Efficacy and safety of two new formulations of artificial tears in subjects with dry eye disease: a 3-month, multicenter, active-controlled, randomized trial

Peter A Simmons, Haixia Liu, Cindy Carlisle-Wilcox, Joseph G Vehige, Peter A Simmons, Haixia Liu, Cindy Carlisle-Wilcox, Joseph G Vehige

Abstract

Purpose: To evaluate and compare the efficacy and safety of two investigational artificial tear formulations (CHO-1 and CHO-2) containing carmellose sodium, hyaluronic acid at different concentrations, and osmoprotectants, with a standard carmellose sodium-containing formulation (Refresh Tears [RT]) in the treatment of dry eye disease.

Subjects and methods: In this 3-month, double-masked, multicenter study, subjects (n=305) were randomized 1:1:1 to receive CHO-1, CHO-2, or RT, used as needed but at least twice daily. The primary endpoint was change in ocular surface disease index (OSDI) score from baseline to day 90. Other key outcomes included symptoms evaluated on a visual analog scale, corneal and conjunctival staining, and adverse events.

Results: OSDI scores and dry eye symptoms showed a rapid and sustained reduction from baseline in each group. Both CHO-1 and CHO-2 met the primary efficacy endpoint of noninferiority to RT in day 90 OSDI score change from baseline. OSDI ocular symptoms subscale improved more with CHO-1 than CHO-2 (P=0.048). In subjects with clinically relevant baseline ocular surface staining (>14 total score of a maximum of 55), day 90 improvements were greater with CHO-1 and CHO-2 than RT (P≤0.044). Day 90 improvements in OSDI ocular symptoms subscale scores were also greater with CHO-1 than RT (P<0.007) in subjects with clinically relevant ocular staining. All treatments were well tolerated.

Conclusion: Both combination artificial tear formulations were efficacious and well tolerated in subjects with dry eye. CHO-1 demonstrated the best performance in improving ocular symptoms and reducing ocular staining in this heterogeneous study population.

Keywords: carmellose; dry eye syndromes; hyaluronic acid; ophthalmic solutions.

Figures

Figure 1
Figure 1
Subject flow through the study. Notes: “Other” reasons for discontinuation included: CHO-1, failed screening and randomized in error but not treated; patient withdrawal (n=2); CHO-2, patient withdrawal; and RT, patient withdrawal (n=2). Abbreviations: ITT, intent-to-treat; PP, per-protocol; RT, Refresh Tears.
Figure 2
Figure 2
Mean change in Ocular Surface Disease Index (OSDI) score from baseline (intent-to-treat population). Abbreviation: RT, Refresh Tears.
Figure 3
Figure 3
Median change in score from baseline at day 90 for (A) ocular symptoms, (B) vision-related functions, and (C) environmental triggers subscales of the Ocular Surface Disease Index (intent-to-treat population). Note: *P=0.048 for CHO-1 versus CHO-2 and P=0.057 for CHO-1 versus Refresh Tears (RT).
Figure 4
Figure 4
Mean symptom scores on visual analog scales for (A) burning/stinging, (B) grittiness/foreign body sensation, (C) dryness, and (D) eye ache/pain. Notes: Error bars indicate standard error of the mean (intent-to-treat population). *P=0.044 for CHO-1 versus CHO-2. Abbreviations: FBS, foreign body sensation; RT, Refresh Tears.
Figure 5
Figure 5
Mean changes in (A) corneal, (B) conjunctival, and (C) combined corneal/conjunctival staining scores from baseline (intent-to-treat population). Notes: *P≤0.036 for CHO-1 versus Refresh Tears (RT).
Figure 6
Figure 6
Mean changes in combined corneal/conjunctival staining scores from baseline in subjects stratified by the severity of baseline staining (per-protocol population). (A) Subjects with combined corneal/conjunctival staining score of ≤14 at baseline. Baseline mean scores were CHO-1, 7.7; CHO-2, 7.7; and RT, 7.8. (B) Subjects with combined corneal/conjunctival staining score of >14 at baseline. Baseline mean scores were CHO-1, 23.4; CHO-2, 21.3; and RT, 22.1. Notes: There were no significant differences between study arms in baseline mean staining scores. *P≤0.038 for CHO-1 or CHO-2 versus Refresh Tears (RT).
Figure 7
Figure 7
Mean changes in (A) corneal staining scores and (B) ocular symptoms subscale scores of the Ocular Surface Disease Index in subjects with clinically relevant staining at baseline. Notes: Error bars indicate standard error of the mean (intent-to-treat population). *P=0.009 and **P<0.007 for CHO-1 versus Refresh Tears (RT).

