Motivational nondirective resonance breathing versus transcutaneous vagus nerve stimulation in the treatment of fibromyalgia: study protocol for a randomized controlled trial

Charles Ethan Paccione, Lien My Diep, Audun Stubhaug, Henrik Børsting Jacobsen, Charles Ethan Paccione, Lien My Diep, Audun Stubhaug, Henrik Børsting Jacobsen

Abstract

Background: Chronic widespread pain (CWP), including fibromyalgia (FM), affects one in every ten adults and is one of the leading causes of sick leave and emotional distress. Due to an unclear etiology and a complex pathophysiology, FM is a condition with few, if any, effective and safe treatments. However, current research within the field of vagal nerve innervation suggests psychophysiological and electrical means by which FM may be treated. This study will investigate the efficacy of two different noninvasive vagal nerve stimulation techniques for the treatment of FM.

Methods: The study will use a randomized, single-blind, sham-controlled design to investigate the treatment efficacy of motivational nondirective resonance breathing (MNRB™) and transcutaneous vagus nerve stimulation (Nemos® tVNS) on patients diagnosed with FM. Consenting FM patients (N = 112) who are referred to the Department of Pain Management and Research at Oslo University Hospital, in Oslo, Norway, will be randomized into one of four independent groups. Half of these participants (N = 56) will be randomized to either an experimental tVNS group or a sham tVNS group. The other half (N = 56) will be randomized to either an experimental MNRB group or a sham MNRB group. Both active and sham treatment interventions will be delivered twice per day at home, 15 min/morning and 15 min/evening, for a total duration of 2 weeks (14 days). Participants are invited to the clinic twice, once for pre- and once for post-intervention data collection. The primary outcome is changes in photoplethysmography-measured heart rate variability. Secondary outcomes include self-reported pain intensity on a numeric rating scale, changes in pain detection threshold, pain tolerance threshold, and pressure pain limit determined by computerized pressure cuff algometry, blood pressure, and health-related quality of life.

Discussion: The described randomized controlled trial aims to compare the efficacy of two vagal nerve innervation interventions, MNRB and tVNS, on heart rate variability and pain intensity in patients suffering from FM. This project tests a new and potentially effective means of treating a major public and global health concern where prevalence is high, disability is severe, and treatment options are limited.

Trial registration: ClinicalTrials.gov NCT03180554 . Registered on August 06, 2017.

Keywords: Chronic widespread pain; Fibromyalgia; Heart rate variability; Motivational nondirective resonance breathing; Pain intensity; Vagus nerve stimulation.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Overview of study design
Fig. 2
Fig. 2
tVNS device. Nemos® transcutaneous vagus nerve stimulation (tVNS) device (Figure taken from [69])
Fig. 3
Fig. 3
Signal processing pipeline for CameraHRV (Table taken from [80])
Fig. 4
Fig. 4
BarTek design
Fig. 5
Fig. 5
Signal processing pipeline for BarTek device. Real-time signal processing is based on a zero-crossing algorithm with further modifications. It is important to note that zero-crossing detection is based on a dynamically adjusted threshold. The basic signal processing algorithm consists of seven steps
Fig. 6
Fig. 6
Clinical visitations. a Clinical visitation 1 (CVI). b Clinical visitation II (CVII)
Fig. 7
Fig. 7
Data collection timeline. a Heart rate variability. b Blood pressure. c Computerized cuff-pressure algometry
Fig. 8
Fig. 8
Daily home intervention procedure

References

    1. Lee J, Ellis B, Price C, Baranowski AP. Chronic widespread pain, including fibromyalgia: a pathway for care developed by the british pain society. Br J Anaesth. 2014;112:16–24. doi: 10.1093/bja/aet351.
    1. Mansfield KE, Sim J, Croft P, Jordan KP. Identifying patients with chronic widespread pain in primary care. Pain. 2017;158:110. doi: 10.1097/j.pain.0000000000000733.
    1. Turk DC, Wilson HD, Cahana A. Treatment of chronic non-cancer pain. Lancet. 2011;377:2226–2235. doi: 10.1016/S0140-6736(11)60402-9.
    1. Chou R, Turner JA, Devine EB, Hansen RN, Sullivan SD, Blazina I, et al. The effectiveness and risks of long-term opioid therapy for chronic pain: a systematic review for a national institutes of health pathways to prevention workshopeffectiveness and risks of long-term opioid therapy for chronic pain. Ann Intern Med. 2015;162:276–286. doi: 10.7326/M14-2559.
    1. National Academies of Sciences, Engineering and Medicine . Pain management and the opioid epidemic: balancing societal and individual benefits and risks of prescription opioid use. Washington, DC: National Academies Press; 2017.
    1. Hofmann SG, Asmundson GJ. Acceptance and mindfulness-based therapy: new wave or old hat? Clin Psychol Rev. 2008;28:1–6. doi: 10.1016/j.cpr.2007.09.003.
