Inhaled aviptadil for the possible treatment of COVID-19 in patients at high risk for ARDS: study protocol for a randomized, placebo-controlled, and multicenter trial

Maria Boesing, Kristin Abig, Michael Brändle, Martin Brutsche, Emanuel Burri, Björn C Frye, Stéphanie Giezendanner, Jan C Grutters, Philippe Haas, Justian Heisler, Fabienne Jaun, Anne B Leuppi-Taegtmeyer, Giorgia Lüthi-Corridori, Joachim Müller-Quernheim, Reto Nüesch, Wolfgang Pohl, Frank Rassouli, Jörg D Leuppi, Maria Boesing, Kristin Abig, Michael Brändle, Martin Brutsche, Emanuel Burri, Björn C Frye, Stéphanie Giezendanner, Jan C Grutters, Philippe Haas, Justian Heisler, Fabienne Jaun, Anne B Leuppi-Taegtmeyer, Giorgia Lüthi-Corridori, Joachim Müller-Quernheim, Reto Nüesch, Wolfgang Pohl, Frank Rassouli, Jörg D Leuppi

Abstract

Background: Despite the fast establishment of new therapeutic agents in the management of COVID-19 and large-scale vaccination campaigns since the beginning of the SARS-CoV-2 pandemic in early 2020, severe disease courses still represent a threat, especially to patients with risk factors. This indicates the need for alternative strategies to prevent respiratory complications like acute respiratory distress syndrome (ARDS) associated with COVID-19. Aviptadil, a synthetic form of human vasoactive intestinal peptide, might be beneficial for COVID-19 patients at high risk of developing ARDS because of its ability to influence the regulation of exaggerated pro-inflammatory proteins and orchestrate the lung homeostasis. Aviptadil has recently been shown to considerably improve the prognosis of ARDS in COVID-19 when applied intravenously. An inhaled application of aviptadil has the advantages of achieving a higher concentration in the lung tissue, fast onset of activity, avoiding the hepatic first-pass metabolism, and the reduction of adverse effects. The overall objective of this project is to assess the efficacy and safety of inhaled aviptadil in patients hospitalized for COVID-19 at high risk of developing ARDS.

Methods: This multicenter, placebo-controlled, double-blinded, randomized trial with 132 adult patients hospitalized for COVID-19 and at high risk for ARDS (adapted early acute lung injury score ≥ 2 points) is conducted in five public hospitals in Europe. Key exclusion criteria are mechanical ventilation at baseline, need for intensive care at baseline, and severe hemodynamic instability. Patients are randomly allocated to either inhale 67 μg aviptadil or normal saline (three times a day for 10 days), in addition to standard care, stratified by center. The primary endpoint is time from hospitalization to clinical improvement, defined as either hospital discharge, or improvement of at least two levels on the nine-level scale for clinical status suggested by the World Health Organization.

Discussion: Treatment strategies for COVID-19 are still limited. In the context of upcoming new variants of SARS-CoV-2 and possible inefficacy of the available vaccines and antibody therapies, the investigation of alternative therapy options plays a crucial role in decreasing associated mortality and improving prognosis. Due to its unique immunomodulating properties also targeting the SARS-CoV-2 pathways, inhaled aviptadil may have the potential to prevent ARDS in COVID-19.

Trial registration: ClinicalTrials.gov, NCT04536350 . Registered 02 September 2020.

Keywords: ARDS; Aviptadil; COVID-19; SARS-CoV-2; VIP.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Participant timeline. Asterisk symbol (*) indicates the following: if hospital discharge occurs first, intervention is stopped at discharge. Superscript digit one (1) indicates the following: demographics, clinical status according to nine-level ordinal scale, medical history, smoking status, COVID-19 symptoms, and COVID-19 vaccination status. Superscript digit two (2) indicates the following: C-reactive protein, neutrophil-lymphocyte ratio, interleukin-6, and procalcitonin. Superscript digit three (3) indicates the following: on a visual analog scale from 0 to 10. Superscript digit four (4) indicates the following: Clinical status on nine-level ordinal scale, admission to ICU, ventilation, mortality, complications. MRC, Medical Research Council dyspnea scale; SF-12v2, 12-item Short Form Survey version 2