References

    1. The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007) Ocul Surf. 2007;5(2):75–92.
    1. The epidemiology of dry eye disease: report of the Epidemiology Subcommittee of the International Dry Eye WorkShop (2007) Ocul Surf. 2007;5(2):93–107.
    1. Miljanović B, Dana R, Sullivan DA, Schaumberg DA. Impact of dry eye syndrome on vision-related quality of life. Am J Ophthalmol. 2007;143(3):409–415.
    1. Market Scope, LLC Comprehensive Report on the Global Dry Eye Products Market. 2013. [Accessed February 1, 2013]. Available from:
    1. Behrens A, Doyle JJ, Stern L, et al. the Dysfunctional Tear Syndrome Study Group Dysfunctional tear syndrome: a Delphi approach to treatment recommendations. Cornea. 2006;25(8):900–907.
    1. Grene RB, Lankston P, Mordaunt J, Harrold M, Gwon A, Jones R. Unpreserved carboxymethylcellulose artificial tears evaluated in patients with keratoconjunctivitis sicca. Cornea. 1992;11(4):294–301.
    1. Simmons PA, Vehige JG. Clinical performance of a mid-viscosity artificial tear for dry eye treatment. Cornea. 2007;26(3):294–302.
    1. Garrett Q, Simmons PA, Xu S, et al. Carboxymethylcellulose binds to human corneal epithelial cells and is a modulator of corneal epithelial wound healing. Invest Ophthalmol Vis Sci. 2007;48(4):1559–1567.
    1. Napoli PE, Coronella F, Satta GM, Zucca IA, Fossarello M. A novel OCT technique to measure in vivo the corneal adhesiveness for sodium carboxymethylcellulose in humans and its validity in the diagnosis of dry eye. Invest Ophthalmol Vis Sci. 2014;55(5):3179–3185.
    1. Garrett Q, Xu S, Simmons PA, et al. Carboxymethyl cellulose stimulates rabbit corneal epithelial wound healing. Curr Eye Res. 2008;33(7):567–573.
    1. Paugh JR, Nguyen AL, Ketelson HA, Christensen MT, Meadows DL. Precorneal residence time of artificial tears measured in dry eye subjects. Optom Vis Sci. 2008;85(8):725–731.
    1. Napoli PE, Satta GM, Coronella F, Fossarello M. Spectral-domain optical coherence tomography study on dynamic changes of human tears after instillation of artificial tears. Invest Ophthalmol Vis Sci. 2014;55(7):4533–4540.
    1. Baudouin C, Aragona P, Messmer EM, et al. Role of hyperosmolarity in the pathogenesis and management of dry eye disease: proceedings of the OCEAN group meeting. Ocul Surf. 2013;11(4):246–258.
    1. Stahl U, Willcox M, Stapleton F. Osmolality and tear film dynamics. Clin Exp Optom. 2012;95(1):3–11.
    1. Pflugfelder SC, Corrales RM, de Paiva CS. T helper cytokines in dry eye disease. Exp Eye Res. 2013;117:118–125.
    1. Stevenson W, Chauhan SK, Dana R. Dry eye disease: an immune-mediated ocular surface disorder. Arch Ophthalmol. 2012;130(1):90–100.
    1. Gomes JA, Amankwah R, Powell-Richards A, Dua HS. Sodium hyaluronate (hyaluronic acid) promotes migration of human corneal epithelial cells in vitro. Br J Ophthalmol. 2004;88(6):821–825.
    1. Baeyens V, Bron A, Baudouin C. Efficacy of 0.18% hypotonic sodium hyaluronate ophthalmic solution in the treatment of signs and symptoms of dry eye disease. J Fr Ophtalmol. 2012;35(6):412–419.
    1. Baudouin C, Cochener B, Pisella PJ, et al. Randomized, phase III study comparing osmoprotective carboxymethylcellulose with sodium hyaluronate in dry eye disease. Eur J Ophthalmol. 2012;22(5):751–761.
    1. Vogel R, Crockett RS, Oden N, Laliberte TW, Molina L. Demonstration of efficacy in the treatment of dry eye disease with 0.18% sodium hyaluronate ophthalmic solution (vismed, rejena) Am J Ophthalmol. 2010;149(4):594–601.
    1. Simmons PA, Beard BJ, Vehige JG. Optimizing viscosity of ophthalmic solutions with the combination of two polymers. [Accessed December 20, 2013]. Available from: .
    1. De Paiva CS, Corrales RM, Villarreal AL, et al. Corticosteroid and doxycycline suppress MMP-9 and inflammatory cytokine expression, MAPK activation in the corneal epithelium in experimental dry eye. Exp Eye Res. 2006;83(3):526–535.
    1. Corrales RM, Luo L, Chang EY, Pflugfelder SC. Effects of osmoprotectants on hyperosmolar stress in cultured human corneal epithelial cells. Cornea. 2008;27(5):574–579.
