Retrospective natural history of thymidine kinase 2 deficiency

Caterina Garone, Robert W Taylor, Andrés Nascimento, Joanna Poulton, Carl Fratter, Cristina Domínguez-González, Julie C Evans, Mariana Loos, Pirjo Isohanni, Anu Suomalainen, Dipak Ram, M Imelda Hughes, Robert McFarland, Emanuele Barca, Carlos Lopez Gomez, Sandeep Jayawant, Neil D Thomas, Adnan Y Manzur, Karin Kleinsteuber, Miguel A Martin, Timothy Kerr, Grainne S Gorman, Ewen W Sommerville, Patrick F Chinnery, Monika Hofer, Christoph Karch, Jeffrey Ralph, Yolanda Cámara, Marcos Madruga-Garrido, Jana Domínguez-Carral, Carlos Ortez, Sonia Emperador, Julio Montoya, Anupam Chakrapani, Joshua F Kriger, Robert Schoenaker, Bruce Levin, John L P Thompson, Yuelin Long, Shamima Rahman, Maria Alice Donati, Salvatore DiMauro, Michio Hirano, Caterina Garone, Robert W Taylor, Andrés Nascimento, Joanna Poulton, Carl Fratter, Cristina Domínguez-González, Julie C Evans, Mariana Loos, Pirjo Isohanni, Anu Suomalainen, Dipak Ram, M Imelda Hughes, Robert McFarland, Emanuele Barca, Carlos Lopez Gomez, Sandeep Jayawant, Neil D Thomas, Adnan Y Manzur, Karin Kleinsteuber, Miguel A Martin, Timothy Kerr, Grainne S Gorman, Ewen W Sommerville, Patrick F Chinnery, Monika Hofer, Christoph Karch, Jeffrey Ralph, Yolanda Cámara, Marcos Madruga-Garrido, Jana Domínguez-Carral, Carlos Ortez, Sonia Emperador, Julio Montoya, Anupam Chakrapani, Joshua F Kriger, Robert Schoenaker, Bruce Levin, John L P Thompson, Yuelin Long, Shamima Rahman, Maria Alice Donati, Salvatore DiMauro, Michio Hirano

Abstract

Background: Thymine kinase 2 (TK2) is a mitochondrial matrix protein encoded in nuclear DNA and phosphorylates the pyrimidine nucleosides: thymidine and deoxycytidine. Autosomal recessive TK2 mutations cause a spectrum of disease from infantile onset to adult onset manifesting primarily as myopathy.

Objective: To perform a retrospective natural history study of a large cohort of patients with TK2 deficiency.

Methods: The study was conducted by 42 investigators across 31 academic medical centres.

Results: We identified 92 patients with genetically confirmed diagnoses of TK2 deficiency: 67 from literature review and 25 unreported cases. Based on clinical and molecular genetics findings, we recognised three phenotypes with divergent survival: (1) infantile-onset myopathy (42.4%) with severe mitochondrial DNA (mtDNA) depletion, frequent neurological involvement and rapid progression to early mortality (median post-onset survival (POS) 1.00, CI 0.58 to 2.33 years); (2) childhood-onset myopathy (40.2%) with mtDNA depletion, moderate-to-severe progression of generalised weakness and median POS at least 13 years; and (3) late-onset myopathy (17.4%) with mild limb weakness at onset and slow progression to respiratory insufficiency with median POS of 23 years. Ophthalmoparesis and facial weakness are frequent in adults. Muscle biopsies show multiple mtDNA deletions often with mtDNA depletion.

Conclusions: In TK2 deficiency, age at onset, rate of weakness progression and POS are important variables that define three clinical subtypes. Nervous system involvement often complicates the clinical course of the infantile-onset form while extraocular muscle and facial involvement are characteristic of the late-onset form. Our observations provide essential information for planning future clinical trials in this disorder.

Keywords: clinical genetics; metabolic disorders; muscle disease; neuromuscular disease.

Conflict of interest statement

Competing interests: None declared.

© Author(s) (or their employer(s)) 2018. Re-use permitted under CC BY. Published by BMJ.