    1. Paccione CE, Jacobsen HB. Motivational nondirective resonance breathing as a treatment for chronic widespread pain. Front Psychol. 2019;10:1207. doi: 10.3389/fpsyg.2019.01207.
    1. Jafari H, Courtois I, Van den Bergh O, Vlaeyen JW, Van Diest I. Pain and respiration: a systematic review. Pain. 2017;158(6):995–1006. doi: 10.1097/j.pain.0000000000000865.
    1. Chakravarthy K, Chaudhry H, Williams K, Christo PJ. Review of the uses of vagal nerve stimulation in chronic pain management. Curr Pain Headache Rep. 2015;19:54. doi: 10.1007/s11916-015-0528-6.
    1. Lange G, Janal MN, Maniker A, FitzGibbons J, Fobler M, Cook D, et al. Safety and efficacy of vagus nerve stimulation in fibromyalgia: a phase I/II proof of concept trial. Pain Med. 2011;12:1406–1413. doi: 10.1111/j.1526-4637.2011.01203.x.
    1. Busch V, Zeman F, Heckel A, Menne F, Ellrich J, Eichhammer P. The effect of transcutaneous vagus nerve stimulation on pain perception–an experimental study. Brain Stimul. 2013;6:202–209. doi: 10.1016/j.brs.2012.04.006.
    1. Meregnani J, Clarençon D, Vivier M, Peinnequin A, Mouret C, Sinniger V, et al. Anti-inflammatory effect of vagus nerve stimulation in a rat model of inflammatory bowel disease. Auton Neurosci. 2011;160:82–89. doi: 10.1016/j.autneu.2010.10.007.
    1. Randich A, Gebhart GF. Vagal afferent modulation of nociception. Brain Res Rev. 1992;17:77–99. doi: 10.1016/0165-0173(92)90009-b.
    1. Pavithran P, Nandeesha H, Sathiyapriya V, Bobby Z, Madanmohan T. Short-term heart variability and oxidative stress in newly diagnosed essential hypertension. Clin Exp Hypertens. 2008;30:486–496. doi: 10.1080/10641960802251875.
    1. Kraus T, Hösl K, Kiess O, Schanze A, Kornhuber J, Forster C. BOLD fMRI deactivation of limbic and temporal brain structures and mood enhancing effect by transcutaneous vagus nerve stimulation. J Neural Transm. 2007;114(11):1485–1493. doi: 10.1007/s00702-007-0755-z.
    1. Ben-Menachem E, Revesz D, Simon BJ, Silberstein S. Surgically implanted and non-invasive vagus nerve stimulation: a review of efficacy, safety and tolerability. Eur J Neurol. 2015;22:1260–1268. doi: 10.1111/ene.12629.
    1. Peuker ET, Filler TJ. The nerve supply of the human auricle. Clin Anat. 2002;15(1):35–37. doi: 10.1002/ca.1089.
    1. Stancák JA, Kuna M, Dostalek C, Vishnudevananda S. Kapalabhati–yogic cleansing exercise. II. EEG topography analysis. Homeost Health Dis. 1991;33:182–189.
    1. Howland RH. Vagus nerve stimulation. Curr Behav Neurosci Rep. 2014;1:64–73. doi: 10.1007/s40473-014-0010-5.
    1. Farias M, Wikholm C, Delmonte R. What is mindfulness-based therapy good for? Lancet Psychiatry. 2016;3:1012–1013. doi: 10.1016/s2215-0366(16)30211-5.
    1. Chiesa A, Malinowski P. Mindfulness-based approaches: are they all the same? J Clin Psychol. 2011;67:404–424. doi: 10.1002/jclp.20776.
    1. Coronado-Montoya S, Levis A, Kwakkenbos L, Steele R, Turner E, Thombs B. Reporting of positive results in randomized controlled trials of mindfulness-based mental health interventions. PLoS One. 2016;11:e0153220. doi: 10.1371/journal.pone.0153220.
    1. Veehof MM, Oskam MJ, Schreurs KM, Bohlmeijer ET. Acceptance-based interventions for the treatment of chronic pain: a systematic review and meta-analysis. Pain. 2011;152:533–542. doi: 10.1016/j.pain.2010.11.002.
    1. Williams AC, Eccleston C, Morley S. Psychological therapies for the management of chronic pain (excluding headache) in adults. London: The cochrane library; 2012.
    1. Schulz KF, Altman DG, Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMC Med. 2010;8(1):18. doi: 10.1186/1741-7015-8-18.
    1. Quintana DS, Alvares GA, Heathers JA. Guidelines for reporting articles on psychiatry and heart rate variability (GRAPH): recommendations to advance research communication. Transl Psychiatry. 2016;6(5):e803. doi: 10.1038/tp.2016.73.
    1. Godlee F. Publishing study protocols: making them visible will improve registration, reporting and recruitment. BMC News Views. 2001;2(4)..