    1. Schiffman RM, Christianson MD, Jacobsen G, Hirsch JD, Reis BL. Reliability and validity of the ocular surface disease index. Arch Ophthalmol. 2000;118(5):615–621.
    1. Korb DR, Greiner JV, Herman J. Comparison of fluorescein break-up time measurement reproducibility using standard fluorescein strips versus the Dry Eye Test (DET) method. Cornea. 2001;20(8):811–815.
    1. De Paiva CS, Pflugfelder SC. Corneal epitheliopathy of dry eye induces hyperesthesia to mechanical air jet stimulation. Am J Ophthalmol. 2004;137(1):109–115.
    1. Legge GE, Ross JA, Luebker A, LaMay JM. Psychophysics of reading. VIII. The Minnesota low-vision reading test. Optom Vis Sci. 1989;66(12):843–853.
    1. Miller KL, Walt JG, Mink DR, et al. Minimal clinically important difference for the ocular surface disease index. Arch Ophthalmol. 2010;128(1):94–101.
    1. Le Henanff A, Giraudeau B, Baron G, Ravaud P. Quality of reporting of noninferiority and equivalence randomized trials. JAMA. 2006;295(10):1147–1151.
    1. Zheng X, Goto T, Ohashi Y. Comparison of in vivo efficacy of different ocular lubricants in dry eye animal models. Invest Ophthalmol Vis Sci. 2014;55(6):3454–3460.
    1. Zheng X, Goto T, Shiraishi A, Ohashi Y. In vitro efficacy of ocular surface lubricants against dehydration. Cornea. 2013;32(9):1260–1264.
    1. Condon PI, McEwen CG, Wright M, Mackintosh G, Prescott RJ, McDonald C. Double blind, randomised, placebo controlled, crossover, multicentre study to determine the efficacy of a 0.1% (w/v) sodium hyaluronate solution (Fermavisc) in the treatment of dry eye syndrome. Br J Ophthalmol. 1999;83(10):1121–1124.
    1. McDonald CC, Kaye SB, Figueiredo FC, Macintosh G, Lockett C. A randomised, crossover, multicentre study to compare the performance of 0.1% (w/v) sodium hyaluronate with 1.4% (w/v) polyvinyl alcohol in the alleviation of symptoms associated with dry eye syndrome. Eye (Lond) 2002;16(5):601–607.
    1. Aragona P, Papa V, Micali A, Santocono M, Milazzo G. Long term treatment with sodium hyaluronate-containing artificial tears reduces ocular surface damage in patients with dry eye. Br J Ophthalmol. 2002;86(2):181–184.
    1. Yokoi N, Komuro A, Nishida K, Kinoshita S. Effectiveness of hyaluronan on corneal epithelial barrier function in dry eye. Br J Ophthalmol. 1997;81(7):533–536.
    1. Lenton LM, Albietz JM. Effect of carmellose-based artificial tears on the ocular surface in eyes after laser in situ keratomileusis. J Refract Surg. 1999;15(2 Suppl):S227–S231.
    1. Albietz JM, Lenton LM, McLennan SG, Earl ML. A comparison of the effect of refresh plus and bion tears on dry eye symptoms and ocular surface health in myopic LASIK patients. CLAO J. 2002;28(2):96–100.
    1. Nilforoushan MR, Latkany RA, Speaker MG. Effect of artificial tears on visual acuity. Am J Ophthalmol. 2005;140(5):830–835.
    1. Monaco G, Cacioppo V, Consonni D, Troiano P. Effects of osmoprotection on symptoms, ocular surface damage, and tear film modifications caused by glaucoma therapy. Eur J Ophthalmol. 2011;21(3):243–250.
    1. Lee JH, Ahn HS, Kim EK, Kim TI. Efficacy of sodium hyaluronate and carboxymethylcellulose in treating mild to moderate dry eye disease. Cornea. 2011;30(2):175–179.
    1. Guillon M, Maissa C, Ho S. Evaluation of the effects on conjunctival tissues of Optive eyedrops over one month usage. Cont Lens Anterior Eye. 2010;33(2):93–99.
    1. Sanchez MA, Torralbo-Jimenez P, Giron N, et al. Comparative analysis of carmellose 0.5% versus hyaluronate 0.15% in dry eye: a flow cytometric study. Cornea. 2010;29(2):167–171.
    1. Brignole F, Pisella PJ, Dupas B, Baeyens V, Baudouin C. Efficacy and safety of 0.18% sodium hyaluronate in patients with moderate dry eye syndrome and superficial keratitis. Graefes Arch Clin Exp Ophthalmol. 2005;243(6):531–538.
    1. Napoli PE, Coronella F, Satta GM, Fossarello M. A novel technique of contrast-enhanced optical coherence tomography imaging in evaluation of clearance of lipids in human tears. PLoS One. 2014;9(11):e109843.

Source: PubMed

3
Iratkozz fel