Genetic diversity of Plasmodium falciparum and genetic profile in children affected by uncomplicated malaria in Cameroon

Theresia Njuabe Metoh, Jun-Hu Chen, Philip Fon-Gah, Xia Zhou, Roger Moyou-Somo, Xiao-Nong Zhou, Theresia Njuabe Metoh, Jun-Hu Chen, Philip Fon-Gah, Xia Zhou, Roger Moyou-Somo, Xiao-Nong Zhou

Abstract

Background: Malaria is a major public health problem in Cameroon. The study of the genetic diversity within parasite population is essential for understanding the mechanism underlying malaria pathology and to determine parasite clones profile in an infection, for proper malaria control strategies. The objective of this study was to perform a molecular characterization of highly polymorphic genetic markers of Plasmodium falciparum, and to determine allelic distribution with their influencing factors valuable to investigate malaria transmission dynamics in Cameroon.

Methods: A total of 350 P. falciparum clinical isolates were characterized by genotyping block 2 of msp-1, block 3 of msp-2, and region II of glurp gene using nested PCR and DNA sequencing between 2012 and 2013.

Results: A total of 5 different genotypes with fragment sizes ranging from 597 to 817 bp were recorded for GLURP. Overall, 16 MSP-1 genotypes, including K1, MAD20 and RO33 were identified, ranging from 153 to 335 bp. A peculiarity about this study is the RO33 monomorphic pattern revealed among the Pfmsp-1 allelic type. Again, this study identified 27 different Pfmsp-2 genotypes, ranging from 140 to 568 bp in size, including 15 belonging to the 3D7-type and 12 to the FC27 allelic families. The analysis of the MSP-1 and MSP-2 peptides indicates that the region of the alignment corresponding K1 polymorphism had the highest similarity in the MSP1and MSP2 clade followed by MAD20 with 93% to 100% homology. Therefore, population structure of P. falciparum isolates is identical to that of other areas in Africa, suggesting that vaccine developed with K1 and MAD20 of Pfmsp1 allelic variant could be protective for Africa children but these findings requires further genetic and immunological investigations. The multiplicity of infection (MOI) was significantly higher (P < 0.05) for Pfmsp-2 loci (3.82), as compare with Pfmsp-1 (2.51) and heterozygotes ranged from 0.55 for Pfmsp-1 to 0.96 for Pfmsp-2.

Conclusion: High genetic diversity and allelic frequencies in P. falciparum isolates indicate a persisting high level of transmission. This study advocate for an intensification of the malaria control strategies in Cameroon. Trial registration This study was approved by Cameroon National Ethics Committee. It is a randomized controlled trial retrospectively registered in NIH U.S. National Library of Medicine, ClinicalTrials.gov on the 28/11/2016 at https://ichgcp.net/clinical-trials-registry/NCT02974348 with the registration number NCT02974348.

Keywords: GLURP protein; Heterozygote; Infection control; MSP-1; MSP-2; Plasmodium.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Map of major health facilities of the Cameroon Development Corporation (CDC), South West Region of Cameroon and Geographic map of Cameroon. Source: https://www.worldatlas.com/webimage/countrys/africa/cm.htm
Fig. 2
Fig. 2
a Distribution of msp-1 haplotypes.b Distribution of haplotypes for msp2 allelic family

