)90099-X.
    1. Vandervelde L, Van den Bergh PY, Goemans N, Thonnard JL. ACTIVLIM: a Rasch-built measure of activity limitations in children and adults with neuromuscular disorders. Neuromuscul Disord. 2007;17(6):459–469. doi: 10.1016/j.nmd.2007.02.013.
    1. Cardol M, de Haan RJ, van den Bos GA, de Jong BA, de Groot IJ. The development of a handicap assessment questionnaire: the impact on participation and autonomy (IPA) Clin Rehabil. 1999;13(5):411–419. doi: 10.1191/026921599668601325.
    1. Steffensen B, Hyde S, Lyager S, Mattsson E. Validity of the EK scale: a functional assessment of non-ambulatory individuals with Duchenne muscular dystrophy or spinal muscular atrophy. Physiother Res Int. 2001;6(3):119–134. doi: 10.1002/pri.221.
    1. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–381. doi: 10.1249/00005768-198205000-00012.
    1. van Alfen N, Mah JK. Neuromuscular ultrasound: a new tool in your toolbox. Can J Neurol Sci. 2018;45(5):504–515. doi: 10.1017/cjn.2018.269.
    1. Mah JK, van Alfen N. Neuromuscular ultrasound: clinical applications and diagnostic values. Can J Neurol Sci. 2018;45(6):605–619. doi: 10.1017/cjn.2018.314.
    1. Pillen S, van Alfen N. Skeletal muscle ultrasound. Neurol Res. 2011;33(10):1016–1024. doi: 10.1179/1743132811Y.0000000010.
    1. Pillen S, Van Alfen N. Muscle ultrasound from diagnostic tool to outcome measure--quantification is the challenge. Muscle Nerve. 2015;52(3):319–320. doi: 10.1002/mus.24613.
    1. Pillen S, Verrips A, van Alfen N, Arts IM, Sie LT, Zwarts MJ. Quantitative skeletal muscle ultrasound: diagnostic value in childhood neuromuscular disease. Neuromuscul Disord. 2007;17(7):509–516. doi: 10.1016/j.nmd.2007.03.008.
    1. Pillen S, Boon A, Van Alfen N. Muscle ultrasound. Handb Clin Neurol. 2016;136:843–853. doi: 10.1016/B978-0-444-53486-6.00042-9.
    1. Wijntjes J, van Alfen N. Muscle ultrasound: present state and future opportunities. Muscle Nerve. 2021;63(4):455–466. doi: 10.1002/mus.27081.
    1. Scholten RR, Pillen S, Verrips A, Zwarts MJ. Quantitative ultrasonography of skeletal muscles in children: normal values. Muscle Nerve. 2003;27(6):693–698. doi: 10.1002/mus.10384.
    1. Heckmatt JZ, Leeman S, Dubowitz V. Ultrasound imaging in the diagnosis of muscle disease. J Pediatr. 1982;101(5):656–660. doi: 10.1016/S0022-3476(82)80286-2.
    1. Dahlqvist JR, Widholm P, Leinhard OD, Vissing J. MRI in neuromuscular diseases: an emerging diagnostic tool and biomarker for prognosis and efficacy. Ann Neurol. 2020;88(4):669–681. doi: 10.1002/ana.25804.
    1. Morrow JM, Sinclair CD, Fischmann A, Machado PM, Reilly MM, Yousry TA, et al. MRI biomarker assessment of neuromuscular disease progression: a prospective observational cohort study. Lancet Neurol. 2016;15(1):65–77. doi: 10.1016/S1474-4422(15)00242-2.
    1. Mul K, Horlings CGC, Vincenten SCC, Voermans NC, van Engelen BGM, van Alfen N. Quantitative muscle MRI and ultrasound for facioscapulohumeral muscular dystrophy: complementary imaging biomarkers. J Neurol. 2018;265(11):2646–2655. doi: 10.1007/s00415-018-9037-y.
    1. Mul K, Vincenten SCC, Voermans NC, Lemmers RJLF, van der Vliet PJ, van der Maarel SM, Padberg GW, Horlings CGC, van Engelen BGM. Adding quantitative muscle MRI to the FSHD clinical trial toolbox. Neurology. 2017;89(20):2057–2065. doi: 10.1212/WNL.0000000000004647.
