Compulsivity in anorexia nervosa: a transdiagnostic concept

Lauren R Godier, Rebecca J Park, Lauren R Godier, Rebecca J Park

Abstract

The compulsive nature of weight loss behaviors central to anorexia nervosa (AN), such as relentless self-starvation and over-exercise, has led to the suggestion of parallels between AN and other compulsive disorders such as obsessive-compulsive disorder (OCD) and addictions. There is a huge unmet need for effective treatments in AN, which has high rates of morbidity and the highest mortality rate of any psychiatric disorder, yet a grave paucity of effective treatments. Viewing compulsivity as a transdiagnostic concept, seen in various manifestations across disorders, may help delineate the mechanisms responsible for the persistence of AN, and aid treatment development. We explore models of compulsivity that suggest dysfunction in cortico-striatal circuitry underpins compulsive behavior, and consider evidence of aberrancies in this circuitry across disorders. Excessive habit formation is considered as a mechanism by which initially rewarding weight loss behavior in AN may become compulsive over time, and the complex balance between positive and negative reinforcement in this process is considered. The physiological effects of starvation in promoting compulsivity, positive reinforcement, and habit formation are also discussed. Further research in AN may benefit from a focus on processes potentially underlying the development of compulsivity, such as aberrant reward processing and habit formation. We discuss the implications of a transdiagnostic perspective on compulsivity, and how it may contribute to the development of novel treatments for AN.

Keywords: addiction; anorexia nervosa; compulsivity; habit formation; neurobiology; obsessive–compulsive disorder; reward.

Figures

FIGURE 1
FIGURE 1
The DSM-V diagnostic criteria for anorexia nervosa (American Psychiatric Association, 2013).
FIGURE 2
FIGURE 2
Representation of the cortico-striatal circuitry suggested to be involved in the development compulsive behavior (Robbins, 2007; Brewer and Potenza, 2008; Fineberg et al., 2010). In the circuit, activity in the striatal component drives compulsive behavior, whilst activity in the prefrontal component inhibits compulsive behavior. Both failures in “top down” control of the prefrontal components, and over activity of “bottom up” striatal activity can result in increases in compulsive behavior. Abbreviation: OFC, orbitofrontal cortex.
FIGURE 3
FIGURE 3
The vicious circle of self-starvation in anorexia nervosa: representation of the development of compulsive weight loss habits in AN. This can be conceptualized as a vicious circle, augmented by starvation. (1) Goal-directed weight loss behaviors, such as food restriction and exercise, lead to weight loss. (2) Weight loss is experienced as rewarding, which may be positively reinforced by an increase of DA in the VS. (3) The pursuit of the rewarding aspects of weight loss leads to a repetition of weight loss behaviors: (a) disorder related cues may gain incentive salience through conditioned reinforcement, and may themselves trigger weight loss behavior (Walsh, 2013). (4) Repetition of rewarding weight loss behavior may result in synaptic changes in DA pathways (Fladung et al., 2013) and result in DA hypofunctioning in a similar way to substance dependence (Everitt and Robbins, 2005). (5) The avoidance of negative states and the anxiety associated with food may become more important in reinforcing weight loss behaviors in the later stages of AN (Selby et al., 2014). (6) Starvation and malnourishment further promote weight loss behavior in the following ways: (a) the up regulation of reward associated with starvation may lead to disorder-related cues gaining incentive salience (Fladung et al., 2010) through a molecular cascade in which starvation induced reductions in glucose and insulin lead to an increase in phasic DA transmission in the VS (Zink and Weinberger, 2010). Furthermore, AN is associated with increased sensitivity to both reward and punishment (Jappe et al., 2011) which may enhance both positive and negative reinforcement of weight loss. (b) Stress is associated with a reliance on habits in learning (Schwabe et al., 2007), and the stress associated with starvation may promote the compulsive weight loss behaviors seen in AN. (7) Once weight loss behavior is repeated enough, a rewarding outcome may no longer be needed for behavior to continue, and weight loss behaviors may become compulsive and habitual (Walsh, 2013). Abbreviations: DA, dopamine; VS, ventral striatum.

References

    1. Abrahamsen G. C., Berman Y., Carr K. D. (1995). Curve-shift analysis of self-stimulation in food-restricted rats: relationship between daily meal, plasma corticosterone and reward sensitization. Brain Res. 695 186–194 10.1016/0006-8993(95)00764-H
    1. Adan R. A., Hillebrand J. J., Danner U. N., Cardona Cano S., Kas M. J., Verhagen L. A. (2011). Neurobiology driving hyperactivity in activity-based anorexia. Curr. Top. Behav. Neurosci. 6 229–250 10.1007/7854_2010_77
    1. Allegre B., Souville M., Therme P., Griffiths M. (2006). Definitions and measures of exercise dependence. Addict. Res. Theory 14 631–646 10.1080/16066350600903302
    1. American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders 5th Edn. (Arlington, VA: American Psychiatric Publishing; ).