    1. McNamee D. Review of clinical protocols at the lancet. Lancet. 2001;357(9271):1819–1820. doi: 10.1016/S0140-6736(00)05011-X.
    1. Open Science Collaboration An open, large-scale, collaborative effort to esti- mate the reproducibility of psychological science. Perspect Psychol Sci. 2012;7:657–660. doi: 10.1177/1745691612462588.
    1. Rustoen T, Wahl AK, Hanestad BR, Lerdal A, Paul S, Mias-kowski C. Age and the experience of chronic pain: differences in health and quality of life among younger, middle-aged, and older adults. Clin J Pain. 2005;21:513–523. doi: 10.1097/01.ajp.0000146217.31780.ef.
    1. Koskinen T, Kähönen M, Jula A, Laitinen T, Keltikangas-Järvinen L, Viikari J, Välimäki I, Raitakari OT. Short-term heart rate variability in healthy young adults: the cardiovascular risk in Young Finns study. Auton Neurosci. 2009;145(1–2):81–88. doi: 10.1016/j.autneu.2008.10.011.
    1. Rennie KL, Hemingway H, Kumari M, Brunner E, Malik M, Marmot M. Effects of moderate and vigorous physical activity on heart rate variability in a British study of civil servants. Am J Epidemiol. 2003;158(2):135–143. doi: 10.1093/aje/kwg120.
    1. Quintana D, McGregor I, Guastella A, Malhi G, Kemp A. A meta-analysis on the impact of alcohol dependence on short-term resting-state heart rate variability: implications for cardiovascular risk. Alcohol Clin Exp Res. 2012;37:E23–E29. doi: 10.1111/j.1530-0277.2012.01913.x.
    1. Hayano J, Yamada M, Sakakibara Y, Fujinami T, Yokoyama K, Watanabe Y, et al. Short and long-term effects of cigarette smoking on heart rate variability. Am J Cardiol. 1990;65:84–88. doi: 10.1016/0002-9149(90)90030-5.
    1. LIAO D, CAI J, BARNES R, TYROLER H, RAUTAHARJU P, HOLME I, et al. Association of cardiac automatic function and the development of hypertensionThe ARIC study. Am J Hypertens. 1996;9(12):1147–1156. doi: 10.1016/S0895-7061(96)00249-X.
    1. Järemo P, Arman M, Gerdle B, Larsson B, Gottberg K. Illness beliefs among patients with chronic widespread pain-associations with self-reported health status, anxiety and depressive symptoms and impact of pain. BMC Psychol. 2017;5(1):24. doi: 10.1186/s40359-017-0192-1.
    1. Kemp AH, Quintana DS, Gray MA, Felmingham KL, Brown K, Gatt JM. Impact of depression and antidepressant treatment on heart rate variability: a review and meta-analysis. Biol Psychiatry. 2010;67:1067–1074. doi: 10.1016/j.biopsych.2009.12.012.
    1. Cohen H, Loewenthal U, Matar M, Kotler M. Association of autonomic dysfunction and clozapine: heart rate variability and risk for sudden death in patients with schizophrenia on long-term psychotropic medication. Br J Psychiatry. 2001;179:167–171. doi: 10.1192/bjp.179.2.167.
    1. Agelink, M. W., Boz, C., Ullrich, H., and Andrich, J. (2002). Relationship between major depression and heart rate variability. Clinical consequences and implications for antidepressive treatment. Psychiatry Res. 113, 139–149. doi: 10.1016/S0165-1781(02)00225-1.
    1. Schroeder EB, Liao D, Chambless LE, Prineas RJ, Evans GW, Heiss G. Hypertension, blood pressure, and heart rate variability the atherosclerosis risk in communities (ARIC) study. Hypertension. 2003;42:1106–1111. doi: 10.1161/01.HYP.0000100444.71069.73.
    1. Barakat A, Vogelzangs N, Licht CM, Geenen R, MacFarlane GJ, de Geus EJ, Smit JH, Penninx BW, Dekker J. Dysregulation of the autonomic nervous system and its association with the presence and intensity of chronic widespread pain. Arthritis Care Res. 2012;64(8):1209–1216.
    1. ICD-11 Revision [Internet]. World Health Organization. World Health Organization; 2018 [cited 2018Oct9]. Available from: .
    1. Wolfe F, Clauw DJ, Fitzcharles MA, Goldenberg DL, Katz RS, Mease P, Russell AS, Russell IJ, Winfield JB, Yunus MB. The American College of Rheumatology preliminary diagnostic criteria for fibromyalgia and measurement of symptom severity. Arthritis Care Res. 2010;62(5):600–610. doi: 10.1002/acr.20140.
    1. Wolfe F, Clauw DJ, Fitzcharles MA, Goldenberg DL, Häuser W, Katz RL, Mease PJ, Russell AS, Russell IJ, Walitt B. 2016 Revisions to the 2010/2011 fibromyalgia diagnostic criteria. InSeminars in arthritis and rheumatism 2016 Dec 1 (Vol. 46, No. 3, pp. 319-329). WB Saunders.