    1. Kinali M, Arechavala-Gomeza V, Cirak S, Glover A, Guglieri M, Feng L, Hollingsworth KG, Hunt D, Jungbluth H, Roper HP, Quinlivan RM, Gosalakkal JA, Jayawant S, Nadeau A, Hughes-Carre L, Manzur AY, Mercuri E, Morgan JE, Straub V, Bushby K, Sewry C, Rutherford M, Muntoni F. Muscle histology vs MRI in Duchenne muscular dystrophy. Neurology. 2011;76(4):346–353. doi: 10.1212/WNL.0b013e318208811f.
    1. Mercuri E, Cini C, Pichiecchio A, Allsop J, Counsell S, Zolkipli Z, Messina S, Kinali M, Brown SC, Jimenez C, Brockington M, Yuva Y, Sewry CA, Muntoni F. Muscle magnetic resonance imaging in patients with congenital muscular dystrophy and Ullrich phenotype. Neuromuscul Disord. 2003;13(7–8):554–558. doi: 10.1016/S0960-8966(03)00091-9.
    1. Mercuri E, Pichiecchio A, Counsell S, Allsop J, Cini C, Jungbluth H, et al. A short protocol for muscle MRI in children with muscular dystrophies. Eur J Paediatr Neurol. 2002;6(6):305–307. doi: 10.1053/ejpn.2002.0617.
    1. Gupta MC, Wijesekera S, Sossan A, Martin L, Vogel LC, Boakes JL, Lerman JA, McDonald CM, Betz RR. Reliability of radiographic parameters in neuromuscular scoliosis. Spine (Phila Pa 1976) 2007;32(6):691–695. doi: 10.1097/01.brs.0000257524.23074.ed.
    1. Kim H, Kim HS, Moon ES, Yoon CS, Chung TS, Song HT, Suh JS, Lee YH, Kim S. Scoliosis imaging: what radiologists should know. Radiographics. 2010;30(7):1823–1842. doi: 10.1148/rg.307105061.
    1. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16(3):233–270. doi: 10.1093/ehjci/jev014.
    1. Laveneziana P, Albuquerque A, Aliverti A, Babb T, Barreiro E, Dres M, et al. ERS statement on respiratory muscle testing at rest and during exercise. Eur Respir J. 2019;53(6).
    1. Fayssoil A, Nguyen LS, Ogna A, Stojkovic T, Meng P, Mompoint D, Carlier R, Prigent H, Clair B, Behin A, Laforet P, Bassez G, Crenn P, Orlikowski D, Annane D, Eymard B, Lofaso F. Diaphragm sniff ultrasound: Normal values, relationship with sniff nasal pressure and accuracy for predicting respiratory involvement in patients with neuromuscular disorders. PLoS One. 2019;14(4):e0214288. doi: 10.1371/journal.pone.0214288.
    1. Caggiano S, Khirani S, Dabaj I, Cavassa E, Amaddeo A, Arroyo JO, Desguerre I, Richard P, Cutrera R, Ferreiro A, Estournet B, Quijano-Roy S, Fauroux B. Diaphragmatic dysfunction in SEPN1-related myopathy. Neuromuscul Disord. 2017;27(8):747–755. doi: 10.1016/j.nmd.2017.04.010.
    1. van Doorn JLM, Pennati F, Hansen HHG, van Engelen BGM, Aliverti A, Doorduin J. Respiratory muscle imaging by ultrasound and MRI in neuromuscular disorders. Eur Respir J. 2021.
    1. Esliger DW, Rowlands AV, Hurst TL, Catt M, Murray P, Eston RG. Validation of the GENEA accelerometer. Med Sci Sports Exerc. 2011;43(6):1085–1093. doi: 10.1249/MSS.0b013e31820513be.
    1. Phillips LR, Parfitt G, Rowlands AV. Calibration of the GENEA accelerometer for assessment of physical activity intensity in children. J Sci Med Sport. 2013;16(2):124–128. doi: 10.1016/j.jsams.2012.05.013.
    1. de Vries PR, Janssen M, Spaans E, de Groot I, Janssen A, Smeitink J, Koene S. Natural variability of daily physical activity measured by accelerometry in children with a mitochondrial disease. Mitochondrion. 2019;47:30–37. doi: 10.1016/j.mito.2019.04.005.
    1. Bharucha-Goebel D, Collins J, Hu Y, Foley AR, Donkervoort S, Leach M, et al. Serum biomarker discovery for congenital muscular dystrophies. Neuromuscul Disord. 2016.

Source: PubMed

3
Iratkozz fel