    1. Anderluh M., Tchanturia K., Rabe-Hesketh S., Collier D., Treasure J. (2008). Lifetime course of eating disorders: design and validity testing of a new strategy to define the eating disorders phenotype. Behav. Res. Ther. 46 757–765 10.1017/S0033291708003292
    1. Ansell E. B., Pinto A., Crosby R. D., Becker D. F., Anez L. M., Paris M., et al. (2010). The prevalence and structure of obsessive-compulsive personality disorder in Hispanic psychiatric outpatients. J. Behav. Ther. Exp. Psychiatry 41 275–281 10.1016/j.jbtep.2010.02.005
    1. Arcelus J., Mitchell A. J., Wales J., Nielsen S. (2011). Mortality rates in patients with anorexia nervosa and other eating disorders. A meta-analysis of 36 studies. Arch. Gen. Psychiatry 68 724–731 10.1001/archgenpsychiatry.2011.74
    1. Bailer U. F., Frank G. K., Henry S. E., Price J. C., Meltzer C. C., Mathis C. A., et al. (2007). Exaggerated 5-HT1A but normal 5-HT2A receptor activity in individuals ill with anorexia nervosa. Biol. Psychiatry 61 1090–1099 10.1016/j.biopsych.2006.07.018
    1. Bailer U. F., Frank G. K., Price J. C., Meltzer C. C., Becker C., Mathis C. A., et al. (2013). Interaction between serotonin transporter and dopamine D2/D3 receptor radioligand measures is associated with harm avoidant symptoms in anorexia and bulimia nervosa. Psychiatry Res. 211 160–168 10.1016/j.pscychresns.2012.06.010
    1. Bailer U. F., Narendran R., Frankle W. G., Himes M. L., Duvvuri V., Mathis C. A., et al. (2012). Amphetamine induced dopamine release increases anxiety in individuals recovered from anorexia nervosa. Int. J. Eat. Disord. 45 263–271 10.1002/eat.20937
    1. Baker J. H., Thornton L. M., Strober M., Brandt H., Crawford S., Fichter M. M., et al. (2013). Temporal sequence of comorbid alcohol use disorder and anorexia nervosa. Addict. Behav. 38 1704–1709 10.1016/j.addbeh.2012.10.005
    1. Balleine B. W., O’Doherty J. P. (2010). Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology 35 48–69 10.1038/npp.2009.131
    1. Barbano M. F., Cador M. (2006). Differential regulation of the consummatory, motivational and anticipatory aspects of feeding behavior by dopaminergic and opioidergic drugs. Neuropsychopharmacology 31 1371–1381 10.1038/sj.npp.1300908
    1. Barbarich-Marsteller N. C., Foltin R. W., Walsh B. T. (2011). Does anorexia nervosa resemble an addiction? Curr. Drug Abuse Rev. 4 197–200 10.2174/1874473711104030197
    1. Bargh J. A. (1989). “Conditional automaticity: varieties of automatic influence in social perception and cognition,” in Unintended Thought Vol. 3 eds Uleman J. S., Bargh J. A. (New York, NY: Guilford Press; ) 3–51
    1. Barr M. S., Farzan F., Wing V. C., George T. P., Fitzgerald P. B., Daskalakis Z. J. (2011). Repetitive transcranial magnetic stimulation and drug addiction. Int. Rev. Psychiatry 23 454–466 10.3109/09540261.2011.618827
    1. Bassareo V., Di Chiara G. (1999). Differential responsiveness of dopamine transmission to food-stimuli in nucleus accumbens shell/core compartments. Neuroscience 89 637–641 10.1016/S0306-4522(98)00583-1
    1. Belin D., Economidou D., Pelloux Y., Everitt B. (2011). “Habit formation and compulsion,” in Animal Models of Drug Addiction ed. Olmstead M. C. (New York, NY: Humana Press; ) 337–378
    1. Bellodi L. L., Cavallini M. C. M., Bertelli S. S., Chiapparino D. D., Riboldi C. C., Smeraldi E. E. (2001). Morbidity risk for obsessive-compulsive spectrum disorders in first-degree relatives of patients with eating disorders. Am. J. Psychiatry 158 563–569 10.1176/appi.ajp.158.4.563
    1. Beninger R., Gerdjikov T. (2005). “Dopamine-glutamate interactions in reward-related incentive learning,” in Dopamine and Glutamate in Psychiatric Disorders eds Schmidt W., Reith M. A. (Totowa, NJ: Humana Press; ) 319–354 10.1007/978-1-59259-852-6_14
    1. Bergen A. W., Yeager M., Welch R. A., Haque K., Ganjei J. K., van den Bree M. B., et al. (2005). Association of multiple DRD2 polymorphisms with anorexia nervosa. Neuropsychopharmacology 30 1703–1710 10.1038/sj.npp.1300719
    1. Berkman N. D., Lohr K. N., Bulik C. M. (2007). Outcomes of eating disorders: a systematic review of the literature. Int. J. Eat. Disord. 40 293–309 10.1002/eat.20369
    1. Berlin H. A., Rolls E. T., Kischka U. (2004). Impulsivity, time perception, emotion and reinforcement sensitivity in patients with orbitofrontal cortex lesions. Brain 127 1108–1126 10.1093/brain/awh135
    1. Blom R. M., Figee M., Vulink N., Denys D. (2011). Update on repetitive transcranial magnetic stimulation in obsessive-compulsive disorder: different targets. Curr. Psychiatry Rep. 13 289–294 10.1007/s11920-011-0205-3
    1. Boulougouris V., Glennon J. C., Robbins T. W. (2008). Dissociable effects of selective 5-HT2A and 5-HT2C receptor antagonists on serial spatial reversal learning in rats. Neuropsychopharmacology 33 2007–2019 10.1038/sj.npp.1301584
    1. Brewer J. A., Potenza M. N. (2008). The neurobiology and genetics of impulse control disorders: relationships to drug addictions. Biochem. Pharmacol. 75 63–75 10.1016/j.bcp.2007.06.043
    1. Broft A., Shingleton R., Kaufman J., Liu F., Kumar D., Slifstein M., et al. (2012). Striatal dopamine in bulimia nervosa: a PET imaging study. Int. J. Eat. Disord. 45 648–656 10.1002/eat.20984
    1. Bühren K., Mainz V., Herpertz-Dahlmann B., Schäfer K., Kahraman-Lanzerath B., Lente C., et al. (2012). Cognitive flexibility in juvenile anorexia nervosa patients before and after weight recovery. J. Neural. Transm. 119 1047–1057 10.1007/s00702-012-0821-z
    1. Carli M., Baviera M., Invernizzi R. W., Balducci C. (2006). Dissociable contribution of 5-HT1A and 5-HT2A receptors in the medial prefrontal cortex to different aspects of executive control such as impulsivity and compulsive perseveration in rats. Neuropsychopharmacology 31 757–767 10.1038/sj.npp.1300893