    1. Klinkenberg AV, Nater UM, Nierop A, Bratsikas A, Zimmermann R, Ehlert U. Heart rate variability changes in pregnant and non-pregnant women during standardized psychosocial stress1. Acta Obstet Gynecol Scand. 2009;88(1):77–82. doi: 10.1080/00016340802566762.
    1. Vigo DE, Castro MN, Dörpinghaus A, Weidema H, Cardinali DP, Siri LN, Rovira B, Fahrer RD, Nogues M, Leiguarda RC, Guinjoan SM. Nonlinear analysis of heart rate variability in patients with eating disorders. World J Biol Psychiatry. 2008;9(3):183–189. doi: 10.1080/15622970701261604.
    1. Laborde S, Mosley E, Thayer JF. Heart rate variability and cardiac vagal tone in psychophysiological research–recommendations for experiment planning, data analysis, and data reporting. Front Psychol. 2017;8:213. doi: 10.3389/fpsyg.2017.00213.
    1. Hoshiyama M, Hoshiyama A. Heart rate variability associated with experienced Zen meditation. In 2008 Computers in Cardiology 2008 Sep 14 (pp. 569-572). IEEE.
    1. Pharma Consulting Group. EDC, ePRO, eCRF, CTMS, CDMS, electronic data capture [Internet]. Viedoc. [cited 2018Oct10]. Available from: .
    1. Weinberg CR, Sandler DP. Randomized recruitment in case-control studies. Am J Epidemiol. 1991;134(4):421–432. doi: 10.1093/oxfordjournals.aje.a116104.
    1. Page SJ, Persch AC. Recruitment, retention, and blinding in clinical trials. Am J Occup Ther. 2013;67(2):154–161. doi: 10.5014/ajot.2013.006197.
    1. Portney LG, Watkins MP. Foundations of clinical research: applications to practice. Upper Saddle River: Pearson/Prentice Hall; 2009.
    1. Juel J, Brock C, Olesen SS, Madzak A, Farmer AD, Aziz Q, Frøkjær JB, Drewes AM. Acute physiological and electrical accentuation of vagal tone has no effect on pain or gastrointestinal motility in chronic pancreatitis. J Pain Res. 2017;10:1347. doi: 10.2147/JPR.S133438.
    1. Pinna G, Maestri R, Torunski A, Danilowicz-Szymanowicz L, Szwoch M, La Rovere M, et al. Heart rate variability measures: a fresh look at reliability. Clin Sci. 2007;113:131–140. doi: 10.1042/CS20070055.
    1. Simmons JP, Nelson LD, Simonsohn U. False-positive psychology undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychol Sci. 2011;22:1359–1366. doi: 10.1177/0956797611417632.
    1. Quintana DS. Statistical considerations for reporting and planning heart rate variability case-control studies. Psychophysiology. 2017;54(3):344–349. doi: 10.1111/psyp.12798.
    1. Farrar JT, Portenoy RK, Berlin JA, Kinman JL, Strom BL. Defining the clinically important difference in pain outcome measures. Pain. 2000;88(3):287–294. doi: 10.1016/S0304-3959(00)00339-0.
    1. Farrar JT, Young JP, Jr, LaMoreaux L, Werth JL, Poole RM. Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale. Pain. 2001;94(2):149–158. doi: 10.1016/S0304-3959(01)00349-9.
    1. Rabe-Hesketh S, Skrondal A. Multilevel and longitudinal modeling using Stata. STATA press; 2008.
    1. Rabe-Hesketh S, Skrondal A. Classical latent variable models for medical research. Stat Methods Med Res. 2008;17(1):5–32. doi: 10.1177/0962280207081236.
    1. Howarth A, Perkins-Porras L, Smith JG, Subramaniam J, Copland C, Hurley M, Beith I, Riaz M, Ussher M. Pilot study evaluatin Laborde g a brief mindfulness intervention for those with chronic pain: study protocol for a randomized controlled trial. Trials. 2016;17(1):273. doi: 10.1186/s13063-016-1405-2.
    1. Russell ME, Scott AB, Boggero IA, Carlson CR. Inclusion of a rest period in diaphragmatic breathing increases high frequency heart rate variability: implications for behavioral therapy. Psychophysiology. 2017;54(3):358–365. doi: 10.1111/psyp.12791.
    1. Diaphragmatic breathing. Mosby’s Medical Dictionary. 8th ed: Elsevier; 2009. 28 Jan 2018 .
    1. Cleveland Clinic . Diaphragmatic Breathing Exercises & Techniques | Cleveland Clinic. 2018.
    1. Xu J, Vik A, Groote IR, Lagopoulos J, Holen A, Ellingsen Ø, Davanger S. Nondirective meditation activates default mode network and areas associated with memory retrieval and emotional processing. Front Hum Neurosci. 2014;8:86.
