A Review on Pharmacological Properties of Zingerone (4-(4-Hydroxy-3-methoxyphenyl)-2-butanone)

Bilal Ahmad, Muneeb U Rehman, Insha Amin, Ahmad Arif, Saiema Rasool, Showkat Ahmad Bhat, Insha Afzal, Ishraq Hussain, Sheikh Bilal, Manzoor ur Rahman Mir, Bilal Ahmad, Muneeb U Rehman, Insha Amin, Ahmad Arif, Saiema Rasool, Showkat Ahmad Bhat, Insha Afzal, Ishraq Hussain, Sheikh Bilal, Manzoor ur Rahman Mir

Abstract

Humans have been using natural products for medicinal use for ages. Natural products of therapeutic importance are compounds derived from plants, animals, or any microorganism. Ginger is also one of the most commonly used condiments and a natural drug in vogue. It is a traditional medicine, having some active ingredients used for the treatment of numerous diseases. During recent research on ginger, various ingredients like zingerone, shogaol, and paradol have been obtained from it. Zingerone (4-(4-hydroxy-3-methoxyphenyl)-2-butanone) is a nontoxic and inexpensive compound with varied pharmacological activities. It is the least pungent component of Zingiber officinale. Zingerone is absent in fresh ginger but cooking or heating transforms gingerol to zingerone. Zingerone closely related to vanillin from vanilla and eugenol from clove. Zingerone has potent anti-inflammatory, antidiabetic, antilipolytic, antidiarrhoeic, antispasmodic, and so forth properties. Besides, it displays the property of enhancing growth and immune stimulation. It behaves as appetite stimulant, anxiolytic, antithrombotic, radiation protective, and antimicrobial. Also, it inhibits the reactive nitrogen species which are important in causing Alzheimer's disease and many other disorders. This review is written to shed light on the various pharmacological properties of zingerone and its role in alleviating numerous human and animal diseases.

Figures

Figure 1
Figure 1
Chemical structure of zingerone. IUPAC name: [4-(3-methoxy-4-hydroxyphenyl)-butan-2-one].
Figure 2
Figure 2
Pharmacological dimensions of zingerone.