Figures

Figure 1
Figure 1
Manifestations and survival curves of thymine kinase 2–deficient patients. (A) Bar graph showing the prevalence of symptoms in different organs/tissues in the cohort of patients. (B) Post-onset survival in infantile-onset and childhood-onset/late-onset patients (n=79). (C) Event-free survival (time from onset to ventilation or death) in infantile-onset and childhood-onset/late-onset patients (n=40). CNS, central nervous system; PNS, peripheral nervous system.
Figure 2
Figure 2
Thymine kinase 2 (TK2) mutations. Mutations in the coding and splice-site regions of TK2 (NM_004614.4). Hot-spot exons are marked in red boxes. Protein changes are colour-coded based on the clinical phenotype caused in our cohort of patients. Protein changes found with more than one clinical phenotype are highlighted with multiple colours. Protein changes found in all of the three forms are noted in black. DNA sequence variants are noted in grey font.

References

    1. Saada A, Shaag A, Mandel H, Nevo Y, Eriksson S, Elpeleg O. Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy. Nat Genet 2001;29:342–4. 10.1038/ng751
    1. Bartesaghi S, Betts-Henderson J, Cain K, Dinsdale D, Zhou X, Karlsson A, Salomoni P, Nicotera P. Loss of thymidine kinase 2 alters neuronal bioenergetics and leads to neurodegeneration. Hum Mol Genet 2010;19:1669–77. 10.1093/hmg/ddq043
    1. Béhin A, Jardel C, Claeys KG, Fagart J, Louha M, Romero NB, Laforêt P, Eymard B, Lombès A. Adult cases of mitochondrial DNA depletion due to TK2 defect: an expanding spectrum. Neurology 2012;78:644–8. 10.1212/WNL.0b013e318248df2b
    1. Blakely E, He L, Gardner JL, Hudson G, Walter J, Hughes I, Turnbull DM, Taylor RW. Novel mutations in the TK2 gene associated with fatal mitochondrial DNA depletion myopathy. Neuromuscul Disord 2008;18:557–60. 10.1016/j.nmd.2008.04.014
    1. Galbiati S, Bordoni A, Papadimitriou D, Toscano A, Rodolico C, Katsarou E, Sciacco M, Garufi A, Prelle A, Aguennouz M', Bonsignore M, Crimi M, Martinuzzi A, Bresolin N, Papadimitriou A, Comi GP. New mutations in TK2 gene associated with mitochondrial DNA depletion. Pediatr Neurol 2006;34:177–85. 10.1016/j.pediatrneurol.2005.07.013
    1. Götz A, Isohanni P, Pihko H, Paetau A, Herva R, Saarenpää-Heikkilä O, Valanne L, Marjavaara S, Suomalainen A. Thymidine kinase 2 defects can cause multi-tissue mtDNA depletion syndrome. Brain 2008;131(Pt 11):2841–50. 10.1093/brain/awn236
    1. Leshinsky-Silver E, Michelson M, Cohen S, Ginsberg M, Sadeh M, Barash V, Lerman-Sagie T, Lev D. A defect in the thymidine kinase 2 gene causing isolated mitochondrial myopathy without mtDNA depletion. Eur J Paediatr Neurol 2008;12:309–13. 10.1016/j.ejpn.2007.09.005
    1. Lesko N, Naess K, Wibom R, Solaroli N, Nennesmo I, von Döbeln U, Karlsson A, Larsson NG. Two novel mutations in thymidine kinase-2 cause early onset fatal encephalomyopathy and severe mtDNA depletion. Neuromuscul Disord 2010;20:198–203. 10.1016/j.nmd.2009.11.013
    1. Mancuso M, Filosto M, Bonilla E, Hirano M, Shanske S, Vu TH, DiMauro S. Mitochondrial myopathy of childhood associated with mitochondrial DNA depletion and a homozygous mutation (T77M) in the TK2 gene. Arch Neurol 2003;60:1007–9. 10.1001/archneur.60.7.1007
