Effects of Non-invasive Brain Stimulation on Stimulant Craving in Users of Cocaine, Amphetamine, or Methamphetamine: A Systematic Review and Meta-Analysis

Tianye Ma, Yurong Sun, Yixuan Ku, Tianye Ma, Yurong Sun, Yixuan Ku

Abstract

Dopamine system plays a pivotal role in specific kinds of substance use disorders (SUD, i. e., cocaine and methamphetamine use disorders). Many studies addressed whether dopamine-involved craving could be alleviated by non-invasive brain stimulation (NIBS) techniques. Nevertheless, the outcomes were highly inconsistent and the stimulating parameters were highly variable. In the current study, we ran a meta-analysis to identify an overall effect size of NIBS and try to find stimulating parameters of special note. We primarily find 2,530 unduplicated studies in PubMed, Psychology and Behavioral Sciences Collection, PsycARTICLES, PsycINFO, and Google Scholar database involving "Cocaine"/"Amphetamine"/"Methamphetamine" binded with "TMS"/"tDCS"/"non-invasive stimulation" in either field. After visual screening, 26 studies remained. While 16 studies were further excluded due to the lack of data, invalid craving scoring or the absence of sham condition. At last, 16 units of analysis in 12 eligible studies were coded and forwarded to a random-effect analysis. The results showed a large positive main effect of stimulation (Hedge's g = 1.116, CI = [0.597, 1.634]). Further subgroup analysis found that only high-frequency repetitive transcranial magnetic stimulation (rTMS) could elicit a significant decrease in craving, while the outcome of low-frequency stimulation was relatively controversial. Moreover, univariate meta regression revealed that the number of pulses per session could impose negative moderation toward the intervention. No significant moderation effect was found in types of abuse, overall days of stimulation and other variables of stimulating protocol. In conclusion, this meta-analysis offered a persuasive evidence for the feasibility of using NIBS to remit substance addictive behavior directly based on dopamine system. We also give clear methodological guidance that researchers are expected to use high-frequency, sufficiently segmented rTMS to improve the efficacy in future treatments.

Keywords: addiction; craving; dopamine system; non-invasive brain stimulation; substance use disorders.

Copyright © 2019 Ma, Sun and Ku.

Figures

Figure 1
Figure 1
Dopamine reward system involved in the therapeutic effect of NIBS. In the illustrated pathway, dopaminergic neurons in ventral tegmental area (VTA) projects the reward signal to medium spiny neurons (MSNs) in ventral striatum by which the cortico-striatal connection is modulated. While prefrontal regions (pyramidal neurons) including dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), and medial prefrontal cortex (mPFC) give feedback to these regions (Gorelova and Yang, ; Frankle et al., 2006). With non-invasive brain stimulation alters activation in prefrontal regions, the VTA reactivity will be enhanced which results in the recovery of DA increase in the downstream areas. The regions with a transparent circle rearward are not on the cortical surface.
Figure 2
Figure 2
Flow diagram of the study selection procedure.
Figure 3
Figure 3
Forest plot of the estimated effect sizes. Authors and years of publication of each unit of analysis are shown in the very left column. The words in the brackets indicate the information of within-study subgroups (HF, high frequency; LF, low frequency; LDLPFC, left dorsolateral prefrontal cortex; RDLPFC, right dorsolateral prefrontal cortex). In the forest plot, the length of each bar illustrates the confidence interval of the corresponding unit. The size of each empty circle illustrates the relative weight of each unit which is also showed by the black bars on the right-hand side.
Figure 4
Figure 4
The therapeutic outcome is modulated by the number of pulses per session. For clarity, the overlapped values of regressor were randomly jittered. The solid line is the fixed-effect regressive function for the regressor. The size of each bubble represents the study's relative weight which was calculated as the inverse of the variance. Error bars indicate the 95% CIs. The markers abut to the bubbles correspond to the index of studies in the Appendix.

