Monocyte distribution width enhances early sepsis detection in the emergency department beyond SIRS and qSOFA

Elliott D Crouser, Joseph E Parrillo, Greg S Martin, David T Huang, Pierre Hausfater, Ilya Grigorov, Diana Careaga, Tiffany Osborn, Mohamad Hasan, Liliana Tejidor, Elliott D Crouser, Joseph E Parrillo, Greg S Martin, David T Huang, Pierre Hausfater, Ilya Grigorov, Diana Careaga, Tiffany Osborn, Mohamad Hasan, Liliana Tejidor

Abstract

Background: The initial presentation of sepsis in the emergency department (ED) is difficult to distinguish from other acute illnesses based upon similar clinical presentations. A new blood parameter, a measurement of increased monocyte volume distribution width (MDW), may be used in combination with other clinical parameters to improve early sepsis detection. We sought to determine if MDW, when combined with other available clinical parameters at the time of ED presentation, improves the early detection of sepsis.

Methods: A retrospective analysis of prospectively collected clinical data available during the initial ED encounter of 2158 adult patients who were enrolled from emergency departments of three major academic centers, of which 385 fulfilled Sepsis-2 criteria, and 243 fulfilled Sepsis-3 criteria within 12 h of admission. Sepsis probabilities were determined based on MDW values, alone or in combination with components of systemic inflammatory response syndrome (SIRS) or quick sepsis-related organ failure assessment (qSOFA) score obtained during the initial patient presentation (i.e., within 2 h of ED admission).

Results: Abnormal MDW (> 20.0) consistently increased sepsis probability, and normal MDW consistently reduced sepsis probability when used in combination with SIRS criteria (tachycardia, tachypnea, abnormal white blood count, or body temperature) or qSOFA criteria (tachypnea, altered mental status, but not hypotension). Overall, and regardless of other SIRS or qSOFA variables, MDW > 20.0 (vs. MDW ≤ 20.0) at the time of the initial ED encounter was associated with an approximately 6-fold increase in the odds of Sepsis-2, and an approximately 4-fold increase in the odds of Sepsis-3.

Conclusions: MDW improves the early detection of sepsis during the initial ED encounter and is complementary to SIRS and qSOFA parameters that are currently used for this purpose. This study supports the incorporation of MDW with other readily available clinical parameters during the initial ED encounter for the early detection of sepsis.

Trial registration: ClinicalTrials.gov, NCT03145428. First posted May 9, 2017. The first subjects were enrolled June 19, 2017, and the study completion date was January 26, 2018.

Keywords: Biomarker; Blood; ED; Infection; Sepsis-2; Sepsis-3; Severe sepsis.

Conflict of interest statement

Competing interestsAuthors EDC and JEP were supported by a grant from Beckman Coulter, Inc. to perform the clinical trial. Authors DTH, PH, and TO have consulting agreements with Beckman Coulter, Inc. IG, DC, MH, and LT are employees of Beckman Coulter, Inc., the sponsor of the project.

© The Author(s) 2020.

Figures

Fig. 1
Fig. 1
Flow diagram describing patient screening and enrollment. The study was conducted between April 2017 and January 2018. 2.5% of subjects screened were excluded for various reasons, as noted above, such that 97.5% of subjects screened were enrolled in the study
Fig 2
Fig 2
MDW improves early sepsis detection when combined with each SIRS vital sign criterion. The probability of sepsis in patients presenting initially to the ED with abnormal vital signs of tachycardia (a), tachypnea (b), both tachycardia and tachypnea (c), or abnormal temperature (d) is consistently lower if the MDW is normal (solid blue line) compared to abnormal MDW (dashed red line). The probability of sepsis is also higher when a vital sign abnormality is combined with abnormal WBC (dashed purple line). When a vital sign is abnormal along with abnormal WBC, abnormal MDW indicates higher sepsis probability (dashed black line) and normal MDW indicates lower sepsis probability (dashed green line)
Fig. 3
Fig. 3
MDW improves early sepsis detection in combination with altered mental status and hypotension. The probability of sepsis in patients presenting initially to the ED with altered mental status (AMS) (a) is lower if the MDW is normal (solid blue line) compared to abnormal MDW (dashed red line). The probability of sepsis is also higher when AMS is combined with abnormal WBC (dashed purple line). When AMS is associated with abnormal WBC, abnormal MDW further predicts higher sepsis probability (dashed black line) and normal MDW predicts lower sepsis probability (dashed green line). In the setting of hypotension (b) with elevated WBC (purple dashed line), normal MDW is associated with lower sepsis risk (green dashed line)
Fig. 4
Fig. 4
MDW improves detection of sepsis in ED patients regardless of WBC value at presentation. An elevated MDW value predicts higher sepsis probability in ED patients presenting with abnormal WBC ( 12,000, orange shading) and within the range of normal WBC values (4000–12,000, no shading). In contrast, a normal MDW at presentation to the ED reduces sepsis probability regardless of normal or abnormal WBC value. When all patients with normal CBC are combined, the risk of sepsis is 6-fold higher if MDW is elevated compared to those with a normal MDW value. Notably, 31% of all sepsis cases presented to the ED with a WBC in the normal range. Associated table summarizes sepsis probabilities for combinations of MDW and WBC determined in trial (P0 = 18%) and modeled at P0 = 8%. The chart numbers reflect sepsis probabilities at P0 = 8%. Abnormal WBC cohort combines patients with WBC < 4000 and WBC > 12,000