    1. Carr K. D. (2007). Chronic food restriction: enhancing effects on drug reward and striatal cell signaling. Physiol. Behav. 91 459–472 10.1016/j.physbeh.2006.09.021
    1. Casa. (2003). Food for Thought: Substance Abuse and Eating Disorders. New York: The National Centre on Addiction and Substance Use (CASA) at Columbia University
    1. Castro-Fornieles J., Deulofeu R., Baeza I., Casula V., Saura B., Lazaro L., et al. (2008). Psychopathological and nutritional correlates of plasma homovanillic acid in adolescents with anorexia nervosa. J. Psychiatr. Res. 42 213–220 10.1016/j.jpsychires.2006.10.009
    1. Cavedini P., Bassi T., Zorzi C., Bellodi L. (2004). The advantages of choosing antiobsessive therapy according to decision-making functioning. J. Clin. Psychopharmacol. 24 628–631 10.1097/01.jcp.0000144889.51072.03
    1. Chamberlain S. R., Menzies L., Hampshire A., Suckling J., Fineberg N. A., Del Campo N., et al. (2008). Orbitofrontal dysfunction in patients with obsessive-compulsive disorder and their unaffected relatives. Science 321 421–422 10.1126/science.1154433
    1. Clarke H. F., Dalley J. W., Crofts H. S., Robbins T. W., Roberts A. C. (2004). Cognitive inflexibility after prefrontal serotonin depletion. Science 304 878–880 10.1126/science.1094987
    1. Clarke H. F., Robbins T. W., Roberts A. C. (2008). Lesions of the medial striatum in monkeys produce perseverative impairments during reversal learning similar to those produced by lesions of the orbitofrontal cortex. J. Neurosci. 28 10972–10982 10.1523/JNEUROSCI.1521-08.2008
    1. Clifton P. G., Lee M. D., Dourish C. T. (2000). Similarities in the action of Ro 60-0175, a 5-HT2C receptor agonist and d-fenfluramine on feeding patterns in the rat. Psychopharmacology (Berl) 152 256–267 10.1007/s002130000504
    1. Cools R., Altamirano L., D’Esposito M. (2006). Reversal learning in Parkinson’s disease depends on medication status and outcome valence. Neuropsychologia 44 1663–1673 10.1016/j.neuropsychologia.2006.03.030
    1. Cowdrey F. A., Finlayson G., Park R. J. (2013). Liking compared with wanting for high- and low-calorie foods in anorexia nervosa: aberrant food reward even after weight restoration. Am. J. Clin. Nutr. 97 463–470 10.3945/ajcn.112.046011
    1. Cowdrey F. A., Park R. J., Harmer C. J., Mccabe C. (2011). Increased neural processing of rewarding and aversive food stimuli in recovered anorexia nervosa. Biol. Psychiatry 70 736–743 10.1016/j.biopsych.2011.05.028
    1. Dalle Grave R., Calugi S., Marchesini G. (2008). Compulsive exercise to control shape or weight in eating disorders: prevalence, associated features, and treatment outcome. Compr. Psychiatry 49 346–352 10.1016/j.comppsych.2007.12.007
    1. Dalley J. W., Everitt B. J., Robbins T. W. (2011). Impulsivity, compulsivity, and top-down cognitive control. Neuron 69 680–694 10.1016/j.neuron.2011.01.020
    1. Davis C., Patte K., Curtis C., Reid C. (2010). Immediate pleasures and future consequences. A neuropsychological study of binge eating and obesity. Appetite 54 208–213 10.1016/j.appet.2009.11.002
    1. Daw N. D., Niv Y., Dayan P. (2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat. Neurosci. 8 1704–1711 10.1038/nn1560
    1. de Ruiter M. B., Veltman D. J., Goudriaan A. E., Oosterlaan J., Sjoerds Z., Van Den Brink W. (2009). Response perseveration and ventral prefrontal sensitivity to reward and punishment in male problem gamblers and smokers. Neuropsychopharmacology 34 1027–1038 10.1038/npp.2008.175
    1. de Wit S., Watson P., Harsay H. A., Cohen M. X., Van De Vijver I., Ridderinkhof K. R. (2012). Corticostriatal connectivity underlies individual differences in the balance between habitual and goal-directed action control. J. Neurosci. 32 12066–12075 10.1523/JNEUROSCI.1088-12.2012
    1. Denys D., Mantione M., Figee M., Van Den Munckhof P., Koerselman F., Westenberg H., et al. (2010). Deep brain stimulation of the nucleus accumbens for treatment-refractory obsessive-compulsive disorder. Arch. Gen. Psychiatry 67 1061–1068 10.1001/archgenpsychiatry.2010.122
    1. Deroche-Gamonet V. R., Belin D., Piazza P. V. (2004). Evidence for addiction-like behavior in the rat. Science 305 1014–1017 10.1126/science.1099020
    1. Dias R., Robbins T. W., Roberts A. C. (1996). Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380 69–72 10.1038/380069a0
    1. Dickinson A., Wood N., Smith J. W. (2002). Alcohol seeking by rats: action or habit? Q. J. Exp. Psychol. B 55 331–348 10.1080/0272499024400016
    1. Everitt B. J., Robbins T. W. (2005). Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci. 8 1481–1489 10.1038/nn1579
    1. Evers E. A., Cools R., Clark L., Van Der Veen F. M., Jolles J., Sahakian B. J., et al. (2005). Serotonergic modulation of prefrontal cortex during negative feedback in probabilistic reversal learning. Neuropsychopharmacology 30 1138–1147 10.1038/sj.npp.1300663
    1. Fairburn C. G., Cooper Z., Shafran R. (2003). Cognitive behaviour therapy for eating disorders: a “transdiagnostic” theory and treatment. Behav. Res. Ther. 41 509–528 10.1016/S0005-7967(02)00088-8
    1. Figee M., Luigjes J., Smolders R., Valencia-Alfonso C.-E., Van Wingen G., De Kwaasteniet B., et al. (2013). Deep brain stimulation restores frontostriatal network activity in obsessive-compulsive disorder. Nat. Neurosci. 16 386–387 10.1038/nn.3344
    1. Fineberg N. A., Potenza M. N., Chamberlain S. R., Berlin H. A., Menzies L., Bechara A., et al. (2010). Probing compulsive and impulsive behaviors, from animal models to endophenotypes: a narrative review. Neuropsychopharmacology 35 591–604 10.1038/npp.2009.185