    1. Barrett K, Ganong W. Ganong’s review of medical physiology. New York: McGraw-Hill; 2013.
    1. Elstad M. Respiratory variations in pulmonary and systemic blood flow in healthy humans. Acta Physiol. 2012;205:341–348. doi: 10.1111/j.1748-1716.2012.02419.x.
    1. Moore AW, Gruber T, Derose J, Malinowski P. Regular, brief mindfulness meditation practice improves electrophysiological markers of attentional control. Front Hum Neurosci. 2012;6:18. doi: 10.3389/fnhum.2012.00018.
    1. “Shop - NEMOS TVNS.” VNS, NEMOS t-VNS, .
    1. Kreuzer PM, Landgrebe M, Husser O, Resch M, Schecklmann M, Geisreiter F, Poeppl TB, Prasser SJ, Hajak G, Langguth B. Transcutaneous vagus nerve stimulation: retrospective assessment of cardiac safety in a pilot study. Front Psychiatry. 2012;3:70.
    1. .
    1. Dietrich S, Smith J, Scherzinger C, Hofmann-Preiß K, Eisenkolb A, Ringler R. A novel transcutaneous vagus nerve stimulation leads to brainstem and cerebral activations measured by functional MRI. Biomed Eng. 2008;53:104–111. doi: 10.1515/BMT.2008.022.
    1. Jongkees BJ, Immink MA, Finisguerra A, Colzato LS. Transcutaneous vagus nerve stimulation (tVNS) enhances response selection during sequential action. Front Psychol. 2018;9:1159.
    1. Altini M, Van Hoof C, Amft O. Relation between estimated cardiorespiratory fitness and running performance in free-living: an analysis of HRV4Training data. In Biomedical & Health Informatics (BHI), 2017 IEEE EMBS international conference on 2017 Feb 16 (249-252). IEEE.
    1. Williams S, Booton T, Watson M, Rowland D, Altini M. Heart rate variability is a moderating factor in the workload-injury relationship of competitive crossfit™ athletes. J Sports Sci Med. 2017;16(4):443.
    1. Altini M, Amft O. HRV4Training: large-scale longitudinal training load analysis in unconstrained free-living settings using a smartphone application. In Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th annual international conference of the 2016 Aug 16 (2610-2613). IEEE.
    1. Plews DJ, Scott B, Altini M, Wood M, Kilding AE, Laursen PB. Comparison of heart-rate-variability recording with smartphone photoplethysmography, Polar H7 chest strap, and electrocardiography. Int J Sports Physiol Perform. 2017;12(10):1324–8.
    1. Bolanos M, Nazeran H, Haltiwanger E. Comparison of heart rate variability signal features derived from electrocardiography and photoplethysmography in healthy individuals. In Engineering in Medicine and Biology Society, 2006. EMBS’06. 28th Annual International Conference of the IEEE 2006 Aug 30 (4289-4294). IEEE.
    1. Bagha S, Shaw L. A real time analysis of PPG signal for measurement of SpO2 and pulse rate. Int J Comput Appl. 2011;36(11):45–50.
    1. “Heart Rate Variability for Training.” Marco Altini, .
    1. Bourdillon N, Schmitt L, Yazdani S, Vesin JM, Millet GP. Minimal window duration for accurate HRV recording in athletes. Front Neurosci. 2017;11:456. doi: 10.3389/fnins.2017.00456.
    1. Esco MR, Flatt AA. Ultra-short-term heart rate variability indexes at rest and post- exercise in athletes: evaluating the agreement with accepted recommendations. J Sports Sci Med. 2014;13:535.
    1. Penttilä J, Helminen A, Jartti T, Kuusela T, Huikuri HV, Tulppo MP, Coffeng R, Scheinin H. Time domain, geometrical and frequency domain analysis of cardiac vagal outflow: effects of various respiratory patterns. Clin Physiol. 2001;21(3):365–376. doi: 10.1046/j.1365-2281.2001.00337.x.
    1. Kleiger RE, Stein PK, Bigger JT., Jr Heart rate variability: measurement and clinical utility. Ann Noninvasive Electrocardiol. 2005;10(1):88–101. doi: 10.1111/j.1542-474X.2005.10101.x.
    1. Thayer JF, Lane RD. A model of neurovisceral integration in emotion regulation and dysregulation. J Affect Disord. 2000;61(3):201–216. doi: 10.1016/S0165-0327(00)00338-4.
    1. Skou ST, Graven-Nielsen T, Rasmussen S, Simonsen OH, Laursen MB, Arendt-Nielsen L. Widespread sensitization in patients with chronic pain after revision total knee arthroplasty. PAIN®. 2013;154(9):1588–1594. doi: 10.1016/j.pain.2013.04.033.