References

    1. Park E. J., Pezzuto J. M. Botanicals in cancer chemoprevention. Cancer and Metastasis Reviews. 2002;21(3-4):231–255. doi: 10.1023/A:1021254725842.
    1. Zhang Y.-X., Li J.-S., Chen L.-H., Peng W.-W., Cai B.-C. Simultaneous determination of five gingerols in raw and processed ginger by HPLC. Chinese Pharmaceutical Journal. 2012;47(6):471–474.
    1. Cotton W. J. Production of zingerone. Google Patents, 1945.
    1. Takizawa M., Sato M., Kusuoku H., Sakasai M. Lipolysis stimulator. Google Patents, 2012.
    1. Rajan I., Narayanan N., Rabindran R., Jayasree P. R., Manish Kumar P. R. Zingerone protects against stannous chloride-induced and hydrogen peroxide-induced oxidative DNA damage in vitro. Biological Trace Element Research. 2013;155(3):455–459. doi: 10.1007/s12011-013-9801-x.
    1. Kim M. K., Chung S. W., Kim J. M., et al. Modulation of age-related NF-κB activation by dietary zingerone via MAPK pathway. Experimental Gerontology. 2010;45(6):419–426. doi: 10.1016/j.exger.2010.03.005.
    1. Vinothkumar R., Sudha M., Nalini N. Chemopreventive effect of zingerone against colon carcinogenesis induced by 1,2-dimethylhydrazine in rats. European Journal of Cancer Prevention. 2014;23(5):361–371. doi: 10.1097/cej.0b013e32836473ac.
    1. Kumar L., Chhibber S., Harjai K. Zingerone inhibit biofilm formation and improve antibiofilm efficacy of ciprofloxacin against Pseudomonas aeruginosa PAO1. Fitoterapia. 2013;90:73–78. doi: 10.1016/j.fitote.2013.06.017.
    1. Rajakumar D. V., Rao M. N. A. Dehydrozingerone and its analogues as inhibitors of nonenzymatic lipid peroxidation. Pharmazie. 1994;49(7):516–519.
    1. Banji D., Banji O. J. F., Pavani B., Kranthi Kumar C., Annamalai A. R. Zingerone regulates intestinal transit, attenuates behavioral and oxidative perturbations in irritable bowel disorder in rats. Phytomedicine. 2014;21(4):423–429. doi: 10.1016/j.phymed.2013.10.007.
    1. Vaibhav K., Shrivastava P., Tabassum R., et al. Delayed administration of zingerone mitigates the behavioral and histological alteration via repression of oxidative stress and intrinsic programmed cell death in focal transient ischemic rats. Pharmacology Biochemistry and Behavior. 2013;113:53–62. doi: 10.1016/j.pbb.2013.10.008.
    1. Shin S.-G., Ji Y. K., Hae Y. C., Jeong J.-C. Zingerone as an antioxidant against peroxynitrite. Journal of Agricultural and Food Chemistry. 2005;53(19):7617–7622. doi: 10.1021/jf051014x.
    1. Hemalatha K. L., Stanley P., Prince M. Antihyperlipidaemic, antihypertrophic and reducing effects of Zingerone on experimentally iso-proterenol induced myocardial infracted rats. Journal of Biochemical and Molecular Toxicology. 2015;29(4):182–188. doi: 10.1002/jbt.21683.
    1. Emmanuel T., Aristide B., Leopold T., Benoît N. M., Joseph M. T. Phytochemical screening, chemical composition and antimicrobial activity of Zingiber officinale essential oil of Adamaoua region (Cameroon) Journal of Chemical and Pharmaceutical Research. 2013;5(7):296–301.
    1. McNeill E., Hogg N. S100A9 has a protective role in inflammation-induced skin carcinogenesis. International Journal of Cancer. 2014;135(4):798–808. doi: 10.1002/ijc.28725.
    1. Kabuto H., Yamanushi T. T. Effects of zingerone [4-(4-hydroxy-3-methoxyphenyl)-2-butanone] and eugenol [2-methoxy-4-(2-propenyl)phenol] on the pathological progress in the 6-hydroxydopamine-induced parkinson's disease mouse model. Neurochemical Research. 2011;36(12):2244–2249. doi: 10.1007/s11064-011-0548-5.
    1. Kabuto H., Nishizawa M., Tada M., Higashio C., Shishibori T., Kohno M. Zingerone [4-(4-hydroxy-3-methoxyphenyl)-2-butanone] prevents 6-hydroxydopamine-induced dopamine depression in mouse striatum and increases superoxide scavenging activity in serum. Neurochemical Research. 2005;30(3):325–332. doi: 10.1007/s11064-005-2606-3.
    1. Chung S. W., Kim M. K., Chung J. H., et al. Peroxisome proliferator-activated receptor activation by a short-term feeding of zingerone in aged rats. Journal of Medicinal Food. 2009;12(2):345–350. doi: 10.1089/jmf.2007.0660.
    1. Hsiang C.-Y., Lo H.-Y., Huang H.-C., Li C.-C., Wu S.-L., Ho T.-Y. Ginger extract and zingerone ameliorated trinitrobenzene sulphonic acid-induced colitis in mice via modulation of nuclear factor-κB activity and interleukin-1β signalling pathway. Food Chemistry. 2013;136(1):170–177. doi: 10.1016/j.foodchem.2012.07.124.
    1. Kumar L., Chhibber S., Harjai K. Hepatoprotective effect of zingerone (4-(4-hydroxy-3-methoxyphenyl) butan-2-one) in lipopolysaccharide induced liver injury mouse model through down regulation of inflammatory mediators. International Journal of Pharmacognosy and Phytochemical Research. 2014;6(2):308–314.
    1. Chen J.-C., Huang L.-J., Wu S.-L., Kuo S.-C., Ho T.-Y., Hsiang C.-Y. Ginger and its bioactive component inhibit enterotoxigenic Escherichia coli heat-labile enterotoxin-induced diarrhea in mice. Journal of Agricultural and Food Chemistry. 2007;55(21):8390–8397. doi: 10.1021/jf071460f.