References

    1. Reinhart K, Daniels R, Kissoon N, Machado FR, Schachter RD, Finfer S. Recognizing sepsis as a global health priority-a WHO resolution. N Engl J Med. 2017;377:414–417. doi: 10.1056/NEJMp1707170.
    1. (Accessed 18 Sept 2019 by EDC).
    1. Ferrer R, Martin-Loeches I, Phillips G, et al. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from a guideline-based performance improvement program. Crit Care Med. 2014;42(8):1749–1755. doi: 10.1097/CCM.0000000000000330.
    1. Liu VX, Fielding-Singh V, Greene JD, et al. The timing of early antibiotics and hospital mortality. Am J Respir Crit Care Med. 2017;196(7):856–863. doi: 10.1164/rccm.201609-1848OC.
    1. Seymour CS, Gesten F, Prescott HC, et al. Time to treatment and mortality during mandated emergency care for sepsis. N Engl J Med. 2017;376(23):2235–2244. doi: 10.1056/NEJMoa1703058.
    1. Rhee C, Dantes R, Epstein L, et al. Incidence and trends of sepsis in US hospitals using clinical vs claims data, 2009-2014. JAMA. 2017;318(13):1241–1249. doi: 10.1001/jama.2017.13836.
    1. Holder AL, Gupta N, Lulaj E, et al. Predictors of early progression to severe sepsis or shock among emergency department patients with nonsevere sepsis. Int J Emerg Med. 2016;9:10. doi: 10.1186/s12245-016-0106-7.
    1. Glickman SW, Cairns CB, Otero RM, et al. Disease progression in hemodynamically stable patients presenting to the emergency department with sepsis. Acad Emerg Med. 2010;17(4):383–390. doi: 10.1111/j.1553-2712.2010.00664.x.
    1. Liu V, Escobar GJ, Greene JD, et al. Hospital deaths in patients with sepsis from 2 independent cohorts. JAMA. 2014;312(1):90–92. doi: 10.1001/jama.2014.5804.
    1. Fleischmann C, Scherag A, Adhikari NKJ, et al. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med. 2015;193(3):259–272. doi: 10.1164/rccm.201504-0781OC.
    1. Boushra MN, Miller SN, Koyfman A, Long B. Consideration of occult infection and sepsis mimics in the sick patient without an apparent infectious source. J Emerg Med. 2019;56(1):36–45. doi: 10.1016/j.jemermed.2018.09.035.
    1. Boter NR, Deltell JM, Garcia IC, et al. Activation of a code sepsis in the emergency department is associated with a decrease in mortality. Med Clin (Barc). 2019;152(7):255–260. doi: 10.1016/j.medcli.2018.02.013.
    1. Haydar S, Spanier M, Weems P, Wood S, Strout T. Comparison of QSOFA score and SIRS criteria as screening mechanisms for emergency department sepsis. Am J Emerg Med. 2017;35(11):1730–1733. doi: 10.1016/j.ajem.2017.07.001.
    1. Usman OA, Usman AA, Ward MA. Comparison of SIRS, qSOFA, and NEWS for the early identification of sepsis in the emergency department. Am J Emerg Med. 2019;37(8):1490–1497. doi: 10.1016/j.ajem.2018.10.058.
    1. Serafim R, Gomes JA, Salluh J, Povoa P. A comparison of the Quick-SOFA and systemic inflammatory response syndrome criteria for the diagnosis of sepsis and prediction of mortality: a systemic review and meta-analysis. Chest. 2018;153(3):646–655. doi: 10.1016/j.chest.2017.12.015.
    1. Rehmani R, Amanullah S. Analysis of blood tests in the emergency department of a tertiary care hospital. Postgrad Med J. 1999;75:662–666. doi: 10.1136/pgmj.75.889.662.
    1. Petit J, Passerieux J, Maitre O, et al. Impact of qSOFA-based triage procedure on antibiotic timing in ED patients with sepsis: a prospective interventional study. Am J Emerg Med. 2019; In Press (PMID: 31103379).
    1. Jouffroy R, Saade A, Ellouze S, et al. Prehospital triage of septic patients at the SAMU regulation: comparison of qSOFA, MRST, MEWS, and PRESEP scores. Am J Emerg Med. 2018;36(5):820–824. doi: 10.1016/j.ajem.2017.10.030.