    1. Lindskou TA, Christensen SW, Graven-Nielsen T. Cuff algometry for estimation of hyperalgesia and pain summation. Pain Med. 2016;18(3):468–476.
    1. Lemming D, Graven-Nielsen T, Sörensen J, Arendt-Nielsen L, Gerdle B. Widespread pain hypersensitivity and facilitated temporal summation of deep tissue pain in whiplash associated disorder: an explorative study of women. J Rehabil Med. 2012;44(8):648–657. doi: 10.2340/16501977-1006.
    1. Lemming D, Börsbo B, Sjörs A, Lind EB, Arendt-Nielsen L, Graven-Nielsen T, Gerdle B. Single-point but not tonic cuff pressure pain sensitivity is associated with level of physical fitness–a study of non-athletic healthy subjects. PLoS One. 2015;10(5):e0125432. doi: 10.1371/journal.pone.0125432.
    1. Stein PK, Pu Y. Heart rate variability, sleep and sleep disorders. Sleep Med Rev. 2012;16(1):47–66. doi: 10.1016/j.smrv.2011.02.005.
    1. Stanley J, Peake JM, Buchheit M. Cardiac parasympathetic reactivation following exercise: implications for training prescription. Sports Med. 2013;43(12):1259–1277. doi: 10.1007/s40279-013-0083-4.
    1. Zimmermann-Viehoff F, Thayer J, Koenig J, Herrmann C, Weber CS, Deter HC. Short-term effects of espresso coffee on heart rate variability and blood pressure in habitual and non-habitual coffee consumers–a randomized crossover study. Nutr Neurosci. 2016;19(4):169–175. doi: 10.1179/1476830515Y.0000000018.
    1. Inoue N, Kuroda K, Sugimoto A, Kakuda T, Fushiki T. Autonomic nervous responses according to preference for the odor of jasmine tea. Biosci Biotechnol Biochem. 2003;67(6):1206–1214. doi: 10.1271/bbb.67.1206.
    1. Quintana DS, Guastella AJ, McGregor IS, Hickie IB, Kemp AH. Moderate alcohol intake is related to increased heart rate variability in young adults: implications for health and well-being. Psychophysiology. 2013;50(12):1202–1208. doi: 10.1111/psyp.12134.
    1. Lu CL, Zou X, Orr WC, Chen JD. Postprandial changes of sympathovagal balance measured by heart rate variability. Dig Dis Sci. 1999;44(4):857–861. doi: 10.1023/A:1026698800742.
    1. Lu C-L, Zou X, Orr WC, Chen J. Postprandial changes of sym- pathovagal balance measured by heart rate variability. Dig Dis Sci. 1999;44:857–861. doi: 10.1023/A:1026698800742.
    1. Routledge HC, Chowdhary S, Coote JH, Townend JN. Cardiac vagal response to water ingestion in normal human subjects. Clin Sci. 2002;103:157–162. doi: 10.1042/CS20010317.
    1. Ghuman N, Campbell P, White WB. Role of ambulatory and home blood pressure recording in clinical practice. Curr Cardiol Rep. 2009;11(6):414. doi: 10.1007/s11886-009-0060-6.
    1. Stolarz K, Staessen JA, Kuznetsova T, Tikhonoff V, Babeanu S, Casiglia E, et al. Host and environmental determinants of heart rate and heart rate variability in four European populations. J Hypertens. 2003;21:525–535. doi: 10.1097/00004872-200303000-00018.
    1. Chan H-L, Lin M-A, Chao P-K, Lin C-H. Correlates of the shift in heart rate variability with postures and walking by time–frequency analysis. Comput Methods Prog Biomed. 2007;86:124–130. doi: 10.1016/j.cmpb.2007.02.003.
    1. Vlemincx E, Van Diest I, Van den Bergh O. A sigh following sustained attention and mental stress: effects on respiratory variability. Physiol Behav. 2012;107:1–6. doi: 10.1016/j.physbeh.2012.05.013.
    1. Quintana DS, Heathers JA. Considerations in the assessment of heart rate variability in biobehavioral research. Front Psychol. 2014;5:805. doi: 10.3389/fpsyg.2014.00805.
    1. Olsen RB, Bruehl S, Nielsen CS, Rosseland LA, Eggen AE, Stubhaug A. Gender differences in blood pressure–related hypoalgesia in a general population: the Tromsø study. J Pain. 2013;14(7):699–708. doi: 10.1016/j.jpain.2013.01.780.
    1. Hildrum B, Mykletun A, Stordal E, Bjelland I, Dahl AA, Holmen J. Association of low blood pressure with anxiety and depression: the Nord-Trondelag Health Study. J Epidemiol Community Health. 2007;61:53–58. doi: 10.1136/jech.2005.044966.
    1. Lewington S, Thomsen T, Davidsen M, Sherliker P, Clarke R. Regression dilution bias in blood total and high- density lipoprotein cholesterol and blood pressure in the Glostrup and Framingham prospective studies. J Cardiovasc Risk. 2003;10:143–148. doi: 10.1097/00043798-200304000-00010.