References

    1. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet (London, England) 2020;395(10223):507–513. doi: 10.1016/S0140-6736(20)30211-7.
    1. Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, et al. Dexamethasone in hospitalized patients with COVID-19. N Engl J Med. 2021;384(8):693–704. doi: 10.1056/NEJMoa2021436.
    1. Swiss National COVID-19 Science Task Force, Clinical Care Group Writing committee . Reduction of COVID-19-associated mortality by drug therapies. 2021.
    1. Marconi VC, Ramanan AV, de Bono S, Kartman CE, Krishnan V, Liao R, et al. Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): a randomised, double-blind, parallel-group, placebo-controlled phase 3 trial. Lancet Respir Med. 2021;9(12):1407–1418. doi: 10.1016/S2213-2600(21)00331-3.
    1. World Health Organization . Therapeutics and COVID-19: living guideline. 2022.
    1. Infectious Diseases Society of America . IDSA guidelines on the treatment and management of patients with COVID-19. 2022.
    1. National Institutes of Health . Coronavirus disease 2019 (COVID-19) treatment guidelines. 2022.
    1. Swiss Society of Infectiology . SARS-CoV-2 /COVID-19 - antiviral and immunomodulatory treatment considerations. 2022.
    1. Gupta A, Gonzalez-Rojas Y, Juarez E, Crespo Casal M, Moya J, Falci DR, et al. Early treatment for COVID-19 with SARS-CoV-2 neutralizing antibody sotrovimab. N Engl J Med. 2021;385(21):1941–1950. doi: 10.1056/NEJMoa2107934.
    1. Dougan M, Azizad M, Chen P, Feldman B, Frieman M, Igbinadolor A, et al. Bebtelovimab, alone or together with bamlanivimab and etesevimab, as a broadly neutralizing monoclonal antibody treatment for mild to moderate, ambulatory COVID-19. medRxiv [Preprint]; 2022. Available from: 10.1101/2022.03.10.22272100.
    1. Gottlieb RL, Vaca CE, Paredes R, Mera J, Webb BJ, Perez G, et al. Early remdesivir to prevent progression to severe COVID-19 in outpatients. N Engl J Med. 2022;386(4):305–315. doi: 10.1056/NEJMoa2116846.
    1. Hammond J, Leister-Tebbe H, Gardner A, Abreu P, Bao W, Wisemandle W, et al. Oral nirmatrelvir for high-risk, nonhospitalized adults with COVID-19. N Engl J Med. 2022;386(15):1397–1408. doi: 10.1056/NEJMoa2118542.
    1. Jayk Bernal A, Gomes da Silva MM, Musungaie DB, Kovalchuk E, Gonzalez A, Delos Reyes V, et al. Molnupiravir for oral treatment of COVID-19 in nonhospitalized patients. N Engl J Med. 2022;386(6):509–520. doi: 10.1056/NEJMoa2116044.
    1. Reis G, Dos Santos Moreira-Silva EA, Silva DCM, Thabane L, Milagres AC, Ferreira TS, et al. Effect of early treatment with fluvoxamine on risk of emergency care and hospitalisation among patients with COVID-19: the TOGETHER randomised, platform clinical trial. Lancet Glob Health. 2022;10(1):e42–e51. doi: 10.1016/S2214-109X(21)00448-4.
    1. Weinreich DM, Sivapalasingam S, Norton T, Ali S, Gao H, Bhore R, et al. REGEN-COV antibody combination and outcomes in outpatients with COVID-19. N Engl J Med. 2021;385(23):e81. doi: 10.1056/NEJMoa2108163.
    1. Gavriatopoulou M, Ntanasis-Stathopoulos I, Korompoki E, Fotiou D, Migkou M, Tzanninis IG, et al. Emerging treatment strategies for COVID-19 infection. Clin Exp Med. 2021;21(2):167–179. doi: 10.1007/s10238-020-00671-y.
    1. Rabie AM. Teriflunomide: a possible effective drug for the comprehensive treatment of COVID-19. Curr Res Pharmacol Drug Discov. 2021;2:100055. doi: 10.1016/j.crphar.2021.100055.
    1. Rabie AM. Two antioxidant 2,5-disubstituted-1,3,4-oxadiazoles (CoViTris2020 and ChloViD2020): successful repurposing against COVID-19 as the first potent multitarget anti-SARS-CoV-2 drugs. New J Chem. 2021;45(2):761–771. doi: 10.1039/D0NJ03708G.
    1. Gao YD, Ding M, Dong X, Zhang JJ, Kursat Azkur A, Azkur D, et al. Risk factors for severe and critically ill COVID-19 patients: a review. Allergy. 2021;76(2):428–455. doi: 10.1111/all.14657.
    1. Ragab D, Salah Eldin H, Taeimah M, Khattab R, Salem R. The COVID-19 cytokine storm; what we know so far. Front Immunol. 2020;11:1446. doi: 10.3389/fimmu.2020.01446.
    1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet (London, England) 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5.
