Melatonin analgesia is associated with improvement of the descending endogenous pain-modulating system in fibromyalgia: a phase II, randomized, double-dummy, controlled trial

Simone Azevedo de Zanette, Rafael Vercelino, Gabriela Laste, Joanna Ripoll Rozisky, André Schwertner, Caroline Buzzatti Machado, Fernando Xavier, Izabel Cristina Custódio de Souza, Alicia Deitos, Iraci L S Torres, Wolnei Caumo, Simone Azevedo de Zanette, Rafael Vercelino, Gabriela Laste, Joanna Ripoll Rozisky, André Schwertner, Caroline Buzzatti Machado, Fernando Xavier, Izabel Cristina Custódio de Souza, Alicia Deitos, Iraci L S Torres, Wolnei Caumo

Abstract

Background: Central disinhibition is a mechanism involved in the physiopathology of fibromyalgia. Melatonin can improve sleep quality, pain and pain threshold. We hypothesized that treatment with melatonin alone or in combination with amitriptyline would be superior to amitriptyline alone in modifying the endogenous pain-modulating system (PMS) as quantified by conditional pain modulation (CPM), and this change in CPM could be associated with serum brain-derived neurotrophic factor (BDNF). We also tested whether melatonin improves the clinical symptoms of pain, pain threshold and sleep quality.

Methods: Sixty-three females, aged 18 to 65, were randomized to receive bedtime amitriptyline (25 mg) (n = 21), melatonin (10 mg) (n = 21) or melatonin (10 mg) + amitriptyline (25 mg) (n = 21) for a period of six weeks. The descending PMS was assessed with the CPM-TASK. It was assessed the pain score on the Visual Analog Scale (VAS 0-100 mm), the score on Fibromyalgia Impact Questionnaire (FIQ), heat pain threshold (HPT), sleep quality and BDNF serum. Delta values (post- minus pre-treatment) were used to compare the treatment effect. The outcomes variables were collected before, one and six weeks after initiating treatment.

Results: Melatonin alone or in combination with amitriptyline reduced significantly pain on the VAS compared with amitriptyline alone (P < 0.01). The delta values on the VAS scores were-12.85 (19.93),-17.37 (18.69) and-20.93 (12.23) in the amitriptyline, melatonin and melatonin+amitriptyline groups, respectively. Melatonin alone and in combination increased the inhibitory PMS as assessed by the Numerical Pain Scale [NPS(0-10)] reduction during the CPM-TASK:-2.4 (2.04) melatonin + amitriptyline,-2.65 (1.68) melatonin, and-1.04 (2.06) amitriptyline, (P < 0.05). Melatonin + amitriptyline treated displayed better results than melatonin and amitriptyline alone in terms of FIQ and PPT improvement (P < 0.05, fort both).

Conclusion: Melatonin increased the inhibitory endogenous pain-modulating system as assessed by the reduction on NPS(0-10) during the CPM-TASK. Melatonin alone or associated with amitriptyline was better than amitriptyline alone in improving pain on the VAS, whereas its association with amitriptyline produced only marginal additional clinical effects on FIQ and PPT.

Trial registration: Current controlled trail is registered at clinical trials.gov upon under number NCT02041455. Registered January 16, 2014.

Figures

Figure 1
Figure 1
Flow chart showing recruitment and progress through the study. FMS: fibromyalgia syndrome; FIQ: fibromyalgia impact questionnaire; PPT: pain pressure threshold; QST: quantitative sensory testing; SCID: Structured Clinical Interview for DSM-IV; pain VAS: visual analog scale of pain; major side effects (MJSE) (severe dizziness, vivid nightmares, crippling drowsiness, severe headache, behavioral changes, and pain worsening).
Figure 2
Figure 2
Mean pain levels as Delta value (scores on VAS (0-100 mm) in last week of treatment minus scores one week pretreatment) in the three experimental groups. The error bars indicate the standard error of the mean. A letter b indicates a significant difference between the melatonin group and melatonin + amitriptyline groups compared with the amitriptyline group (P < 0.05). All comparisons were performed using a mixed analysis of variance (ANOVA) model, followed by the Bonferroni correction for post hoc multiple comparisons.
Figure 3
Figure 3
Delta value on the pain NPS(0-10) during the CPM-TASK. The error bars indicate the standard error of the mean. A letter b indicates a significant difference between the melatonin + and melatonin + amitriptyline compared with the amitriptyline group. All comparisons were performed using a mixed analysis of variance (ANOVA) model, followed by the Bonferroni correction for post hoc multiple comparisons.
Figure 4
Figure 4
Mean serum BDNF (ng/mL) at baseline and the after treatment presented as the mean ± SEM. The asterisk indicates a significant within group difference according to Mixed ANOVA model with Bonferroni test. Delta values (serum BDNF before treatment minus serum BDNF after pretreatment) were performed using a Mixed ANOVA. The error bars indicate the standard error of the mean. aIndicates that the treatment did not induce an effect that was significantly different between treatment groups (P > 0.05).