References

    1. WHO. Guidelines for the treatment of malaria. 2nd ed. Geneva: World Health Organization; 2010. .
    1. WHO . World malaria report. Geneva: World Health Organization; 2018.
    1. Wanji S, Tanke T, Atanga SN, Ajonina C, Nicolas T, Fontenille D. Anopheles species of the Mount Cameroon region: biting habit, feeding behaviour and entomological inoculation rates. Trop Med Int Health. 2003;8:643–649. doi: 10.1046/j.1365-3156.2003.01070.x.
    1. Moyou-Somo R, Essomba P, Songue E, Tchoubou NN, Ntambo A, Ngo Hiol H, et al. A public private partnership to fight against malaria along the Chad-Cameroon pipeline corridor: I. Baseline data on socio-anthropological aspects, knowledge, attitudes and practices of the population concerning malaria. BMC Public Health. 2013;13:1023. doi: 10.1186/1471-2458-13-1023.
    1. Boussougou-Sambe ST, Eyisap WE, Tasse GCT, Mandeng SE, Mbakop LR, Enyong P, et al. Insecticide susceptibility status of Anopheles gambiae (s.l.) in South-West Cameroon four years after long-lasting insecticidal net mass distribution. Parasit Vectors. 2018;11:391. doi: 10.1186/s13071-018-2979-1.
    1. Metoh Njuabe T, Tahar R, Same-Ekobo A, Foumane Ngane V, Soula G, Basco LK. Molecular epidemiology of malaria in Cameroon. XXIX. Characterization of DHFR and drug resistance markers and efficacy of sulfadoxine–pyrimethamine monotherapy in children in Niete (HEVECAM) Sciences et Médecines d’Afrique. 2010;2:146–152.
    1. Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009;361:455–467. doi: 10.1056/NEJMoa0808859.
    1. Aubouy A, Migot-Nabias F, Deloron P. Polymorphism in two merozoite surface proteins of Plasmodium falciparum isolates from Gabon. Malar J. 2003;2:12. doi: 10.1186/1475-2875-2-12.
    1. Patel P, Bharti PK, Bansal D, Raman RK, Mohapatra PK, Sehgal R, et al. Genetic diversity and antibody responses against Plasmodium falciparum vaccine candidate genes from Chhattisgarh, Central India: implication for vaccine development. PLoS ONE. 2017;12:e0182674. doi: 10.1371/journal.pone.0182674.
    1. Woehlbier U, Epp C, Kauth CW, Lutz R, Long CA, Coulibaly B, et al. Analysis of antibodies directed against merozoite surface protein 1 of the human malaria parasite Plasmodium falciparum. Infect Immun. 2006;74:1313–1322. doi: 10.1128/IAI.74.2.1313-1322.2006.
    1. Basco LK, Tahar R, Escalante A. Molecular epidemiology of malaria in Cameroon. XVIII. Polymorphisms of the Plasmodium falciparum merozoite surface antigen-2 gene in isolates from symptomatic patients. Am J Trop Med Hyg. 2004;70:238–244. doi: 10.4269/ajtmh.2004.70.238.
    1. Jamil KF, Supargiyono S, Syafruddin D, Pratama, Silvy S. Genetic diversity of merozoite surface protein-2 in Plasmodium falciparum isolates from Aceh province, Indonesia. In: IOP Conf. Series: Earth and Environmental Science, vol. 125. 2018. p. 012036.
    1. Kang JM, Moon SU, Kim JY, Cho SH, Link K, et al. Genetic polymorphisms of merozoite surface protein-1 in Plasmodium falciparum field isolates from Myanmar. Malar J. 2010;9:131. doi: 10.1186/1475-2875-9-131.
    1. Mwingira F, Nkwengulila G, Schoepflin S, Sumari D, Beck H-P, Snounou G, et al. Plasmodium falciparum msp1, msp2 and glurp allele frequency and diversity in sub-Saharan Africa. Malar J. 2011;10:79. doi: 10.1186/1475-2875-10-79.
    1. Smythe JA, Coppel RL, Day KP, Martin RK, Oduola AMJ, Kemp DJ, Anders RF. Structural diversity in the Plasmodium falciparum merozoite surface antigen2. Proc Natl Acad Sci USA. 1991;88:1751–1755. doi: 10.1073/pnas.88.5.1751.