    1. Mason RJ. Thoughts on the alveolar phase of COVID-19. Am J Physiol Lung Cell Mol Physiol. 2020;319(1):L115–Ll20. doi: 10.1152/ajplung.00126.2020.
    1. Mossel EC, Wang J, Jeffers S, Edeen KE, Wang S, Cosgrove GP, et al. SARS-CoV replicates in primary human alveolar type II cell cultures but not in type I-like cells. Virology. 2008;372(1):127–135. doi: 10.1016/j.virol.2007.09.045.
    1. Said SI, Mutt V. Potent peripheral and splanchnic vasodilator peptide from normal gut. Nature. 1970;225(5235):863–864. doi: 10.1038/225863a0.
    1. Bodanszky M, Klausner YS, Lin CY, Mutt V, Said SI. Synthesis of the vasoactive intestinal peptide (VIP) J Am Chem Soc. 1974;96(15):4973–4978. doi: 10.1021/ja00822a041.
    1. Bodansky M, Natarajan S, Gardner JD, Makhlouf GM, Said SI. Synthesis and some pharmacological properties of the 23-peptide 15-lysine-secretin-(5--27). Special role of the residue in position 15 in biological activity of the vasoactive intestinal polypeptide. J Med Chem. 1978;21(11):1171–1173. doi: 10.1021/jm00209a018.
    1. Mathioudakis A, Chatzimavridou-Grigoriadou V, Evangelopoulou E, Mathioudakis G. Vasoactive intestinal peptide inhaled agonists: potential role in respiratory therapeutics. Hippokratia. 2013;17(1):12–16.
    1. Virgolini I, Kurtaran A, Raderer M, Leimer M, Angelberger P, Havlik E, et al. Vasoactive intestinal peptide receptor scintigraphy. J Nucl Med. 1995;36(10):1732–1739.
    1. Delgado M, Munoz-Elias EJ, Kan Y, Gozes I, Fridkin M, Brenneman DE, et al. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit tumor necrosis factor alpha transcriptional activation by regulating nuclear factor-kB and cAMP response element-binding protein/c-Jun. J Biol Chem. 1998;273(47):31427–31436. doi: 10.1074/jbc.273.47.31427.
    1. Sharma V, Delgado M, Ganea D. Granzyme B, a new player in activation-induced cell death, is down-regulated by vasoactive intestinal peptide in Th2 but not Th1 effectors. J Immunol (Baltimore, Md: 1950) 2006;176(1):97–110. doi: 10.4049/jimmunol.176.1.97.
    1. Li L, Luo ZQ, Zhou FW, Feng DD, Guang CX, Zhang CQ, et al. Effect of vasoactive intestinal peptide on pulmonary surfactants phospholipid synthesis in lung explants. Acta Pharmacol Sin. 2004;25(12):1652–1658.
    1. Temerozo JR, Sacramento CQ, Fintelman-Rodrigues N, Pão CRR, de Freitas CS, da Silva Gomes Dias S, et al. The neuropeptides VIP and PACAP inhibit SARS-CoV-2 replication in monocytes and lung epithelial cells, decrease the production of proinflammatory cytokines, and VIP levels are associated with survival in severe Covid-19 patients. bioRxiv [Preprint]; 2020. 10.1101/2020.07.25.220806.
    1. Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6(10):a016295. doi: 10.1101/cshperspect.a016295.
    1. Said SI. VIP as a modulator of lung inflammation and airway constriction. Am Rev Respir Dis. 1991;143(3 Pt 2):S22–S24. doi: 10.1164/ajrccm/143.3_Pt_2.S22.
    1. Berisha H, Foda H, Sakakibara H, Trotz M, Pakbaz H, Said SI. Vasoactive intestinal peptide prevents lung injury due to xanthine/xanthine oxidase. Am J Physiol. 1990;259(2 Pt 1):L151–L155.
    1. Pakbaz H, Foda HD, Berisha HI, Trotz M, Said SI. Paraquat-induced lung injury: prevention by vasoactive intestinal peptide and related peptide helodermin. Am J Physiol. 1993;265(4 Pt 1):L369–L373.
    1. Said SI, Dickman KG. Pathways of inflammation and cell death in the lung: modulation by vasoactive intestinal peptide. Regul Pept. 2000;93(1-3):21–29. doi: 10.1016/S0167-0115(00)00174-9.
    1. Delgado M, Martinez C, Pozo D, Calvo JR, Leceta J, Ganea D, et al. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activation polypeptide (PACAP) protect mice from lethal endotoxemia through the inhibition of TNF-alpha and IL-6. J Immunol (Baltimore, Md: 1950) 1999;162(2):1200–1205.
    1. Berisha HI, Bratut M, Bangale Y, Colasurdo G, Paul S, Said SI. New evidence for transmitter role of VIP in the airways: impaired relaxation by a catalytic antibody. Pulm Pharmacol Ther. 2002;15(2):121–127. doi: 10.1006/pupt.2001.0337.