References

    1. Mease PJ, Clauw DJ, Arnold LM, Goldenberg DL, Witter J, Williams DA, Simon LS, Strand CV, Bramson C, Martin S, Wright TM, Littman B, Wernicke JF, Gendreau RM, Crofford LJ. Fibromyalgia syndrome. J Rheumatol. 2005;32:2270–2277.
    1. Arnold LM, Hudson JI, Keck PE, Auchenbach MB, Javaras KN, Hess EV. Comorbidity of fibromyalgia and psychiatric disorders. J Clin Psychiatry. 2006;67:1219–1225.
    1. Wikner J, Hirsch U, Wetterberg L, Röjdmark S. Fibromyalgia–a syndrome associated with decreased nocturnal melatonin secretion. Clin Endocrinol (Oxf) 1998;49:179–183.
    1. Bennett RM. The rational management of fibromyalgia patients. Rheum Dis Clin North Am. 2002;28:181–199. v.
    1. Citera G, Arias MA, Maldonado-Cocco JA, Lázaro MA, Rosemffet MG, Brusco LI, Scheines EJ, Cardinalli DP. The effect of melatonin in patients with fibromyalgia: a pilot study. Clin Rheumatol. 2000;19:9–13.
    1. Hussain SA, Al-Khalifa II, Jasim NA, Gorial FI. Adjuvant use of melatonin for treatment of fibromyalgia. J Pineal Res. 2011;50:267–271.
    1. Mahdi AA, Fatima G, Das SK, Verma NS. Abnormality of circadian rhythm of serum melatonin and other biochemical parameters in fibromyalgia syndrome. Indian J Biochem Biophys. 2011;48:82–87.
    1. Laste G, Vidor L, de Macedo IC, Rozisky JR, Medeiros L, de Souza A, Meurer L, de Souza IC, Torres IL, Caumo W. Melatonin treatment entrains the rest-activity circadian rhythm in rats with chronic inflammation. Chronobiol Int. 2013;30:1077–1088.
    1. Detanico BC, Piato AL, Freitas JJ, Lhullier FL, Hidalgo MP, Caumo W, Elisabetsky E. Antidepressant-like effects of melatonin in the mouse chronic mild stress model. Eur J Pharmacol. 2009;607:121–125.
    1. Caumo W, Levandovski R, Hidalgo MP. Preoperative anxiolytic effect of melatonin and clonidine on postoperative pain and morphine consumption in patients undergoing abdominal hysterectomy: a double-blind, randomized, placebo-controlled study. J Pain. 2009;10:100–108.
    1. Laste G, de Macedo IC, Ripoll Rozisky J, Ribeiro da Silva F, Caumo W, Torres IL. Melatonin administration reduces inflammatory pain in rats. J Pain Res. 2012;5:359–362.
    1. Ambriz-Tututi M, Granados-Soto V. Oral and spinal melatonin reduces tactile allodynia in rats via activation of MT2 and opioid receptors. Pain. 2007;132:273–280.
    1. Esposito E, Cuzzocrea S. Antiinflammatory activity of melatonin in central nervous system. Curr Neuropharmacol. 2010;8:228–242.
    1. Caumo W, Torres F, Moreira NL, Auzani JA, Monteiro CA, Londero G, Ribeiro DF, Hidalgo MP. The clinical impact of preoperative melatonin on postoperative outcomes in patients undergoing abdominal hysterectomy. Anesth Analg. 2007;105:1263–1271. table of contents.
    1. Vidor LP, Torres IL, Custódio de Souza IC IC, Fregni F, Caumo W. Analgesic and sedative effects of melatonin in temporomandibular disorders: a double-blind, randomized, parallel-group, placebo-controlled study. J Pain Symptom Manage. 2013;46:422–432.
    1. Schwertner A, Conceição Dos Santos CC, Costa GD, Deitos A, de Souza A, de Souza IC, Torres IL, da Cunha Filho JS, Caumo W. Efficacy of melatonin in the treatment of endometriosis: a phase II, randomized, double-blind, placebo-controlled trial. Pain. 2013;154:874–881.
    1. Yarnitsky D. Conditioned pain modulation (the diffuse noxious inhibitory control-like effect): its relevance for acute and chronic pain states. Curr Opin Anaesthesiol. 2010;23:611–615.
    1. Paul-Savoie E, Marchand S, Morin M, Bourgault P, Brissette N, Rattanavong V, Cloutier C, Bissonnette A, Potvin S. Is the deficit in pain inhibition in fibromyalgia influenced by sleep impairments? Open Rheumatol J. 2012;6:296–302.
    1. Houvenagel E, Forzy G, Leloire O, Gallois P, Hary S, Hautecoeur P, Convain L, Henniaux M, Vincent G, Dhondt JL. Cerebrospinal fluid monoamines in primary fibromyalgia] Rev Rhum Mal Osteoartic. 1990;57:21–23.