    1. Iwami M., Shiina T., Hirayama H., Shima T., Takewaki T., Shimizu Y. Inhibitory effects of zingerone, a pungent component of Zingiber officinale Roscoe, on colonic motility in rats. Journal of Natural Medicines. 2011;65(1):89–94. doi: 10.1007/s11418-010-0463-0.
    1. Liu L., Welch J. M., Erickson R. P., Reinhart P. H., Simon S. A. Different responses to repeated applications of zingerone in behavioral studies, recordings from intact and cultured TG neurons, and from VR1 receptors. Physiology & Behavior. 2000;69(1):177–186. doi: 10.1016/s0031-9384(00)00200-6.
    1. Bratton J., Johnstone P. A. S., McMullen K. P. Outpatient management of vascular access devices in children receiving radiotherapy: complications and morbidity. Pediatric Blood & Cancer. 2014;61(3):499–501. doi: 10.1002/pbc.24642.
    1. Rao B. N., Rao B. S. S., Aithal B. K., Kumar M. R. S. Radiomodifying and anticlastogenic effect of Zingerone on Swiss albino mice exposed to whole body gamma radiation. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2009;677(1-2):33–41. doi: 10.1016/j.mrgentox.2009.05.004.
    1. Motohashi N., Ashihara Y., Yamagami C., Saito Y. Antimutagenic effects of dehydrozingerone and its analogs on UV-induced mutagenesis in Escherichia coli . Mutation Research—Fundamental and Molecular Mechanisms of Mutagenesis. 1997;377(1):17–25. doi: 10.1016/s0027-5107(97)00054-7.
    1. Buccellato L. J., Tso M., Akinci O. I., Chandel N. S., Budinger G. R. S. Reactive oxygen species are required for hyperoxia-induced Bax activation and cell death in alveolar epithelial cells. The Journal of Biological Chemistry. 2004;279(8):6753–6760. doi: 10.1074/jbc.m310145200.
    1. Cory S., Adams J. M. The BCL2 family: regulators of the cellular life-or-death switch. Nature Reviews Cancer. 2002;2(9):647–656. doi: 10.1038/nrc883.
    1. Sporn M. B. Approaches to prevention of epithelial cancer during the preneoplastic period. Cancer Research. 1976;36(7):2699–2702.
    1. Aggarwal B. B., Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochemical Pharmacology. 2006;71(10):1397–1421. doi: 10.1016/j.bcp.2006.02.009.
    1. Surh Y.-J. Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 1999;428(1-2):305–327. doi: 10.1016/s1383-5742(99)00057-5.
    1. Surh Y.-J. Cancer chemoprevention with dietary phytochemicals. Nature Reviews Cancer. 2003;3(10):768–780. doi: 10.1038/nrc1189.
    1. Pillai A. K., Sharma K. K., Gupta Y. K., Bakhshi S. Anti-emetic effect of ginger powder versus placebo as an add-on therapy in children and young adults receiving high emetogenic chemotherapy. Pediatric Blood & Cancer. 2011;56(2):234–238. doi: 10.1002/pbc.22778.
    1. Ryan J. L., Heckler C. E., Roscoe J. A., et al. Ginger reduces acute chemotherapy induced nausea: a URCCCCOP study of 576 patients. Support Care Cancer. 2012;20:1479–1489.
    1. Jin Z., Lee G., Kim S., Park C.-S., Park Y. S., Jin Y.-H. Ginger and its pungent constituents non-competitively inhibit serotonin currents on visceral afferent neurons. The Korean Journal of Physiology & Pharmacology. 2014;18(2):149–153. doi: 10.4196/kjpp.2014.18.2.149.
    1. Sharma S. S., Kochupillai V., Gupta S. K., Seth S. D., Gupta Y. K. Antiemetic efficacy of ginger (Zingiber officinale) against cisplatin-induced emesis in dogs. Journal of Ethnopharmacology. 1997;57(2):93–96. doi: 10.1016/S0378-8741(97)00054-8.
    1. World Health Organization. WHO Technical Report Series. 894. WHO; 2000. Obesity preventing and managing the global epidemic, report of a WHO consultation.
    1. Pinder R. M., Brogden R. N., Sawyer P. R., Speight T. M., Avery G. S. Fenfluramine: a review of its pharmacological properties and therapeutic efficacy in obesity. Drugs. 1975;10(4):241–323. doi: 10.2165/00003495-197510040-00001.
    1. Brenot F., Herve P., Petitpretz P., Parent F., Duroux P., Simonneau G. Primary pulmonary hypertension and fenfluramine use. British Heart Journal. 1993;70(6):537–541. doi: 10.1136/hrt.70.6.537.
    1. Park J. P., Kim J. H., Park M. K., Yun J. W. Potential agents for cancer and obesity treatment with herbal medicines from the green garden. Biotechnology and Bioprocess Engineering. 2011;16(6):1065–1076. doi: 10.1007/s12257-011-0215-3.
    1. Swinburn B. A., Caterson I., Seidell J. C., James W. P. T. Diet, nutrition and the prevention of excess weight gain and obesity. Public Health Nutrition. 2004;7(1A):123–146. doi: 10.1079/phn2003585.
    1. Amin K. A., Nagy M. A. Effect of Carnitine and herbal mixture extract on obesity induced by high fat diet in rats. Diabetology & Metabolic Syndrome. 2009;1, article 17:14. doi: 10.1186/1758-5996-1-17.
    1. Han L.-K., Morimoto C., Zheng Y.-N., et al. Effects of zingerone on fat storage in ovariectomized rats. Yakugaku Zasshi. 2008;128(8):1195–1201. doi: 10.1248/yakushi.128.1195.
    1. Thunchomnang K., Lawa K., Mangkhalathon A., Saenubol P., Rattanakiat S., Pulbutr P. Lipolytic effects of zingerone in isolated rat adipocytes. Proceedings of the 4th Annual Northeast Pharmacy Research Conference; 2012.

Source: PubMed

3
Iratkozz fel