    1. Mancuso M, Salviati L, Sacconi S, Otaegui D, Camaño P, Marina A, Bacman S, Moraes CT, Carlo JR, Garcia M, Garcia-Alvarez M, Monzon L, Naini AB, Hirano M, Bonilla E, Taratuto AL, DiMauro S, Vu TH. Mitochondrial DNA depletion: mutations in thymidine kinase gene with myopathy and SMA. Neurology 2002;59:1197–202. 10.1212/01.WNL.0000028689.93049.9A
    1. Martí R, Nascimento A, Colomer J, Lara MC, López-Gallardo E, Ruiz-Pesini E, Montoya J, Andreu AL, Briones P, Pineda M. Hearing loss in a patient with the myopathic form of mitochondrial DNA depletion syndrome and a novel mutation in the TK2 gene. Pediatr Res 2010;68:151–4. 10.1203/PDR.0b013e3181e33bbe
    1. Oskoui M, Davidzon G, Pascual J, Erazo R, Gurgel-Giannetti J, Krishna S, Bonilla E, De Vivo DC, Shanske S, DiMauro S. Clinical spectrum of mitochondrial DNA depletion due to mutations in the thymidine kinase 2 gene. Arch Neurol 2006;63:1122–6. 10.1001/archneur.63.8.1122
    1. Paradas C, Gutiérrez Ríos P, Rivas E, Carbonell P, Hirano M, DiMauro S. TK2 mutation presenting as indolent myopathy. Neurology 2013;80:504–6. 10.1212/WNL.0b013e31827f0ff7
    1. Tulinius M, Moslemi AR, Darin N, Holme E, Oldfors A. Novel mutations in the thymidine kinase 2 gene (TK2) associated with fatal mitochondrial myopathy and mitochondrial DNA depletion. Neuromuscul Disord 2005;15:412–5. 10.1016/j.nmd.2005.03.010
    1. Tyynismaa H, Sun R, Ahola-Erkkilä S, Almusa H, Pöyhönen R, Korpela M, Honkaniemi J, Isohanni P, Paetau A, Wang L, Suomalainen A. Thymidine kinase 2 mutations in autosomal recessive progressive external ophthalmoplegia with multiple mitochondrial DNA deletions. Hum Mol Genet 2012;21:66–75. 10.1093/hmg/ddr438
    1. Vilà MR, Segovia-Silvestre T, Gámez J, Marina A, Naini AB, Meseguer A, Lombès A, Bonilla E, DiMauro S, Hirano M, Andreu AL. Reversion of mtDNA depletion in a patient with TK2 deficiency. Neurology 2003;60:1203–5. 10.1212/01.WNL.0000055928.58122.47
    1. Wang L, Limongelli A, Vila MR, Carrara F, Zeviani M, Eriksson S. Molecular insight into mitochondrial DNA depletion syndrome in two patients with novel mutations in the deoxyguanosine kinase and thymidine kinase 2 genes. Mol Genet Metab 2005;84:75–82. 10.1016/j.ymgme.2004.09.005
    1. Alston CL, Schaefer AM, Raman P, Solaroli N, Krishnan KJ, Blakely EL, He L, Craig K, Roberts M, Vyas A, Nixon J, Horvath R, Turnbull DM, Karlsson A, Gorman GS, Taylor RW. Late-onset respiratory failure due to TK2 mutations causing multiple mtDNA deletions. Neurology 2013;81:2051–3. 10.1212/01.wnl.0000436931.94291.e6
    1. Carrozzo R, Bornstein B, Lucioli S, Campos Y, de la Pena P, Petit N, Dionisi-Vici C, Vilarinho L, Rizza T, Bertini E, Garesse R, Santorelli FM, Arenas J. Mutation analysis in 16 patients with mtDNA depletion. Hum Mutat 2003;21:453–4. 10.1002/humu.9135
    1. Chanprasert S, Wang J, Weng SW, Enns GM, Boué DR, Wong BL, Mendell JR, Perry DA, Sahenk Z, Craigen WJ, Alcala FJ, Pascual JM, Melancon S, Zhang VW, Scaglia F, Wong LJ. Molecular and clinical characterization of the myopathic form of mitochondrial DNA depletion syndrome caused by mutations in the thymidine kinase (TK2) gene. Mol Genet Metab 2013;110:153–61. 10.1016/j.ymgme.2013.07.009
    1. Collins J, Bove KE, Dimmock D, Morehart P, Wong LJ, Wong B. Progressive myofiber loss with extensive fibro-fatty replacement in a child with mitochondrial DNA depletion syndrome and novel thymidine kinase 2 gene mutations. Neuromuscul Disord 2009;19:784–7. 10.1016/j.nmd.2009.08.002