    1. Legangneux E, Mora JJ, Spreux-Varoquaux O, Thorin I, Herrou M, Alvado G, Gomeni C. Cerebrospinal fluid biogenic amine metabolites, plasma-rich platelet serotonin and [3H] imipramine reuptake in the primary fibromyalgia syndrome. Rheumatology (Oxford) 2001;40:290–296.
    1. Russell IJ, Vaeroy H, Javors M, Nyberg F. Cerebrospinal fluid biogenic amine metabolites in fibromyalgia/fibrositis syndrome and rheumatoid arthritis. Arthritis Rheum. 1992;35:550–556.
    1. Wood PB, Glabus MF, Simpson R, Patterson JC. Changes in gray matter density in fibromyalgia: correlation with dopamine metabolism. J Pain. 2009;10:609–618.
    1. Potvin S, Larouche A, Normand E, de Souza JB, Gaumond I, Grignon S, Marchand S. DRD3 Ser9Gly polymorphism is related to thermal pain perception and modulation in chronic widespread pain patients and healthy controls. J Pain. 2009;10:969–975.
    1. Volz MS, Medeiros LF, Tarragô MG, Vidor LP, Dall’Agnol L, Deitos A, Brietzke A, Rozisky JR, Rispolli B, Torres IL, Fregni F, Caumo W. The relationship between cortical excitability and pain catastrophizing in myofascial pain. J Pain. 2013;14:1140–1147.
    1. Millan MJ. Descending control of pain. Prog Neurobiol. 2002;66:355–474.
    1. Stefani L, Muller S, Torres I, Razzolini B, Rozisky J, Fregni F, Markus R, Caumo W. A Phase II, randomized, double-blind, placebo controlled, dose–response trial of the melatonin effect on the pain threshold of healthy subjects. PLoS One. 2013;8(10):e74107.27.
    1. Zurowski D, Nowak L, Machowska A, Wordliczek J, Thor PJ. Exogenous melatonin abolishes mechanical allodynia but not thermal hyperalgesia in neuropathic pain. The role of the opioid system and benzodiazepine-gabaergic mechanism. J Physiol Pharmacol. 2012;63:641–647.
    1. Golombek DA, Escolar E, Burin LJ, De Brito Sánchez MG, Cardinali DP. Time-dependent melatonin analgesia in mice: inhibition by opiate or benzodiazepine antagonism. Eur J Pharmacol. 1991;194:25–30.
    1. Schulz KF, Altman DG, Moher D, Group C. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. Int J Surg. 2011;9:672–677.
    1. Wolfe F, Clauw DJ, Fitzcharles MA, Goldenberg DL, Katz RS, Mease P, Russell AS, Russell IJ, Winfield JB, Yunus MB. The American College of Rheumatology preliminary diagnostic criteria for fibromyalgia and measurement of symptom severity. Arthritis Care Res (Hoboken) 2010;62:600–610.
    1. Scott J, Huskisson EC. Graphic representation of pain. Pain. 1976;2:175–184.
    1. Couto C, de Souza IC, Torres IL, Fregni F, Caumo W. Paraspinal stimulation combined with trigger point needling and needle rotation for the treatment of myofascial pain: a randomized sham-controlled clinical trial. Clin J Pain. 2014;30:214–223.
    1. Dao TT, Lavigne GJ, Feine JS, Tanguay R, Lund JP. Power and sample size calculations for clinical trials of myofascial pain of jaw muscles. J Dent Res. 1991;70:118–122.
    1. Kaipper MB, Chachamovich E, Hidalgo MP, Torres IL, Caumo W. Evaluation of the structure of Brazilian State-Trait Anxiety Inventory using a Rasch psychometric approach. J Psychosom Res. 2010;68:223–233.
    1. Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry. 1960;23:56–62.
    1. Buysse DJ, Reynolds CF 3rd, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28:193–213.
    1. Lobbestael J, Leurgans M, Arntz A. Inter-rater reliability of the Structured Clinical Interview for DSM-IV Axis I Disorders (SCID I) and Axis II Disorders (SCID II) Clin Psychol Psychother. 2011;18:75–79.
    1. Sehn F, Chachamovich E, Vidor LP, Dall-Agnol L, de Souza IC, Torres IL, Fregni F, Caumo W. Cross-cultural adaptation and validation of the Brazilian Portuguese version of the pain catastrophizing scale. Pain Med. 2012;13:1425–1435.