    1. Fladung A. K., Gron G., Grammer K., Herrnberger B., Schilly E., Grasteit S., et al. (2010). A neural signature of anorexia nervosa in the ventral striatal reward system. Am. J. Psychiatry 167 206–212 10.1176/appi.ajp.2009.09010071
    1. Fladung A. K., Schulze U. M. E., Schöll F., Bauer K., Grön G. (2013). Role of the ventral striatum in developing anorexia nervosa. Transl. Psychiatry 3:e315 10.1038/tp.2013.88
    1. Fletcher P. J., Grottick A. J., Higgins G. A. (2002). Differential effects of the 5-HT2A receptor antagonist M100,907 and the 5-HT2C receptor antagonist SB242,084 on cocaine-induced locomotor activity, cocaine self-administration and cocaine-induced reinstatement of responding. Neuropsychopharmacology 27 576–586 10.1016/S0893-133X(02)00342-1
    1. Foa E. B., Liebowitz M. R., Kozak M. J., Davies S., Campeas R., Franklin M. E., et al. (2005). Randomized, placebo-controlled trial of exposure and ritual prevention, clomipramine, and their combination in the treatment of obsessive-compulsive disorder. Am. J. Psychiatry 162 151–161 10.1176/appi.ajp.162.1.151
    1. Fontenelle L., Marques C., Engelhardt E., Versiani M. (2001). Impaired set-shifting ability and therapeutic response in obsessive-compulsive disorder. J. Neuropsychiatry Clin. Neurosci. 13 508–510 10.1176/appi.neuropsych.13.4.508
    1. Fornari V., Kaplan M., Sandberg D. E., Matthews M., Skolnick N., Katz J. L. (1992). Depressive and anxiety disorders in anorexia nervosa and bulimia nervosa. Int. J. Eat. Disord. 12 21–29 10.1002/1098-108X(199207)12:1<21::AID-EAT2260120104>;2-Y
    1. Frank G. K., Bailer U. F., Henry S. E., Drevets W., Meltzer C. C., Price J. C., et al. (2005). Increased dopamine D2/D3 receptor binding after recovery from anorexia nervosa measured by positron emission tomography and [11C]raclopride. Biol. Psychiatry 58 908–912 10.1016/j.biopsych.2005.05.003
    1. Frank G. K., Shott M. E., Hagman J. O., Mittal V. A. (2013). Alterations in brain structures related to taste reward circuitry in Ill and recovered anorexia nervosa and in bulimia nervosa. Am. J. Psychiatry 2013 1152–1160 10.1176/appi.ajp.2013.12101294
    1. Franklin T. R., Acton P. D., Maldjian J. A., Gray J. D., Croft J. R., Dackis C. A., et al. (2002). Decreased gray matter concentration in the insular, orbitofrontal, cingulate, and temporal cortices of cocaine patients. Biol. Psychiatry 51 134–142 10.1016/S0006-3223(01)01269-0
    1. Fullana M. A., Mataix-Cols D., Caseras X., Alonso P., Manuel Menchon J., Vallejo J., et al. (2004). High sensitivity to punishment and low impulsivity in obsessive-compulsive patients with hoarding symptoms. Psychiatry Res. 129 21–27 10.1016/j.psychres.2004.02.017
    1. Fulton S., Richard D., Woodside B., Shizgal P. (2004). Food restriction and leptin impact brain reward circuitry in lean and obese Zucker rats. Behav. Brain Res. 155 319–329 10.1016/j.bbr.2004.05.021
    1. Gearhardt A. N., Yokum S., Orr P. T., Stice E., Corbin W. R., Brownell K. D. (2011). Neural correlates of food addiction. Arch. Gen. Psychiatry 68 808–816 10.1001/archgenpsychiatry.2011.32
    1. Giel K. E., Kullmann S., Preißl H., Bischoff S. C., Thiel A., Schmidt U., et al. (2013). Understanding the reward system functioning in anorexia nervosa: crucial role of physical activity. Biol. Psychol. 94 575–581 10.1016/j.biopsycho.2013.10.004
    1. Gillan C. M., Morein-Zamir S., Urcelay G. P., Sule A., Voon V., Apergis-Schoute A. M., et al. (2013). Enhanced avoidance habits in obsessive-compulsive disorder. Biol. Psychiatry 3223 145–145 10.1016/j.biopsych.2013.02.002
    1. Gillan C. M., Papmeyer M., Morein-Zamir S., Sahakian B. J., Fineberg N. A., Robbins T. W., et al. (2011). Disruption in the balance between goal-directed behavior and habit learning in obsessive-compulsive disorder. Am. J. Psychiatry 168 718–726 10.1176/appi.ajp.2011.10071062
    1. Godart N. T., Flament M. F., Perdereau F., Jeammet P. (2002). Comorbidity between eating disorders and anxiety disorders: a review. Int. J. Eat. Disord. 32 253–270 10.1002/eat.10096
    1. Graybiel A. M. (2008). Habits, rituals, and the evaluative brain. Annu. Rev. Neurosci. 31 359–387 10.1146/annurev.neuro.29.051605.112851
    1. Gross-Isseroff R., Cohen R., Sasson Y., Voet H., Zohar J. (2004). Serotonergic dissection of obsessive compulsive symptoms: a challenge study with m-chlorophenylpiperazine and sumatriptan. Neuropsychobiology 50 200–205 10.1159/000079970
    1. Guardia D., Rolland B., Karila L., Cottencin O. (2011). GABAergic and glutamatergic modulation in binge eating: therapeutic approach. Curr. Pharm. Des. 17 1396–1409 10.2174/138161211796150828
    1. Guarnieri D. J., Brayton C. E., Richards S. M., Maldonado-Aviles J., Trinko J. R., Nelson J., et al. (2012). Gene profiling reveals a role for stress hormones in the molecular and behavioral response to food restriction. Biol. Psychiatry 71 358–365 10.1016/j.biopsych.2011.06.028
    1. Halmi K. A., Eckert E., Marchi P., Sampugnaro V., Apple R., Cohen J. (1991). Comorbidity of psychiatric diagnoses in anorexia nervosa. Arch. Gen. Psychiatry 48 712–718 10.1001/archpsyc.1991.01810320036006
    1. Hampshire A., Owen A. M. (2006). Fractionating attentional control using event-related fMRI. Cereb. Cortex 16 1679–1689 10.1093/cercor/bhj116
    1. Hancock S., Grant V. (2009). Early maternal separation increases symptoms of activity-based anorexia in male and female rats. J. Exp. Psychol. Anim. Behav. Process. 35 394–406 10.1037/a0014736
    1. Henderson M. B., Green A. I., Bradford P. S., Chau D. T., Roberts D. W., Leiter J. C. (2010). Deep brain stimulation of the nucleus accumbens reduces alcohol intake in alcohol-preferring rats. Neurosurg. Focus 29:E12 10.3171/2010.4.FOCUS10105
    1. Holderness C. C., Brooks-Gunn J., Warren M. P. (1994). Co-morbidity of eating disorders and substance abuse review of the literature. Int. J. Eat. Disord. 16 1–34 10.1002/1098-108X(199407)16:1<1::AID-EAT2260160102>;2-T