    1. Roos S, Lindgren U, Ehrstedt C, Moslemi AR, Oldfors A. Mitochondrial DNA depletion in single fibers in a patient with novel TK2 mutations. Neuromuscul Disord 2014;24:713–20. 10.1016/j.nmd.2014.05.009
    1. Stewart JD, Schoeler S, Sitarz KS, Horvath R, Hallmann K, Pyle A, Yu-Wai-Man P, Taylor RW, Samuels DC, Kunz WS, Chinnery PF. POLG mutations cause decreased mitochondrial DNA repopulation rates following induced depletion in human fibroblasts. Biochim Biophys Acta 2011;1812:321–5. 10.1016/j.bbadis.2010.11.012
    1. Knierim E, Seelow D, Gill E, von Moers A, Schuelke M. Clinical application of whole exome sequencing reveals a novel compound heterozygous TK2-mutation in two brothers with rapidly progressive combined muscle-brain atrophy, axonal neuropathy, and status epilepticus. Mitochondrion 2015;20:1–6. 10.1016/j.mito.2014.10.007
    1. Cámara Y, Carreño-Gago L, Martín MA, Melià MJ, Blázquez A, Delmiro A, Garrabou G, Morén C, Díaz-Manera J, Gallardo E, Bornstein B, López-Gallardo E, Hernández-Lain A, San Millán B, Cancho E, Rodríguez-Vico JS, Martí R, García-Arumí E. Severe TK2 enzyme activity deficiency in patients with mild forms of myopathy. Neurology 2015;84:2286–8. 10.1212/WNL.0000000000001644
    1. Garone C, Rubio JC, Calvo SE, Naini A, Tanji K, Dimauro S, Mootha VK, Hirano M. MPV17 mutations causing adult-onset multisystemic disorder with multiple mitochondrial DNA deletions. Arch Neurol 2012;69:1648–51. 10.1001/archneurol.2012.405
    1. Taylor RW, Pyle A, Griffin H, Blakely EL, Duff J, He L, Smertenko T, Alston CL, Neeve VC, Best A, Yarham JW, Kirschner J, Schara U, Talim B, Topaloglu H, Baric I, Holinski-Feder E, Abicht A, Czermin B, Kleinle S, Morris AA, Vassallo G, Gorman GS, Ramesh V, Turnbull DM, Santibanez-Koref M, McFarland R, Horvath R, Chinnery PF. Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies. JAMA 2014;312:68–77. 10.1001/jama.2014.7184
    1. Tizzano EF, Finkel RS. Spinal muscular atrophy: a changing phenotype beyond the clinical trials. Neuromuscul Disord 2017;27:883–9. 10.1016/j.nmd.2017.05.011
    1. Tawil R, Kissel JT, Heatwole C, Pandya S, Gronseth G, Benatar M. Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology, Practice Issues Review Panel of the American Association of Neuromuscular & Electrodiagnostic Medicine. Evidence-based guideline summary: evaluation, diagnosis, and management of facioscapulohumeral muscular dystrophy: report of the guideline development, dissemination, and implementation subcommittee of the american academy of neurology and the practice issues review panel of the American Association of Neuromuscular & Electrodiagnostic Medicine. Neurology 2015;85:357–64. 10.1212/WNL.0000000000001783
    1. Garone C, Garcia-Diaz B, Emmanuele V, Lopez LC, Tadesse S, Akman HO, Tanji K, Quinzii CM, Hirano M. Deoxypyrimidine monophosphate bypass therapy for thymidine kinase 2 deficiency. EMBO Mol Med 2014;6:1016–27. 10.15252/emmm.201404092
    1. Lopez-Gomez C, Levy RJ, Sanchez-Quintero MJ, Juanola-Falgarona M, Barca E, Garcia-Diaz B, Tadesse S, Garone C, Hirano M. Deoxycytidine and deoxythymidine treatment for thymidine kinase 2 deficiency. Ann Neurol 2017;81:641–52. 10.1002/ana.24922
    1. Piepers S, van den Berg LH, Brugman F, Scheffer H, Ruiterkamp-Versteeg M, van Engelen BG, Faber CG, de Visser M, van der Pol WL, Wokke JH. A natural history study of late onset spinal muscular atrophy types 3b and 4. J Neurol 2008;255:1400–4. 10.1007/s00415-008-0929-0

Source: PubMed

3
Iratkozz fel