References

    1. Alexander G. E., DeLong M. R., Strick P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381. 10.1146/annurev.ne.09.030186.002041
    1. American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders, 5th Edn. Arlington, TX: American Psychiatric Publishing.
    1. Ashok A. H., Mizuno Y., Volkow N. D., Howes O. D. (2017). Association of stimulant use with dopaminergic alterations in users of cocaine, amphetamine, or methamphetamine a systematic review and meta-analysis. JAMA Psychiatry 74, 511–519. 10.1001/jamapsychiatry.2017.0135
    1. Balconi M., Canavesio Y. (2014). High-frequency rTMS on DLPFC increases prosocial attitude in case of decision to support people. Soc. Neurosci. 9, 82–93. 10.1080/17470919.2013.861361
    1. Barr M. S., Fitzgerald P. B., Farzan F., George T. P., Daskalakis Z. J. (2008). Transcranial magnetic stimulation to understand the pathophysiology and treatment of substance use disorders. Curr. Drug Abuse Rev. 1, 328–339. 10.2174/1874473710801030328
    1. Batista E. K., Klauss J., Fregni F., Nitsche M. A., Nakamura-Palacios E. M. (2015). A randomized placebo-controlled trial of targeted prefrontal cortex modulation with bilateral tDCS in patients with crack-cocaine dependence. Int. J. Neuropsychopharmacol. 18:pyv066. 10.1093/ijnp/pyv066
    1. Bechara A., Dolan S., Denburg N., Hindes A., Anderson S. W., Nathan P. E. (2001). Decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in alcohol and stimulant abusers. Neuropsychologia 39, 376–389. 10.1016/S0028-3932(00)00136-6
    1. Black K. J., Koller J. M., Campbell M. C., Gusnard D. A., Bandak S. I. (2010). Quantification of indirect pathway inhibition by the adenosine A2a antagonist SYN115 in Parkinson disease. J. Neurosci. 30, 16284–16292. 10.1523/JNEUROSCI.2590-10.2010
    1. Bolloni C., Panella R., Pedetti M., Frascella A. G., Gambelunghe C., Piccoli T., et al. . (2016). Bilateral transcranial magnetic stimulation of the prefrontal cortex reduces cocaine intake: a pilot study. Front. Psychiatry 7:133. 10.3389/fpsyt.2016.00133
    1. Borenstein M., Hedges L. V., Higgins J. P. T., Rothstein H. R. (2009). Introduction to Meta-Analysis. Chichester: John Wiley and Sons, Ltd. 10.1002/9780470743386
    1. Bütefisch C. M., Khurana V., Kopylev L., Cohen L. G. (2004). Enhancing encoding of a motor memory in the primary motor cortex by cortical stimulation. J. Neurophysiol. 91, 2110–2116. 10.1152/jn.01038.2003
    1. Ceccanti M., Inghilleri M., Attilia M. L., Raccah R., Fiore M., Zangen A., et al. . (2015). Deep TMS on alcoholics: effects on cortisolemia and dopamine pathway modulation. A pilot study. Can. J. Physiol. Pharmacol. 93, 283–290. 10.1139/cjpp-2014-0188
    1. Cho S. S., Strafella A. P. (2009). rTMS of the left dorsolateral prefrontal cortex modulates dopamine release in the ipsilateral anterior cingulate cortex and orbitofrontal cortex. PLoS ONE 4:e6725. 10.1371/journal.pone.0006725
    1. Chou Y., Hickey P. T., Sundman M., Song A. W., Chen N. (2015). Effects of repetitive transcranial magnetic stimulation on motor symptoms in Parkinson disease: a systematic review and meta-analysis. JAMA Neurol. 72, 432–440. 10.1001/jamaneurol.2014.4380
    1. Conti C. L., Moscon J. A., Fregni F., Nitsche M. A., Nakamura-Palacios E. M. (2014). Cognitive related electrophysiological changes induced by non-invasive cortical electrical stimulation in crack-cocaine addiction. Int. J. Neuropsychopharmacol. 17, 1465–1475. 10.1017/S1461145714000522
    1. Conti C. L., Nakamura-Palacios E. M. (2014). Bilateral transcranial direct current stimulation over dorsolateral prefrontal cortex changes the drug-cued reactivity in the anterior cingulate cortex of Crack-cocaine addicts. Brain Stimul. 7, 130–132. 10.1016/j.brs.2013.09.007
    1. Diana M. (2011). The dopamine hypothesis of drug addiction and its potential therapeutic value. Front. Psychiatry 2:64. 10.3389/fpsyt.2011.00064
    1. Ferrari V., Smeraldi E., Bottero G., Politi E. (2014). Addiction and empathy: a preliminary analysis. Neurol. Sci. 35, 855–859. 10.1007/s10072-013-1611-6
    1. Fonteneau C., Redoute J., Haesebaert F., Le Bars D., Costes N., Suaud-Chagny M. F., et al. . (2018). Frontal transcranial direct current stimulation induces dopamine release in the ventral striatum in human. Cereb. Cortex 28, 2636–2646. 10.1093/cercor/bhy093
    1. Frankle W. G., Laruelle M., Haber S. N. (2006). Prefrontal cortical projections to the midbrain in primates: evidence for a sparse connection. Neuropsychopharmacology 31, 1627–1636. 10.1038/sj.npp.1300990
    1. Fuster J. (2015). The Prefrontal Cortex. Academic Press.