    1. Hollander E., Decaria C., Nitescu A., Cooper T., Stover B., Gully R., et al. (1991). Noradrenergic function in obsessive-compulsive disorder: behavioral and neuroendocrine responses to clonidine and comparison to healthy controls. Psychiatry Res. 37 161–177 10.1016/0165-1781(91)90073-X
    1. Hollander E., Rosen J. (2000). Impulsivity. J. Psychopharmacol. 14 S39–S44
    1. Holliday J., Tchanturia K., Landau S., Collier D., Treasure J. (2005). Is impaired set-shifting an endophenotype of anorexia nervosa? Am. J. Psychiatry 162 2269–2275 10.1176/appi.ajp.162.12.2269
    1. Holtkamp K., Muller B., Heussen N., Remschmidt H., Herpertz-Dahlmann B. (2005). Depression, anxiety, and obsessionality in long-term recovered patients with adolescent-onset anorexia nervosa. Eur. Child Adolesc. Psychiatry 14 106–110 10.1007/s00787-005-0431-5
    1. Hou J., Song L., Zhang W., Wu W., Wang J., Zhou D., et al. (2013). Morphologic and functional connectivity alterations of corticostriatal and default mode network in treatment-naïve patients with obsessive-compulsive disorder. PLoS One 8:e83931 10.1371/journal.pone.0083931
    1. Illius A. W., Tolkamp B. J., Yearsley J. (2002). The evolution of the control of food intake. Proc. Nutr. Soc. 61 465–472 10.1079/PNS2002179
    1. Ito R., Dalley J. W., Howes S. R., Robbins T. W., Everitt B. J. (2000). Dissociation in conditioned dopamine release in the nucleus accumbens core and shell in response to cocaine cues and during cocaine-seeking behavior in rats. J. Neurosci. 20 7489–7495
    1. Ito R., Dalley J. W., Robbins T. W., Everitt B. J. (2002). Dopamine release in the dorsal striatum during cocaine-seeking behavior under the control of a drug-associated cue. J. Neurosci. 22 6247–6253
    1. Izquierdo A., Jentsch J. D. (2012). Reversal learning as a measure of impulsive and compulsive behavior in addictions. Psychopharmacology 219 607–620 10.1007/s00213-011-2579-7
    1. Jamain S., Betancur C., Quach H., Philippe A., Fellous M., Giros B., et al. (2002). Linkage and association of the glutamate receptor 6 gene with autism. Mol. Psychiatry 7 302–310 10.1038/sj.mp.4000979
    1. Jappe L. M., Frank G. K., Shott M. E., Rollin M. D., Pryor T., Hagman J. O., et al. (2011). Heightened sensitivity to reward and punishment in anorexia nervosa. Int. J. Eat. Disord. 44 317–324 10.1002/eat.20815
    1. Kalivas P. W., Volkow N. D. (2005). The neural basis of addiction: a pathology of motivation and choice. Am. J. Psychiatry 162 1403–1413 10.1176/appi.ajp.162.8.1403
    1. Kaplan G. B., Heinrichs S. C., Carey R. J. (2011). Treatment of addiction and anxiety using extinction approaches: neural mechanisms and their treatment implications. Pharmacol. Biochem. Behav. 97 619–625 10.1016/j.pbb.2010.08.004
    1. Kaye W. H., Frank G. K., Bailer U. F., Henry S. E. (2005a). Neurobiology of anorexia nervosa: clinical implications of alterations of the function of serotonin and other neuronal systems. Int. J. Eat. Disord. 37 S15–S19; discussion S20–S11. 10.1002/eat.20109
    1. Kaye W. H., Frank G. K., Bailer U. F., Henry S. E., Meltzer C. C., Price J. C., et al. (2005b). Serotonin alterations in anorexia and bulimia nervosa: new insights from imaging studies. Physiol. Behav. 85 73–81 10.1016/j.physbeh.2005.04.013
    1. Kaye W. H., Frank G. K., McConaha C. (1999). Altered dopamine activity after recovery from restricting-type anorexia nervosa. Neuropsychopharmacology 21 503–506 10.1016/S0893-133X(99)00053-6
    1. Kaye W. H., Wierenga C. E., Bailer U. F., Simmons A. N., Wagner A., Bischoff-Grethe A. (2013a). Does a shared neurobiology for foods and drugs of abuse contribute to extremes of food ingestion in anorexia and bulimia nervosa? Biol. Psychiatry 73 836–842 10.1016/j.biopsych.2013.01.002
    1. Kaye W. H., Wierenga C. E., Bailer U. F., Simmons A. N., Bischoff-Grethe A. (2013b). Nothing tastes as good as skinny feels: the neurobiology of anorexia nervosa. Trends Neurosci. 36 110–120 10.1016/j.tins.2013.01.003
    1. Kenny P. J. (2011). Reward mechanisms in obesity: new insights and future directions. Neuron 69 664–679 10.1016/j.neuron.2011.02.016
    1. Kenny P. J., Markou A. (2004). The ups and downs of addiction: role of metabotropic glutamate receptors. Trends Pharmacol. Sci. 25 265–272 10.1016/j.tips.2004.03.009
    1. Keys A., Brozek J., Henschel A., Mickelsen O., Taylor H. L. (1950). The Biology of Human Starvation. Oxford: University of Minnesota Press
    1. Kirby L. G., Zeeb F. D., Winstanley C. A. (2011). Contributions of serotonin in addiction vulnerability. Neuropharmacology 61 421–432 10.1016/j.neuropharm.2011.03.022
    1. Koob G. F., Volkow N. D. (2010). Neurocircuitry of addiction. Neuropsychopharmacology 35 217–238 10.1038/npp.2009.110
    1. Kuhn J., Lenartz D., Huff W., Lee S., Koulousakis A., Klosterkoetter J., et al. (2007). Remission of alcohol dependency following deep brain stimulation of the nucleus accumbens: valuable therapeutic implications? J. Neurol. Neurosurg. Psychiatry 78 1152–1153 10.1136/jnnp.2006.113092
    1. Lawrence N. S., Wooderson S., Mataix-Cols D., David R., Speckens A., Phillips M. L. (2006). Decision making and set shifting impairments are associated with distinct symptom dimensions in obsessive-compulsive disorder. Neuropsychology 20 409–419 10.1037/0894-4105.20.4.409
    1. Lee M. D., Kennett G. A., Dourish C. T., Clifton P. G. (2002). 5-HT1B receptors modulate components of satiety in the rat: behavioural and pharmacological analyses of the selective serotonin1B agonist CP-94,253. Psychopharmacology (Berl.) 164 49–60 10.1007/s00213-002-1162-7