    1. Babiker HA, Lines J, Hill WG, Walliker D. Population structure of Plasmodium falciparum in villages with different malaria endemicity in east Africa. Am J Trop Med Hyg. 1997;56:141–147. doi: 10.4269/ajtmh.1997.56.141.
    1. Atroosh M, Al-Mekhlafi HM, Mahdy MAK, Saif-Ali R, Al-Mekhlaf AM, Surin J. Genetic diversity of Plasmodium falciparum isolates from Pahang, Malaysia based on MSP-1 and MSP-2 genes. Parasit Vectors. 2011;4:233. doi: 10.1186/1756-3305-4-233.
    1. Khaireh BA, Assefa A, Guessod HH, Basco LK, Khaireh MA, Pascual A, et al. Population genetics analysis during the elimination process of Plasmodium falciparum in Djibouti. Malar J. 2013;12:201. doi: 10.1186/1475-2875-12-201.
    1. Snounou G. Genotyping of Plasmodium spp. nested PCR. Methods Mol Med. 2002;72:103–116.
    1. Gupta V, Dorsey G, Hubbard AE, Rosenthal PJ, Greenhouse B. Gel versus capillary electrophoresis genotyping for categorizing treatment outcomes in two anti-malarial trials in Uganda. Malar J. 2010;9:19. doi: 10.1186/1475-2875-9-19.
    1. Messerli C, Hofmann NE, Beck H-P, Felger I. Critical evaluation of molecular monitoring in malaria drug efficacy trials and pitfalls of length-polymorphic markers. Antimicrob Agents Chemother. 2017;61:e01500–e01516. doi: 10.1128/AAC.01500-16.
    1. Cattamanchi A, Kyabayinze D, Hubbard A, Rosenthal PJ, Dorsey G. Distinguishing recrudescence from reinfection in a longitudinal antimalarial drug efficacy study: comparison of results based on genotyping of msp-1, msp-2, and glurp. Am J Trop Med Hyg. 2003;68:133–139. doi: 10.4269/ajtmh.2003.68.133.
    1. WHO. Methods and techniques for clinical trials on antimalarial drug efficacy: genotyping to identify parasite populations: informal consultation organized by the Medicines for Malaria Venture and co-sponsored by the World Health Organization. 2008.
    1. Wanji S, Kengne-Ouafo AJ, Eyong EJ, Kimbi HK, Tendongfor N, Ndamukong-Nyanga JL. Genetic diversity of Plasmodium falciparum merozoite surface protein-1 block 2 in sites of contrasting altitudes and malaria endemicities in the Mount Cameroon region. Am J Trop Med Hyg. 2012;86:764–774. doi: 10.4269/ajtmh.2012.11-0433.
    1. Sepúlveda N, Drakeley C. Sample size determination for estimating antibody seroconversion rate under stable malaria transmission intensity. Malar J. 2015;14:141. doi: 10.1186/s12936-015-0661-z.
    1. WHO . QA manual for malaria microscopy. 2. Geneva: World Health Organization; 2015.
    1. Sondo P, Derra K, Lefevre T, Diallo-Nakanabo S, Tarnagda Z, Zampa O, et al. Genetically diverse Plasmodium falciparum infections, within-host competition and symptomatic malaria in humans. Sci Rep. 2019;9:127. doi: 10.1038/s41598-018-36493-y.
    1. Atroosh WM, Al-Mekhlafi HM, Al-Jasari A, Sady H, Al-Delaimy AK, Nasr NA, et al. Genetic variation of pfhrp2 in Plasmodium falciparum isolates from Yemen and the performance of HRP2-based malaria rapid diagnostic test. Parasit Vectors. 2015;8:388. doi: 10.1186/s13071-015-1008-x.
    1. Joshi H, Valecha N, Verma A, Kaul A, Mallick PK, Shalini S, et al. Genetic structure of Plasmodium falciparum field isolates in eastern and north-eastern India. Malar J. 2007;6:60. doi: 10.1186/1475-2875-6-60.
    1. Nie NH, Bent DH, Hull CH. SPSS: statistical package for the social sciences: update manual. New York: National Opinion Research Center, McGraw-Hill; 2008. p. 343.
    1. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–2739. doi: 10.1093/molbev/msr121.