    1. Wieberdink RG, Ikram MA, Hofman A, Koudstaal PJ, Breteler MM. Trends in stroke incidence rates and stroke risk factors in Rotterdam, the Netherlands from 1990 to 2008. Eur J Epidemiol. 2012;27:287–295. doi: 10.1007/s10654-012-9673-y.
    1. Massin MM, Maeyns K, Withofs N, Ravet F, Gérard P. Circadian rhythm of heart rate and heart rate variability. Arch Dis Child. 2000;83:179–182. doi: 10.1136/adc.83.2.179.
    1. Guo Y-F, Stein PK. Circadian rhythm in the cardiovascular system: considerations in non-invasive electrophysiology. Card Electrophysiol Rev. 2002;6:267–272. doi: 10.1023/A:1016337210738.
    1. Andrews P, Steultjens M, Riskowski J. Chronic widespread pain prevalence in the general population: a systematic review. Eur J Pain. 2018;22(1):5–18. doi: 10.1002/ejp.1090.
    1. Breivik H, Collett B, Ventafridda V, Cohen R, Gallacher D. Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur J Pain. 2006;10(4):287–333. doi: 10.1016/j.ejpain.2005.06.009.
    1. Pain [Internet]. Norwegian Institute of Public Health. [cited 2018Oct15]. Available from: .
    1. Bee P, McBeth J, MacFarlane GJ, Lovell K. Managing chronic widespread pain in primary care: a qualitative study of patient perspectives and implications for treatment delivery. BMC Musculoskelet Disord. 2016;17(1):354. doi: 10.1186/s12891-016-1194-5.
    1. Downey LV, Zun LS. The effects of deep breathing training on pain management in the emergency department. South Med J. 2009;102(7):688–692. doi: 10.1097/SMJ.0b013e3181a93fc5.
    1. Mohammed AR, Mohammed NS. Effect of breathing exercise on respiratory efficiency and pain intensity among children receiving chemotherapy. Depression (because of hemorrhagic or infectious processes). 2014;5(6).
    1. Miller KM. Deep breathing relaxation. AORN J. 1987;45(2):484–488. doi: 10.1016/S0001-2092(07)68361-6.
    1. Elger G, Hoppe C, Falkai P, Rush AJ, Elger CE. Vagus nerve stimulation is associated with mood improvements in epilepsy patients. Epilepsy Res. 2000;42(2–3):203–210. doi: 10.1016/S0920-1211(00)00181-9.
    1. Frangos E, Ellrich J, Komisaruk BR. Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans. Brain Stimul. 2015;8:624–636. doi: 10.1016/j.brs.2014.11.018.
    1. Zeng X, Chio F, Oei T, Leung F, Liu X. A systematic review of associations between amount of meditation practice and outcomes in interventions using the four immeasurables meditations. Front Psychol. 2017;8:141. doi: 10.3389/fpsyg.2017.00141.
    1. Cohn M, Fredrickson B. In search of durable positive psychology interventions: predictors and consequences of long-term positive behavior change. J Posit Psychol. 2010;5:355–366. doi: 10.1080/17439760.2010.508883.
    1. Lymeus F, Lindberg P, Hartig T. A natural meditation setting improves compliance with mindfulness training. J Environ Psychol. 2019;64:98–106.
    1. Finesinger JE, Mazick SG. The effect of a painful stimulus and its recall upon respiration in psychoneurotic patients. Psychosom Med. 1940..
    1. Mehling WE, Hamel KA, Acree M, Byl N, Hecht FM. Randomized controlled trial of breath therapy for patients with chronic low-back pain. Altern Ther Health Med. 2005;11(4):44–53.
    1. Camm A, Malik M, Bigger J, Breithardt G, Cerutti S, Cohen R, et al. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996;93:1043–1065. doi: 10.1161/01.CIR.93.5.1043.
    1. Lucas SJ, Lewis NC, Sikken EL, Thomas KN, Ainslie PN. Slow breathing as a means to improve orthostatic tolerance: a randomized sham-controlled trial. J Appl Physiol. 2013;115(2):202–11.
    1. Botha C, Farmer AD, Nilsson M, Brock C, Gavrila AD, Drewes AM, Knowles CH, Aziz Q. Preliminary report: modulation of parasympathetic nervous system tone influences oesophageal pain hypersensitivity. Gut. 2014:gutjnl-2013.
    1. Saboul D, Pialoux V, Hautier C. The impact of breathing on HRV measurements: implications for the longitudinal follow-up of athletes. Eur J Sport Sci. 2013;13(5):534–542. doi: 10.1080/17461391.2013.767947.