    1. Lilenfeld L. R., Kaye W. H., Greeno C. G., Merikangas K. R., Plotnicov K., Pollice C., et al. (1998). A controlled family study of anorexia nervosa and bulimia nervosa: psychiatric disorders in first-degree relatives and effects of proband comorbidity. Arch. Gen. Psychiatry 55 603–610 10.1001/archpsyc.55.7.603
    1. Lilenfeld L. R. R., Wonderlich S., Riso L. P., Crosby R., Mitchell J. (2006). Eating disorders and personality: a methodological and empirical review. Clin. Psychol. Rev. 26 299–320 10.1016/j.cpr.2005.10.003
    1. Lipsman N., Woodside D. B., Giacobbe P., Hamani C., Carter J. C., Norwood S. J., et al. (2013). Subcallosal cingulate deep brain stimulation for treatment-refractory anorexia nervosa: a phase 1 pilot trial. Lancet 381 1361–1370 10.1016/s0140-6736(12)62188-6
    1. Liu H. Y., Jin J., Tang J. S., Sun W. X., Jia H., Yang X. P., et al. (2008). Chronic deep brain stimulation in the rat nucleus accumbens and its effect on morphine reinforcement. Addict. Biol. 13 40–46 10.1111/j.1369-1600.2007.00088.x
    1. Mas S., Plana M. T., Castro-Fornieles J., Gasso P., Lafuente A., Moreno E., et al. (2013). Common genetic background in anorexia nervosa and obsessive compulsive disorder: preliminary results from an association study. J. Psychiatric Res. 47 747–754 10.1016/j.jpsychires.2012.12.015
    1. McCullough L. D., Salamone J. D. (1992). Involvement of nucleus accumbens dopamine in the motor activity induced by periodic food presentation: a microdialysis and behavioral study. Brain Res. 592 29–36 10.1016/0006-8993(92)91654-W
    1. McLaughlin N. C., Didie E. R., Machado A. G., Haber S. N., Eskandar E. N., Greenberg B. D. (2013). Improvements in anorexia symptoms after deep brain stimulation for intractable obsessive-compulsive disorder. Biol. Psychiatry 73 e29–e31 10.1016/j.biopsych.2012.09.015
    1. Menzies L., Chamberlain S. R., Laird A. R., Thelen S. M., Sahakian B. J., Bullmore E. T. (2008). Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: the orbitofronto-striatal model revisited. Neurosci. Biobehav. Rev. 32 525–549 10.1016/j.neubiorev.2007.09.005
    1. Meunier D., Ersche K. D., Craig K. J., Fornito A., Merlo-Pich E., Fineberg N. A., et al. (2012). Brain functional connectivity in stimulant drug dependence and obsessive-compulsive disorder. Neuroimage 59 1461–1468 10.1016/j.neuroimage.2011.08.003
    1. Meyer C., Taranis L., Goodwin H., Haycraft E. (2011). Compulsive exercise and eating disorders. Eur. Eat. Disord. Rev. 19 174–189 10.1002/erv.1122
    1. Miles F. J., Everitt B. J., Dickinson A. (2003). Oral cocaine seeking by rats: action or habit? Behav. Neurosci. 117 927–938 10.1037/0735-7044.117.5.927
    1. Mistlberger R. E. (1994). Circadian food-anticipatory activity: formal models and physiological mechanisms. Neurosci. Biobehav. Rev. 18 171–195 10.1016/0149-7634(94)90023-X
    1. Miszkiel J., Filip M., Przegalinski E. (2011). Role of serotonin 5-HT1B receptors in psychostimulant addiction. Pharmacol. Rep. 63 1310–1315 10.1016/S1734-1140(11)70695-8
    1. Miyake A., Friedman N. P., Emerson M. J., Witzki A. H., Howerter A., Wager T. D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: a latent variable analysis. Cogn. Psychol. 41 49–100 10.1006/cogp.1999.0734
    1. Muller U. J., Sturm V., Voges J., Heinze H. J., Galazky I., Heldmann M., et al. (2009). Successful treatment of chronic resistant alcoholism by deep brain stimulation of nucleus accumbens: first experience with three cases. Pharmacopsychiatry 42 288–291 10.1055/s-0029-1233489
    1. Nakazato M., Hashimoto K., Schmidt U., Tchanturia K., Campbell I. C., Collier D. A., et al. (2010). Serum glutamine, set-shifting ability and anorexia nervosa. Ann. Gen. Psychiatry 9:29 10.1186/1744-859X-9-29
    1. Nicolle M. M., Baxter M. G. (2003). Glutamate receptor binding in the frontal cortex and dorsal striatum of aged rats with impaired attentional set-shifting. Eur. J. Neurosci. 18 3335–3342 10.1111/j.1460-9568.2003.03077.x
    1. Nordin C., Sjödin I. (2006). CSF monoamine patterns in pathological gamblers and healthy controls. J. Psychiatr. Res. 40 454–459 10.1016/j.jpsychires.2005.06.003
    1. O’Brien K. M., Vincent N. K. (2003). Psychiatric comorbidity in anorexia and bulimia nervosa: nature, prevalence, and causal relationships. Clin. Psychol. Rev. 23 57–74 10.1016/S0272-7358(02)00201-5
    1. Olive M. F., Cleva R. M., Kalivas P. W., Malcolm R. J. (2012). Glutamatergic medications for the treatment of drug and behavioral addictions. Pharmacol. Biochem. Behav. 100 801–810 10.1016/j.pbb.2011.04.015
    1. Park R. J., Dunn B. D., Barnard P. J. (2011). Schematic models and modes of mind in anorexia nervosa I: a novel process account. Int. J. Cogn. Therapy 4 415–437 10.1521/ijct.2011.4.4.415
    1. Park R. J., Dunn B. D., Barnard P. J. (2012). Schematic models and modes of mind in anorexia nervosa II: implications for treatment and course. Int. J. Cogn. Therapy 5 86–98 10.1521/ijct.2012.5.1.86
    1. Pentkowski N. S., Duke F. D., Weber S. M., Pockros L. A., Teer A. P., Hamilton E. C., et al. (2010). Stimulation of medial prefrontal cortex serotonin 2C (5-HT 2C) receptors attenuates cocaine-seeking behavior. Neuropsychopharmacology 35 2037–2048 10.1038/npp.2010.72
    1. Perani D., Garibotto V., Gorini A., Moresco R. M., Henin M., Panzacchi A., et al. (2008). In vivo PET study of 5HT2A serotonin and D2 dopamine dysfunction in drug-naive obsessive-compulsive disorder. Neuroimage 42 306–314 10.1016/j.neuroimage.2008.04.233
    1. Pinto A., Steinglass J. E., Greene A. L., Weber E. U., Simpson H. B. (2014). Capacity to delay reward differentiates obsessive-compulsive disorder and obsessive-compulsive personality disorder. Biol. Psychiatry 75 653–659 10.1016/j.biopsych.2013.09.007
    1. Pitman R. K. (1989). Animal models of compulsive behavior. Biol. Psychiatry 26 189–198 10.1016/0006-3223(89)90022-X