    1. Noranate N, Prugnolle F, Jouin H, Tall A, Marrama L, Sokhna C, et al. Population diversity and antibody selective pressure to Plasmodium falciparum MSP1 block2 locus in an African malaria-endemic setting. BMC Microbiol. 2009;9:219. doi: 10.1186/1471-2180-9-219.
    1. Takala SL, Smith DL, Stine OC, Coulibaly D, Thera MA, Doumbo OK, et al. A high-throughput method for quantifying alleles and haplotypes of the malaria vaccine candidate Plasmodium falciparum merozoite surface protein-1 19 kDa. Malar J. 2006;5:31. doi: 10.1186/1475-2875-5-31.
    1. Jiang G, Liu R, Daubenberger CA, Pluschke G. Sequence analysis of the MSP 1 gene of Plasmodium falciparum isolates from Hainan, China. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi. 1999;17:294–297.
    1. Ferreira MU, Ribeiro WL, Tonon AP, Kawamoto F, Rich SM. Sequence diversity and evolution of the malaria vaccine candidate merozoite surface protein-1 (MSP-1) of Plasmodium falciparum. Gene. 2003;304:65–75. doi: 10.1016/S0378-1119(02)01180-0.
    1. Zakeri S, Bereczky S, Naimi P, Pedro Gil J, Djadid ND, Farnert A, et al. Multiple genotypes of the merozoite surface proteins 1 and 2 in Plasmodium falciparum infections in a hypoendemic area in Iran. Trop Med Int Health. 2005;10:1060–1064. doi: 10.1111/j.1365-3156.2005.01477.x.
    1. Cavanagh DR, Elhassan IM, Roper C, Robinson VJ, Giha H, Holder AA, et al. A longitudinal study of type specific antibody responses to Plasmodium falciparum merozoite surface protein-1 in an area of unstable malaria in Sudan. J Immunol. 1998;161:347–359.
    1. Dobaño C, Khan A, Robinson JV, Taylor RR, McBride JS. Identical alleles of Plasmodium falciparum merozoite surface protein 2 in distant geographic areas and times. Parasitol Int. 1997;46:137–142. doi: 10.1016/S1383-5769(97)00020-2.
    1. Escalante AA, Lal AA, Ayala FJ. Genetic polymorphism and natural selection in the malaria parasite Plasmodium falciparum. Genetics. 1998;149:189–202.
    1. Tetteh KK, Stewart LB, Ochola LI, Amambua-Ngwa A, Thomas AW, Marsh K, et al. Prospective identification of malaria parasite genes under balancing selection. PLoS ONE. 2009;4:e5568. doi: 10.1371/journal.pone.0005568.
    1. Tetteh KK, Cavanagh DR, Corran P, Musonda R, McBride JS, Conway DJ. Extensive antigenic polymorphism within the repeat sequence of the Plasmodium falciparum merozoite surface protein 1 block 2 is incorporated in a minimal polyvalent immunogen. Infect Immun. 2005;73:5928–5935. doi: 10.1128/IAI.73.9.5928-5935.2005.
    1. Aspeling-Jones H, Conway DJ. An expanded global inventory of allelic variation in the most extremely polymorphic region of Plasmodium falciparum merozoite surface protein 1 provided by short read sequence data. Malar J. 2018;17:345. doi: 10.1186/s12936-018-2475-2.
    1. Kun FJ, Schmidt-Ott RJ, Lehman LG, Lell B, Luckner D, Greve B, et al. Merozoite surface antigen 1 and 2 genotypes and rosetting of Plasmodium falciparum in severe and mild malaria in Lambarene, Gabon. Trans R Soc Trop Med Hyg. 1998;92:110–114. doi: 10.1016/S0035-9203(98)90979-8.
    1. Daniels R, Volkman SK, Milner DA, Mahesh N, Neafsey DE, et al. Genetic diversity and protective efficacy of the RTS,S/AS01 malaria vaccine. N Engl J Med. 2015;373:2025–2037. doi: 10.1056/NEJMoa1505819.
    1. Zhong D, Koepfi C, Cui L, Yan G. Molecular approaches to determine the multiplicity of Plasmodium infections. Malar J. 2018;17:172. doi: 10.1186/s12936-018-2322-5.