    1. Chapleau MW, Sabharwal R. Methods of assessing vagus nerve activity and reflexes. Heart Fail Rev. 2011;16(2):109–27.
    1. Kroenke K. Pain measurement in research and practice..
    1. Haefeli M, Elfering A. Pain assessment. Eur Spine J. 2006;15(1):S17–S24. doi: 10.1007/s00586-005-1044-x.
    1. Jensen MP, Karoly P, Braver S. The measurement of clinical pain intensity: a comparison of six methods. Pain. 1986;27(1):117–126. doi: 10.1016/0304-3959(86)90228-9.
    1. Kremer E, Atkinson JH, Ignelzi RJ. Measurement of pain: patient preference does not confound pain measurement. Pain. 1981;10(2):241–248. doi: 10.1016/0304-3959(81)90199-8.
    1. Ferguson L, Scheman J. Patient global impression of change scores within the context of a chronic pain rehabilitation program. J Pain. 2009;10(4):S73. doi: 10.1016/j.jpain.2009.01.258.
    1. Rampakakis E, Ste-Marie PA, Sampalis JS, Karellis A, Shir Y, Fitzcharles MA. Real-life assessment of the validity of patient global impression of change in fibromyalgia. RMD Open. 2015;1(1):e000146. doi: 10.1136/rmdopen-2015-000146.
    1. Scott W, McCracken LM. Patients’ impression of change following treatment for chronic pain: global, specific, a single dimension, or many? J Pain. 2015;16(6):518–526. doi: 10.1016/j.jpain.2015.02.007.
    1. “Home.” EQ-5D, /.
    1. Derogatis LR, Lipman RS, Rickels K, Uhlenhuth EH, Covi L. The Hopkins Symptom Checklist (HSCL): a self-report symptom inventory. Behav Sci. 1974;19(1):1–15. doi: 10.1002/bs.3830190102.
    1. Strand BH, Dalgard OS, Tambs K, Rognerud M. Measuring the mental health status of the Norwegian population: a comparison of the instruments SCL- 25, SCL-10, SCL-5 and MHI-5 (SF-36) Nord J Psychiatry. 2003;57(2):113–118. doi: 10.1080/08039480310000932.
    1. Kleppang AL, Hagquist C. The psychometric properties of the Hopkins Symptom Checklist-10: a Rasch analysis based on adolescent data from Norway. Fam Pract. 2016;33(6):740–745. doi: 10.1093/fampra/cmw091.
    1. [Internet]. . 2018 [cited 24 September 2018]. Available from: .
    1. Mehling WE, Price C, Daubenmier JJ, Acree M, Bartmess E, Stewart A. The multidimensional assessment of interoceptive awareness (MAIA) PLoS One. 2012;7(11):e48230. doi: 10.1371/journal.pone.0048230.
    1. Price C, Krycka K, Breitenbucher T, Brown N. Perceived helpfulness and unfolding processes in body-oriented therapy practice. Indo Pac J Phenomenol. 2011;11(2).
    1. Sullivan MJ. The pain catastrophizing scale: user manual. Montreal: McGill University; 2009. pp. 1–36.
    1. Osman A, Barrios FX, Kopper BA, Hauptmann W, Jones J, O'neill E. Factor structure, reliability, and validity of the pain catastrophizing scale. J Behav Med. 1997;20(6):589–605. doi: 10.1023/A:1025570508954.
    1. Sullivan MJ, Bishop SR, Pivik J. The pain catastrophizing scale: development and validation. Psychol Assess. 1995;7(4):524. doi: 10.1037/1040-3590.7.4.524.
    1. [Internet]. . 2018 [cited 24 September 2018]. Available from: .
    1. Kumar SP. Utilization of brief pain inventory as an assessment tool for pain in patients with cancer: a focused review. Indian J Palliat Care. 2011;17(2):108. doi: 10.4103/0973-1075.84531.
    1. Turk DC, Dworkin RH, Allen RR, Bellamy N, Brandenburg N, Carr DB, Cleeland C, Dionne R, Farrar JT, Galer BS, Hewitt DJ. Core outcome domains for chronic pain clinical trials: IMMPACT recommendations. Pain. 2003;106(3):337–345. doi: 10.1016/j.pain.2003.08.001.
    1. Bastien CH, Vallières A, Morin CM. Validation of the insomnia severity index as an outcome measure for insomnia research. Sleep Med. 2001;2(4):297–307. doi: 10.1016/S1389-9457(00)00065-4.
    1. Morin CM, Belleville G, Bélanger L, Ivers H. The Insomnia Severity Index: psychometric indicators to detect insomnia cases and evaluate treatment response. Sleep. 2011;34(5):601–608. doi: 10.1093/sleep/34.5.601.
    1. Oswestry Low Back Pain Disability Questionnaire. .
    1. Olsen RB, et al. Chronic pain and cardiovascular stress responses in a general population: the Tromsø study. J Behav Med. 2014;37(6):1193–1201. doi: 10.1007/s10865-014-9568.

Source: PubMed

3
Iratkozz fel