    1. Anand V, Zhang Z, Kadri SS, Klompas M, Rhee C, CDC prevention epicenters program Epidemiology of quick sequential organ failure assessment criteria in undifferentiated patients and association with suspected infection and sepsis. Chest. 2019;156(2):289–297. doi: 10.1016/j.chest.2019.03.032.
    1. Kalili AC, Machado FR. Quick sequential organ failure Assessment is not good for ruling sepsis in or out. Chest. 2019;156(2):197–199. doi: 10.1016/j.chest.2019.06.003.
    1. Crouser ED, Parrillo JE, Seymour C, et al. Monocyte distribution width, a novel indicator of Sepsis-2 and Sepsis-3 in high risk emergency department patients. Crit Care Med. 2019;47(8):1018–1025. doi: 10.1097/CCM.0000000000003799.
    1. Crouser ED, Parrillo JE, Seymour CW, et al. Improved early detection of sepsis in the ED with a novel monocyte distribution width biomarker. Chest. 2017;152(3):518–552. doi: 10.1016/j.chest.2017.05.039.
    1. Golubeva V, Mikhalevich J, Novikova J, et al. Novel cell population data from a haematology analyzer can predict timing and efficiency of stem cell transplantation. Transfus Apher Sci. 2014;50(1):39–45. doi: 10.1016/j.transci.2013.12.004.
    1. Members of the American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference Committee: American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med. 1992;20(6):864–874. doi: 10.1097/00003246-199206000-00025.
    1. Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) JAMA. 2016;315(8):801–810. doi: 10.1001/jama.2016.0287.
    1. Vincent JL, Moreno R, Takala J, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Med. 1996;22(7):707–710. doi: 10.1007/BF01709751.
    1. Wang HE, Jones AR, Donnelly JP. Revised national estimates of emergency department visits for sepsis in the United States. Crit Care Med. 2017;45(9):1443–1449. doi: 10.1097/CCM.0000000000002538.
    1. Horeczko T, Green JP, Panacek EA. Epidemiology of the systemic inflammatory response syndrome (SIRS) in the emergency department. West J Emerg Med. 2014;15(3):329–336. doi: 10.5811/westjem.2013.9.18064.
    1. National Hospital Ambulatory Medical Care Survey 2016 Emergency Department Summary Tables; , downloaded on 10/9/2019.
    1. McGee S. Simplifying likelihood ratios. J Gen Intern Med. 2002;17(8):647–650. doi: 10.1046/j.1525-1497.2002.10750.x.
    1. Deeks JJ, Altman DG. Diagnostic tests 4: likelihood ratios. BMJ. 2004;329:168–169. doi: 10.1136/bmj.329.7458.168.
    1. Rezende E, Silva JM, Osola AM, et al. Epidemiology of severe sepsis in the emergency department and difficulties in the initial assistance. Clinics (Sao Paulo). 2008;63(4):457–464. doi: 10.1590/S1807-59322008000400008.
    1. Morr M, Lukasz A, Rubig E, Pavenstadt H, Kumpers P. Sepsis recognition in the emergency department-impact on quality of care and outcome? BMC Emer Med. 2017;17(1):11. doi: 10.1186/s12873-017-0122-9.
    1. Rangel-Frausto MS, Pittet D, Costigan M, Hwang T, Davis CS, Wenzel RP. The natural history of the systemic inflammatory response syndrome. A prospective study. JAMA. 1995;273:117–123. doi: 10.1001/jama.1995.03520260039030.
    1. Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol. 2009;7(2):99–109. doi: 10.1038/nrmicro2070.
    1. Wang HE, Devereaux RS, Yealy DM, Safford MM, Howard G. National variation in United States sepsis mortality: a descriptive study. Int J Health Geographics. 2010;9:9. doi: 10.1186/1476-072X-9-9.

Source: PubMed

3
Iratkozz fel