    1. Peyerl-Hoffmann G, Jelinek T, Kilian A, Kabagambe G, Metzger WG, von Sonnenburg F. Genetic diversity of Plasmodium falciparum and its relationship to parasite density in an area with different malaria endemicities in West Uganda. Trop Med Int Health. 2001;6:607–613. doi: 10.1046/j.1365-3156.2001.00761.x.
    1. Zwetyenga J, Rogier C. No influence of age on infection complexity allelic distribution in Plasmodium falciparum infection in Ndiop, a Senegalese village with seasonal, mesoendemic malaria. Am J Trop Med Hyg. 1998;59:726–735. doi: 10.4269/ajtmh.1998.59.726.
    1. Sallenave-Sales S, Daubersies P, Mercereau-Puijalon O, Rahimalala L, Contamin H, Druilhe P, et al. Plasmodium falciparum, A comparative analysis of the genetic diversity in malaria-mesoendemic area of Brazil and Madagascar. Parasitol Res. 2000;86:692–698. doi: 10.1007/PL00008554.
    1. Tetteh KK, Conway DJ. A polyvalent hybrid protein elicits antibodies against the diverse allelic types of block 2 in Plasmodium falciparum merozoite surface protein 1. Vaccine. 2011;29:7811–7817. doi: 10.1016/j.vaccine.2011.07.106.
    1. Amodu OK, Adeyemo AA, Ayoola OO, Gbadegesin RA, Orimadegun AE, Akinsola AK, et al. Genetic diversity of the msp-1 locus and symptomatic malaria in south-west Nigeria. Acta Trop. 2005;95:226–232. doi: 10.1016/j.actatropica.2005.06.017.
    1. Al-Yaman F, Genton B, Reeder JC, Anders RF, Smith T, Alpers MP. Reduced risk of clinical malaria in children infected with multiple clones of Plasmodium falciparum in a highly endemic area: a prospective community study. Trans R Soc Trop Med Hyg. 1997;91:602–605. doi: 10.1016/S0035-9203(97)90046-8.
    1. Chaorattanakawee S, Nuchnoi P, Hananantachai H, Tumkosit U, Saunders D, Naka I, et al. Correction: sequence variation in Plasmodium falciparum merozoite surface protein-2 is associated with virulence causing severe and cerebral malaria. PLoS ONE. 2018;13:e0196694. doi: 10.1371/journal.pone.0196694.
    1. Henry M, Bordes J, Diallo I, Pradines B, Ka S, Diatta B, et al. Urban malaria in Dakar, Senegal: chemosusceptibility and genetic diversity of Plasmodium falciparum isolates. Am J Trop Med Hyg. 2006;75:146–151. doi: 10.4269/ajtmh.2006.75.146.
    1. Soulama I, Nébié I, Ouédraogo A, Gansane A, Diarra A, Tiono AB, et al. Plasmodium falciparum genotypes diversity in symptomatic malaria of children living in an urban and a rural setting in Burkina Faso. Malar J. 2009;8:135. doi: 10.1186/1475-2875-8-135.
    1. Anderson TJHB, Williams JT, Estrada-Franco JG, Richardson L, Mollinedo R, Bockarie M, et al. Microsatellites reveal a spectrum of population structure in the malaria parasite Plasmodium falciparum. Mol Biol Evol. 2000;17:1467–1482. doi: 10.1093/oxfordjournals.molbev.a026247.
    1. Ibara-Okabande R, Koukouikila-Koussounda F, Ndounga M. Reduction of multiplicity of infections but no change in msp2 genetic diversity in P. falciparum isolates from Congolese children after introduction of artemisin combination therapies. Malar J. 2012;11(Suppl 1):P70. doi: 10.1186/1475-2875-11-S1-P70.
    1. Talisuna AO, Okello PE, Erhart A, Coosemans M, D’Alessandro U. Intensity of malaria transmission and the spread of Plasmodium falciparum resistant malaria: a review of epidemiologic field evidence. Am J Trop Med Hyg. 2007;77(6 suppl):170–180.
    1. Jiang H, Li N, Gopalan V, Zilversmit MM, Varma S, Nagarajan V, et al. High recombination rates and hotspots in a Plasmodium falciparum genetic cross. Genome Biol. 2011;12:R33. doi: 10.1186/gb-2011-12-4-r33.