    1. Burckhardt CS, Clark SR, Bennett RM. The fibromyalgia impact questionnaire: development and validation. J Rheumatol. 1991;18:728–733.
    1. Marques A, Santos A, Assumpcao A, Matsutani L, Lage L, Pereira C. Validation of a Brazilian version of the Fibromyalgia Impact Questionnaire (FIQ) Ann Rheum Dis. 2006;65:557–557.
    1. Fischer AA. Pressure algometry over normal muscles. Standard values, validity and reproducibility of pressure threshold. Pain. 1987;30:115–126.
    1. Tousignant-Laflamme Y, Pagé S, Goffaux P, Marchand S. An experimental model to measure excitatory and inhibitory pain mechanisms in humans. Brain Res. 2008;1230:73–79.
    1. Magerl W, Krumova EK, Baron R, Tölle T, Treede RD, Maier C. Reference data for quantitative sensory testing (QST): refined stratification for age and a novel method for statistical comparison of group data. Pain. 2010;151:598–605.
    1. Marchand S, Arsenault P. Spatial summation for pain perception: interaction of inhibitory and excitatory mechanisms. Pain. 2002;95:201–206.
    1. Schestatsky P, Valls-Solé J, Costa J, León L, Veciana M, Chaves ML. Skin autonomic reactivity to thermoalgesic stimuli. Clin Auton Res. 2007;17:349–355.
    1. Tesarz J, Gerhardt A, Schommer K, Treede RD, Eich W. Alterations in endogenous pain modulation in endurance athletes: an experimental study using quantitative sensory testing and the cold-pressor task. Pain. 2013;154:1022–1029.
    1. Kazis LE, Anderson JJ, Meenan RF. Effect sizes for interpreting changes in health status. Med Care. 1989;27:S178–S189.
    1. Wilhelmsen M, Amirian I, Reiter RJ, Rosenberg J, Gögenur I. Analgesic effects of melatonin: a review of current evidence from experimental and clinical studies. J Pineal Res. 2011;51:270–277.
    1. Mantovani M, Kaster MP, Pertile R, Calixto JB, Rodrigues AL, Santos AR. Mechanisms involved in the antinociception caused by melatonin in mice. J Pineal Res. 2006;41:382–389.
    1. Basbaum AI, Fields HL. Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci. 1984;7:309–338.
    1. Gebhart GF. Descending modulation of pain. Neurosci Biobehav Rev. 2004;27:729–737.
    1. Porreca F, Ossipov MH, Gebhart GF. Chronic pain and medullary descending facilitation. Trends Neurosci. 2002;25:319–325.
    1. Hadjipavlou G, Dunckley P, Behrens TE, Tracey I. Determining anatomical connectivities between cortical and brainstem pain processing regions in humans: a diffusion tensor imaging study in healthy controls. Pain. 2006;123:169–178.
    1. Schwenkreis P, Janssen F, Rommel O, Pleger B, Völker B, Hosbach I, Dertwinkel R, Maier C, Tegenthoff M. Bilateral motor cortex disinhibition in complex regional pain syndrome (CRPS) type I of the hand. Neurology. 2003;61:515–519.
    1. Graven-Nielsen T, Wodehouse T, Langford RM, Arendt-Nielsen L, Kidd BL. Normalization of widespread hyperesthesia and facilitated spatial summation of deep-tissue pain in knee osteoarthritis patients after knee replacement. Arthritis Rheum. 2012;64:2907–2916.
    1. Delafoy L, Gelot A, Ardid D, Eschalier A, Bertrand C, Doherty AM, Diop L. Interactive involvement of brain derived neurotrophic factor, nerve growth factor, and calcitonin gene related peptide in colonic hypersensitivity in the rat. Gut. 2006;55:940–945.
    1. Groth R, Aanonsen L. Spinal brain-derived neurotrophic factor (BDNF) produces hyperalgesia in normal mice while antisense directed against either BDNF or trkB, prevent inflammation-induced hyperalgesia. Pain. 2002;100:171–181.
    1. Sommer C, Kress M. Recent findings on how proinflammatory cytokines cause pain: peripheral mechanisms in inflammatory and neuropathic hyperalgesia. Neurosci Lett. 2004;361:184–187.