    1. Pittenger C., Bloch M. H., Williams K. (2011). Glutamate abnormalities in obsessive compulsive disorder: neurobiology, pathophysiology, and treatment. Pharmacol. Ther. 132 314–332 10.1016/j.pharmthera.2011.09.006
    1. Plaçais P.-Y., Preat T. (2013). To favor survival under food shortage, the brain disables costly memory. Science 339 440–442 10.1126/science.1226018
    1. Rauch S. L. (2003). Neuroimaging and neurocircuitry models pertaining to the neurosurgical treatment of psychiatric disorders. Neurosurg. Clin. N. Am. 14 213–223, vii–viii. 10.1016/S1042-3680(02)00114-6
    1. Remijnse P. L., Nielen M. M., Van Balkom A. J., Cath D. C., van Oppen P., Uylings H. B., et al. (2006). Reduced orbitofrontal-striatal activity on a reversal learning task in obsessive-compulsive disorder. Arch. Gen. Psychiatry 63 1225–1236 10.1001/archpsyc.63.11.1225
    1. Robbins T. W. (2007). Shifting and stopping: fronto-striatal substrates, neurochemical modulation and clinical implications. Philos. Trans. R. Soc. B Biol. Sci. 362 917–932 10.1098/rstb.2007.2097
    1. Robbins T. W., Gillan C. M., Smith D. G., De Wit S., Ersche K. D. (2012). Neurocognitive endophenotypes of impulsivity and compulsivity: towards dimensional psychiatry. Trends Cogn. Sci. 16 81–91 10.1016/j.tics.2011.11.009
    1. Roberts M. E., Tchanturia K., Treasure J. L. (2010). Exploring the neurocognitive signature of poor set-shifting in anorexia and bulimia nervosa. J. Psychiatr. Res. 44 964–970 10.1016/j.jpsychires.2010.03.001
    1. Rothemund Y., Buchwald C., Georgiewa P., Bohner G., Bauknecht H. C., Ballmaier M., et al. (2011). Compulsivity predicts fronto striatal activation in severely anorectic individuals. Neuroscience 197 242–250 10.1016/j.neuroscience.2011.09.016
    1. Routtenberg A., Kuznesof A. W. (1967). Self-starvation of rats living in activity wheels on a restricted feeding schedule. J. Comp. Physiol. Psychol. 64 414–421 10.1037/h0025205
    1. Salkovskis P. M. (1999). Understanding and treating obsessive-compulsive disorder. Behav. Res. Ther. 37(Suppl. 1), S29–S52 10.1016/S0005-7967(99)00049-2
    1. Saraswat N., Ranjan S., Ram D. (2006). Set-shifting and selective attentional impairment in alcoholism and its relation with drinking variables. Indian J. Psychiatry 48:47 10.4103/0019-5545.31619
    1. Sarrar L., Ehrlich S., Merle J. V., Pfeiffer E., Lehmkuhl U., Schneider N. (2011). Cognitive flexibility and Agouti-related protein in adolescent patients with anorexia nervosa. Psychoneuroendocrinology 36 1396–1406 10.1016/j.psyneuen.2011.03.014
    1. Saxena S., Brody A. L., Schwartz J. M., Baxter L. R. (1998). Neuroimaging and frontal-subcortical circuitry in obsessive-compulsive disorder. Br. J. Psychiatry Suppl. 26–37
    1. Scarone S., Colombo C., Livian S., Abbruzzese M., Ronchi P., Locatelli M., et al. (1992). Increased right caudate nucleus size in obsessive-compulsive disorder: detection with magnetic resonance imaging. Psychiatry Res. 45 115–121 10.1016/0925-4927(92)90005-O
    1. Scheurink A. J., Boersma G. J., Nergardh R., Sodersten P. (2010). Neurobiology of hyperactivity and reward: agreeable restlessness in anorexia nervosa. Physiol. Behav. 100 490–495 10.1016/j.physbeh.2010.03.016
    1. Schwabe L., Oitzl M. S., Philippsen C., Richter S., Bohringer A., Wippich W., et al. (2007). Stress modulates the use of spatial versus stimulus-response learning strategies in humans. Learn. Mem. 14 109–116 10.1101/lm.435807
    1. Schwabe L., Wolf O. T. (2009). Stress prompts habit behavior in humans. J. Neurosci. 29 7191–7198 10.1523/jneurosci.0979-09.2009
    1. Selby E. A., Wonderlich S. A., Crosby R. D., Engel S. G., Panza E., Mitchell J. E., et al. (2014). Nothing tastes as good as thin feels: low positive emotion differentiation and weight-loss activities in anorexia nervosa. Clin. Psychol. Sci. 2 514–531 10.1177/2167702613512794
    1. Simansky K. J. (1996). Serotonergic control of the organization of feeding and satiety. Behav. Brain Res. 73 37–42 10.1016/0166-4328(96)00066-6
    1. Steinglass J., Albano A. M., Simpson H. B., Carpenter K., Schebendach J., Attia E. (2012a). Fear of food as a treatment target: exposure and response prevention for anorexia nervosa in an open series. Int. J. Eat. Disord. 45 615–621 10.1002/eat.20936
    1. Steinglass J., Figner B., Berkowitz S., Simpson H. B., Weber E. U., Walsh B. T. (2012b). Increased capacity to delay reward in anorexia nervosa. J. Int. Neuropsychol. Soc. 18 773–780 10.1017/S1355617712000446
    1. Steinglass J., Walsh B. T. (2006). Habit learning and anorexia nervosa: a cognitive neuroscience hypothesis. Int. J. Eat. Disord. 39 267–275 10.1002/eat.20244
    1. Steinglass J. E., Walsh B. T., Stern Y. (2006). Set shifting deficit in anorexia nervosa. J. Int. Neuropsychol. Soc. 12 431–435 10.1017/S1355617706060528
    1. Tchanturia K., Anderluh M. B., Morris R. G., Rabe-Hesketh S., Collier D. A., Sanchez P., et al. (2004). Cognitive flexibility in anorexia nervosa and bulimia nervosa. J. Int. Neuropsychol. Soc. 10 513–520 10.1017/S1355617704104086
    1. Tchanturia K., Davies H., Campbell I. C. (2007a). Cognitive remediation therapy for patients with anorexia nervosa: preliminary findings. Ann. Gen. Psychiatry 6:14 10.1186/1744-859X-6-14
    1. Tchanturia K., Liao P. C., Uher R., Lawrence N., Treasure J., Campbell I. C. (2007b). An investigation of decision making in anorexia nervosa using the Iowa Gambling Task and skin conductance measurements. J. Int. Neuropsychol. Soc. 13 635–641 10.1017/s1355617707070798
    1. Tizabi Y., Louis V. A., Taylor C. T., Waxman D., Culver K. E., Szechtman H. (2002). Effect of nicotine on quinpirole-induced checking behavior in rats: implications for obsessive-compulsive disorder. Biol. Psychiatry 51 164–171 10.1016/S0006-3223(01)01207-0