    1. Somé AF, Bazié T, Zongo I, Yerbanga RS, Nikiéma F, Neya C, et al. Plasmodium falciparum msp1 and msp2 genetic diversity and allele frequencies in parasites isolated from symptomatic malaria patients in Bobo-Dioulasso, Burkina Faso. Parasit Vectors. 2018;11:323. doi: 10.1186/s13071-018-2895-4.
    1. Durand R, Ariey F, Cojean S, Fontanet A, Ranaivo L, Ranarivelo LA, et al. Analysis of circulating populations of Plasmodium falciparum in mild and severe malaria in two diferent epidemiological patterns in Madagascar. Trop Med Int Health. 2008;13:1392–1399. doi: 10.1111/j.1365-3156.2008.02156.x.
    1. Takala SL, Coulibaly D, Thera MA, Dicko A, Smith DL, Guindo AB, et al. Dynamics of polymorphism in a malaria vaccine antigen at a vaccine-testing site in Mali. PLoS Med. 2007;4:e93. doi: 10.1371/journal.pmed.0040093.
    1. Mayor A, Saute F, Aponte JJ, Almeda J, Gómez-Olivé FX, Dgedge M, et al. Plasmodium falciparum multiple infections in Mozambique, its relation to other malariological indices and to prospective risk of malaria morbidity. Trop Med Int Health. 2003;8:3–11. doi: 10.1046/j.1365-3156.2003.00968.x.
    1. Walsh PS, Erlich HA, Higuchi R. Preferential PCR amplification of alleles: mechanisms and solutions. PCR Methods Appl. 1992;1:241–250. doi: 10.1101/gr.1.4.241.
    1. Yavo W, Konaté A, Mawili-Mboumba DP, Kassi FK, Mbuyi MLT, Angora EK, et al. Genetic polymorphism of msp1 and msp2 in Plasmodium falciparum isolates from Côte d’Ivoire versus Gabon. J Parasitol Res. 2016;2016:3074803. doi: 10.1155/2016/3074803.
    1. Mohammed H, Kassa M, Mekete K, Assefa A, Taye G, Commons RJ. Genetic diversity of the msp-1, msp-2, and glurp genes of Plasmodium falciparum isolates in Northwest Ethiopia. Malar J. 2018;17:386. doi: 10.1186/s12936-018-2540-x.
    1. Acinas SG, Sarma-Rupavtarm R, Klepac-Ceraj V, Polz MF. PCR-induced sequence artifacts and bias: insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Appl Environ Microbiol. 2005;71:8966–8969. doi: 10.1128/AEM.71.12.8966-8969.2005.
    1. Zhu SJ, Almagro-Garcia J, McVean G. Deconvolution of multiple infections in Plasmodium falciparum from high throughput sequencing data. Bioinformatics. 2018;34:9–15. doi: 10.1093/bioinformatics/btx530.
    1. Jiang G, Daubenberger C, Huber W, Matile H, Tanner M, Pluschke G. Sequence diversity of the merozoite surface protein 1 of Plasmodium falciparum in clinical isolates from the Kilombero District, Tanzania. Acta Trop. 2000;74:51–61. doi: 10.1016/S0001-706X(99)00045-5.
    1. Jongwutiwes S, Tanabe K, Nakazawa S, Yanagi T, Kanbara H. Sequence variation in the tripeptide repeats and T cell epitopes in P190 (MSA-1) of Plasmodium falciparum from field isolates. Mol Biochem Parasitol. 1992;51:81–89. doi: 10.1016/0166-6851(92)90203-V.
    1. Scopel KK, et al. Low sensitivity of nested PCR using Plasmodium DNA extracted from stained thick blood smears: an epidemiological retrospective study among subjects with low parasitae-mia in an endemic area of the Brazilian Amazon region. Malar J. 2004;31:8. doi: 10.1186/1475-2875-3-8.
    1. Weisman S, Wang L, Billman-Jacobe H, Nhan DH, et al. Antibody responses to infections with strains of Plasmodium falciparum expressing diverse forms of merozoite surface protein 2. Infect Immun. 2001;69:959–967. doi: 10.1128/IAI.69.2.959-967.2001.
    1. Mayengue PI, Luty AJ, Rogier C, Baragatti M, Kremsner PG, Ntoumi F. The multiplicity of Plasmodium falciparum infections is associated with acquired immunity to asexual blood stage antigens. Micro Infect. 2009;11(1):108–114. doi: 10.1016/j.micinf.2008.10.012.

Source: PubMed

3
Iratkozz fel