    1. Li L, She H, Yue SJ, Qin XQ, Guan CX, Liu HJ, et al. Role of c-fos gene in vasoactive intestinal peptide promoted synthesis of pulmonary surfactant phospholipids. Regul Pept. 2007;140(3):117–124. doi: 10.1016/j.regpep.2006.11.027.
    1. Temerozo JR, Sacramento CQ, Fintelman-Rodrigues N, Pão CRR, de Freitas CS, Dias SSG, et al. VIP plasma levels associate with survival in severe COVID-19 patients, correlating with protective effects in SARS-CoV-2-infected cells. J Leukoc Biol. 2022;111(5):1107-21.
    1. Youssef J, Lee R, Javitt J, Lavin P, Lenhardt R, Park D, et al. Intravenous aviptadil is associated with increased recovery and survival in patients with COVID-19 respiratory failure: results of a 60-day randomized controlled trial. SSRN [Preprint] 2021.
    1. Prasse A, Zissel G, Lützen N, Schupp J, Schmiedlin R, Gonzalez-Rey E, et al. Inhaled vasoactive intestinal peptide exerts immunoregulatory effects in sarcoidosis. Am J Respir Crit Care Med. 2010;182(4):540–548. doi: 10.1164/rccm.200909-1451OC.
    1. Ran WZ, Dong L, Tang CY, Zhou Y, Sun GY, Liu T, et al. Vasoactive intestinal peptide suppresses macrophage-mediated inflammation by downregulating interleukin-17A expression via PKA- and PKC-dependent pathways. Int J Exp Pathol. 2015;96(4):269–275. doi: 10.1111/iep.12130.
    1. Anderson P, Gonzalez-Rey E. Vasoactive intestinal peptide induces cell cycle arrest and regulatory functions in human T cells at multiple levels. Mol Cell Biol. 2010;30(10):2537–2551. doi: 10.1128/MCB.01282-09.
    1. Gonzalez-Rey E, Fernandez-Martin A, Chorny A, Delgado M. Vasoactive intestinal peptide induces CD4+,CD25+ T regulatory cells with therapeutic effect in collagen-induced arthritis. Arthritis Rheum. 2006;54(3):864–876. doi: 10.1002/art.21652.
    1. Frye BC, Meiss F, von Bubnoff D, Zissel G, Muller-Quernheim J. Vasoactive intestinal peptide in checkpoint inhibitor-induced pneumonitis. N Engl J Med. 2020;382(26):2573–2574. doi: 10.1056/NEJMc2000343.
    1. Petkov V, Mosgoeller W, Ziesche R, Raderer M, Stiebellehner L, Vonbank K, et al. Vasoactive intestinal peptide as a new drug for treatment of primary pulmonary hypertension. J Clin Invest. 2003;111(9):1339–1346. doi: 10.1172/JCI17500.
    1. Leuchte HH, Baezner C, Baumgartner RA, Bevec D, Bacher G, Neurohr C, et al. Inhalation of vasoactive intestinal peptide in pulmonary hypertension. Eur Respir J. 2008;32(5):1289–1294. doi: 10.1183/09031936.00050008.
    1. Javitt J, Youssef G, Javitt M. Treatment of sepsis-related acute respiratory distress syndrome with vasoactive intestinal peptide. Am J Respir Crit Care Med. 2021;203:A2490.
    1. Mukherjee T, Behl T, Sharma S, Sehgal A, Singh S, Sharma N, et al. Anticipated pharmacological role of Aviptadil on COVID-19. Environ Sci Pollut Res Int. 2022;29(6):8109–8125. doi: 10.1007/s11356-021-17824-5.
    1. Levitt JE, Calfee CS, Goldstein BA, Vojnik R, Matthay MA. Early acute lung injury: criteria for identifying lung injury prior to the need for positive pressure ventilation. Crit Care Med. 2013;41(8):1929–1937. doi: 10.1097/CCM.0b013e31828a3d99.
    1. Gajic O, Dabbagh O, Park PK, Adesanya A, Chang SY, Hou P, et al. Early identification of patients at risk of acute lung injury: evaluation of lung injury prediction score in a multicenter cohort study. Am J Respir Crit Care Med. 2011;183(4):462–470. doi: 10.1164/rccm.201004-0549OC.
    1. Wu C, Chen X, Cai Y, Ja X, Zhou X, Xu S, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):934–943. doi: 10.1001/jamainternmed.2020.0994.
    1. World Health Organization . WHO R&D Blueprint, novel coronavirus COVID-19 therapeutic trial synopsis. 2020.
    1. Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A, et al. Compassionate use of remdesivir for patients with severe COVID-19. N Engl J Med. 2020;382(24):2327–2336. doi: 10.1056/NEJMoa2007016.
    1. Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet (London, England) 2020;395(10236):1569–1578. doi: 10.1016/S0140-6736(20)31022-9.
    1. Chow S, Shao J, Wang H. Sample size calculations in clinical research. 2. New York: Chapman & Hall; 2007.
    1. R Core Team . R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2020.

Source: PubMed

3
Iratkozz fel