    1. Tricomi E., Balleine B. W., O’Doherty J. P. (2009). A specific role for posterior dorsolateral striatum in human habit learning. Eur. J. Neurosci. 29 2225–2232 10.1111/j.1460-9568.2009.06796.x
    1. Tsaltas E., Kontis D., Chrysikakou S., Giannou H., Biba A., Pallidi S., et al. (2005). Reinforced spatial alternation as an animal model of obsessive-compulsive disorder (OCD): investigation of 5-HT2C and 5-HT1D receptor involvement in OCD pathophysiology. Biol. Psychiatry 57 1176–1185 10.1016/j.biopsych.2005.02.020
    1. Uher R., Murphy T., Brammer M. J., Dalgleish T., Phillips M. L., Ng V. W., et al. (2004). Medial prefrontal cortex activity associated with symptom provocation in eating disorders. Am. J. Psychiatry 161 1238–1246 10.1176/appi.ajp.161.7.1238
    1. Valerius G., Lumpp A., Kuelz A. K., Freyer T., Voderholzer U. (2008). Reversal learning as a neuropsychological indicator for the neuropathology of obsessive compulsive disorder? A behavioral study. J. Neuropsychiatry Clin. Neurosci. 20 210–218 10.1176/appi.neuropsych.20.2.210
    1. Van den Eynde F., Guillaume S., Broadbent H., Campbell I. C., Schmidt U. (2013). Repetitive transcranial magnetic stimulation in anorexia nervosa: a pilot study. Eur. Psychiatry 28 98–101 10.1016/j.eurpsy.2011.06.002
    1. van Hell H. H., Vink M., Ossewaarde L., Jager G., Kahn R. S., Ramsey N. F. (2010). Chronic effects of cannabis use on the human reward system: an fMRI study. Eur. Neuropsychopharmacol. 20 153–163 10.1016/j.euroneuro.2009.11.010
    1. Verdejo-Garcia A., Benbrook A., Funderburk F., David P., Cadet J. L., Bolla K. I. (2007). The differential relationship between cocaine use and marijuana use on decision-making performance over repeat testing with the Iowa Gambling Task. Drug Alcohol Depend. 90 2–11 10.1016/j.drugalcdep.2007.02.004
    1. Verhagen L. A., Luijendijk M. C., Hillebrand J. J., Adan R. A. (2009a). Dopamine antagonism inhibits anorectic behavior in an animal model for anorexia nervosa. Eur. Neuropsychopharmacol. 19 153–160 10.1016/j.euroneuro.2008.09.005
    1. Verhagen L. A., Luijendijk M. C., Korte-Bouws G. A., Korte S. M., Adan R. A. (2009b). Dopamine and serotonin release in the nucleus accumbens during starvation-induced hyperactivity. Eur. Neuropsychopharmacol. 19 309–316 10.1016/j.euroneuro.2008.12.008
    1. Volkow N. D., Fowler J. S., Wang G. J. (2002). Role of dopamine in drug reinforcement and addiction in humans: results from imaging studies. Behav. Pharmacol. 13 355–366 10.1097/00008877-200209000-00008
    1. Volkow N. D., Fowler J. S., Wang G. J., Baler R., Telang F. (2009). Imaging dopamine’s role in drug abuse and addiction. Neuropharmacology 1 3–8 10.1016/j.neuropharm.2008.05.022
    1. Volkow N. D., Fowler J. S., Wang G. J., Swanson J. M., Telang F. (2007a). Dopamine in drug abuse and addiction: results of imaging studies and treatment implications. Arch. Neurol. 64 1575–1579 10.1001/archneur.64.11.1575
    1. Volkow N. D., Wang G.-J., Telang F., Fowler J. S., Logan J., Jayne M., et al. (2007b). Profound decreases in dopamine release in striatum in detoxified alcoholics: possible orbitofrontal involvement. J. Neurosci. 27 12700–12706 10.1523/JNEUROSCI.3371-07.2007
    1. Volkow N., Wang G., Fowler J., Gatley S., Ding Y., Logan J., et al. (1996). Relationship between psychostimulant-induced “high” and dopamine transporter occupancy. Proc. Natl. Acad. Sci. U.S.A. 93 10388–10392 10.1073/pnas.93.19.10388
    1. Volkow N. D., Wang G. J., Fowler J. S., Tomasi D. (2012a). Addiction circuitry in the human brain. Annu. Rev. Pharmacol. Toxicol. 52 321–336 10.1146/annurev-pharmtox-010611-134625
    1. Volkow N. D., Wang G. J., Fowler J. S., Tomasi D., Baler R. (2012b). Food and drug reward: overlapping circuits in human obesity and addiction. Curr. Top. Behav. Neurosci. 11 1–24 10.1007/7854_2011_169
    1. Volkow N. D., Wang G.-J., Ma Y., Fowler J. S., Zhu W., Maynard L., et al. (2003). Expectation enhances the regional brain metabolic and the reinforcing effects of stimulants in cocaine abusers. J. Neurosci. 23 11461–11468
    1. Volkow N. D., Wang G.-J., Telang F., Fowler J. S., Logan J., Childress A.-R., et al. (2006). Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. J. Neurosci. 26 6583–6588 10.1523/JNEUROSCI.1544-06.2006
    1. Voon V., Fernagut P. O., Wickens J., Baunez C., Rodriguez M., Pavon N., et al. (2009). Chronic dopaminergic stimulation in Parkinson’s disease: from dyskinesias to impulse control disorders. Lancet Neurol. 8 1140–1149 10.1016/S1474-4422(09)70287-X
    1. Wagner A., Aizenstein H., Venkatraman V., Fudge J., May J., Mazurkewicz L., et al. (2007). Altered reward processing in women recovered from anorexia nervosa. Am. J. Psychiatry 164 1842–1849 10.1176/appi.ajp.2007.07040575
    1. Walsh B. T. (2013). The enigmatic persistence of anorexia nervosa. Am. J. Psychiatry 170 477–484 10.1176/appi.ajp.2012.12081074
    1. Wikler A. (1973). Dynamics of drug dependence. Implications of a conditioning theory for research and treatment. Arch. Gen. Psychiatry 28 611–616 10.1001/archpsyc.1973.01750350005001
    1. Wise R. A. (2002). Brain reward circuitry: insights from unsensed incentives. Neuron 36 229–240 10.1016/S0896-6273(02)00965-0
    1. Wolf M. E. (2002). Addiction: making the connection between behavioral changes and neuronal plasticity in specific pathways. Mol. Interv. 2 146–157 10.1124/mi.2.3.146
    1. Wu H., Van Dyck-Lippens P. J., Santegoeds R., Van Kuyck K., Gabriã L., Lin G., et al. (2012). Deep-brain stimulation for anorexia nervosa. World Neurosurg. 80 S29.e1–S29e10. 10.1016/j.wneu.2012.06.039
    1. Zink C. F., Weinberger D. R. (2010). Cracking the moody brain: the rewards of self starvation. Nat. Med. 16 1382–1383 10.1038/nm1210-1382

Source: PubMed

3
Iratkozz fel