    1. Kerr BJ, Bradbury EJ, Bennett DL, Trivedi PM, Dassan P, French J, Shelton DB, McMahon SB, Thompson SW. Brain-derived neurotrophic factor modulates nociceptive sensory inputs and NMDA-evoked responses in the rat spinal cord. J Neurosci. 1999;19:5138–5148.
    1. Genoud C, Knott GW, Sakata K, Lu B, Welker E. Altered synapse formation in the adult somatosensory cortex of brain-derived neurotrophic factor heterozygote mice. J Neurosci. 2004;24:2394–2400.
    1. Rutherford LC, DeWan A, Lauer HM, Turrigiano GG. Brain-derived neurotrophic factor mediates the activity-dependent regulation of inhibition in neocortical cultures. J Neurosci. 1997;17:4527–4535.
    1. Ortega E, García JJ, Bote ME, Martín-Cordero L, Escalante Y, Saavedra JM, Northoff H, Giraldo E. Exercise in fibromyalgia and related inflammatory disorders: known effects and unknown chances. Exerc Immunol Rev. 2009;15:42–65.
    1. Bote ME, García JJ, Hinchado MD, Ortega E. Inflammatory/stress feedback dysregulation in women with fibromyalgia. Neuroimmunomodulation. 2012;19:343–351.
    1. Wallace DJ, Linker-Israeli M, Hallegua D, Silverman S, Silver D, Weisman MH. Cytokines play an aetiopathogenetic role in fibromyalgia: a hypothesis and pilot study. Rheumatology (Oxford) 2001;40:743–749.
    1. Bilici D, Akpinar E, Kiziltunç A. Protective effect of melatonin in carrageenan-induced acute local inflammation. Pharmacol Res. 2002;46:133–139.
    1. Cuzzocrea S, Zingarelli B, Gilad E, Hake P, Salzman AL, Szabó C. Protective effect of melatonin in carrageenan-induced models of local inflammation: relationship to its inhibitory effect on nitric oxide production and its peroxynitrite scavenging activity. J Pineal Res. 1997;23:106–116.
    1. Morgan P, Barrett P, Howell H, Helliwell R. Melatonin receptors - localization, molecular pharmacology and physiological significance. Neurochem Int. 1994;24:101–146.
    1. Noseda R, Hernández A, Valladares L, Mondaca M, Laurido C, Soto-Moyano R. Melatonin-induced inhibition of spinal cord synaptic potentiation in rats is MT2 receptor-dependent. Neurosci Lett. 2004;360:41–44.
    1. Li SR, Wang T, Wang R, Dai X, Chen Q, Li RD. Melatonin enhances antinociceptive effects of delta-, but not mu-opioid agonist in mice. Brain Res. 2005;1043:132–138.
    1. Bazzichi L, Rossi A, Giacomelli C, Bombardieri S. Exploring the abyss of fibromyalgia biomarkers. Clin Exp Rheumatol. 2010;28:S125–S130.
    1. Yunus MB. Fibromyalgia and overlapping disorders: the unifying concept of central sensitivity syndromes. Semin Arthritis Rheum. 2007;36:339–356.
    1. Yunus MB. Role of central sensitization in symptoms beyond muscle pain, and the evaluation of a patient with widespread pain. Best Pract Res Clin Rheumatol. 2007;21:481–497.
    1. Fives AW, Russell D, Kearns N, Rena Lyons G, Eaton P, Canavan J, Devaney C, O’Brien A. The role of random allocation in randomized controlled trials: distinguishing selection bias from baseline imbalance. J Multidisciplinary Eval. 2013;9:33–42.
    1. Pernambuco AP, Schetino LP, Viana RS, Carvalho LS, Reis D. The involvement of melatonin in the clinical status of patients with fibromyalgia syndrome. Clin Exp Rheumatol. 2014. p. in press. in press.
    1. Verhagen AP, de Vet HC, de Bie RA, Kessels AG, Boers M, Bouter LM, Knipschild PG. The Delphi list: a criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by Delphi consensus. J Clin Epidemiol. 1998;51:1235–1241.
    1. Cazzola M. Application of Number Needed to Treat (NNT) as a Measure of Treatment Effect in Respiratory Medicine. Treat Respir Med. 2006;5:79–84.
    1. Plesh O, Curtis D, Levine J, McCall WD. Amitriptyline treatment of chronic pain in patients with temporomandibular disorders. J Oral Rehabil. 2000;27:834–841.
    1. Bendtsen L, Jensen R. Amitriptyline reduces myofascial tenderness in patients with chronic tension-type headache. Cephalalgia. 2000;20:603–610.

Source: PubMed

3
Iratkozz fel