    1. Goldstein R. Z., Volkow N. D. (2002). Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am. J. Psychiatry 159, 1642–1652. 10.1176/appi.ajp.159.10.1642
    1. Goldstein R. Z., Volkow N. D., Wang G.-J., Fowler J. S., Rajaram S. (2001). Addiction changes orbitofrontal gyrus function: involvement in response inhibition. Neuroreport 12, 2595–2599. 10.1097/00001756-200108080-00060
    1. Gorelick D. A., Zangen A., George M. S. (2014). Transcranial magnetic stimulation in the treatment of substance addiction. Ann. N. Y. Acad. Sci. 1327, 79–93. 10.1111/nyas.12479
    1. Gorelova N., Yang C. R. (1996). The course of neural projection from the prefrontal cortex to the nucleus accumbens in the rat. Neuroscience 76, 689–706. 10.1016/S0306-4522(96)00380-6
    1. Hanlon C. A., Dowdle L. T., Austelle C. W., Devries W., Mithoefer O., Badran B. W., et al. . (2015). What goes up, can come down: novel brain stimulation paradigms may attenuate craving and craving-related neural circuitry in substance dependent individuals. Brain Res. 1628, 199–209. 10.1016/j.brainres.2015.02.053
    1. Hanlon C. A., Dowdle L. T., Correia B., Mithoefer O., Kearney-Ramos T., Lench D., et al. . (2017). Left frontal pole theta burst stimulation decreases orbitofrontal and insula activity in cocaine users and alcohol users. Drug Alcohol Depend. 178, 310–317. 10.1016/j.drugalcdep.2017.03.039
    1. Hanlon C. A., Dowdle L. T., Jones J. L. (2016). Biomarkers for success: using neuroimaging to predict relapse and develop brain stimulation treatments for cocaine-dependent individuals. Int. Rev. Neurobiol. 129, 125–156. 10.1016/bs.irn.2016.06.006
    1. Hedges L. V. (1981). Distribution theory for Glass's estimator of effect size and related estimators. J. Educ. Stat. 6, 107–128. 10.3102/10769986006002107
    1. Jansen J. M., Daams J. G., Koeter M. W. J., Veltman D. J., Van Den Brink W., Goudriaan A. E. (2013). Effects of non-invasive neurostimulation on craving: a meta-analysis. Neurosci. Biobehav. Rev. 37, 2472–2480. 10.1016/j.neubiorev.2013.07.009
    1. Kahlig K. M., Galli A. (2003). Regulation of dopamine transporter function and plasma membrane expression by dopamine, amphetamine, and cocaine. Eur. J. Pharmacol. 479, 153–158. 10.1016/j.ejphar.2003.08.065
    1. Klauss J., Anders Q. S., Felippe L. V., Buback Ferreira L. V., Cruz M. A., Nitsche M. A., et al. . (2018). Lack of effects of extended sessions of transcranial direct current stimulation (tDCS) over dorsolateral prefrontal cortex on craving and relapses in crack-cocaine users. Front. Pharmacol. 9:1198. 10.3389/fphar.2018.01198
    1. Ku Y., Zhao D., Bodner M., Zhou Y.-D. (2015a). Cooperative processing in primary somatosensory cortex and posterior parietal cortex during tactile working memory. Eur. J. Neurosci. 42, 1905–1911. 10.1111/ejn.12950
    1. Ku Y., Zhao D., Hao N., Hu Y., Bodner M., Zhou Y. D. (2015b). Sequential roles of primary somatosensory cortex and posterior parietal cortex in tactile-visual cross-modal working memory: a single-pulse transcranial magnetic stimulation (spTMS) study. Brain Stimul. 8, 88–91. 10.1016/j.brs.2014.08.009
    1. Lee B., Han S. M., Shim I. (2009). Acupuncture attenuates cocaine-induced expression of behavioral sensitization in rats: possible involvement of the dopaminergic system in the ventral tegmental area. Neurosci. Lett. 449, 128–132. 10.1016/j.neulet.2008.10.089
    1. Lefaucheur J.-P., André-Obadia N., Antal A., Ayache S. S., Baeken C., Benninger D. H., et al. . (2014). Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin. Neurophysiol. 125, 2150–2206. 10.1016/j.clinph.2014.05.021
    1. Lefaucheur J.-P., Antal A., Ayache S. S., Benninger D. H., Brunelin J., Cogiamanian F., et al. . (2017). Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin. Neurophysiol. 128, 56–92. 10.1016/j.clinph.2016.10.087
    1. Li X., Malcolm R. J., Huebner K., Hanlon C. A., Taylor J. J., Brady K. T., et al. . (2013). Low frequency repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex transiently increases cue-induced craving for methamphetamine: a preliminary study. Drug Alcohol Depend. 133, 641–646. 10.1016/j.drugalcdep.2013.08.012
    1. Liang Y., Wang L., Yuan T.-F. (2018). Targeting withdrawal symptoms in men addicted to methamphetamine with transcranial magnetic stimulation: a randomized clinical trial. JAMA Psychiatry 75, 1199–1201. 10.1001/jamapsychiatry.2018.2383
    1. Liu Q., Shen Y., Cao X., Li Y., Chen Y., Yang W., et al. (2017). Either at left or right, both high and low frequency rTMS of dorsolateral prefrontal cortex decreases cue induced craving for methamphetamine. Am. J. Addict. 26, 776–779. 10.1111/ajad.12638
    1. Liu T., Li Y., Shen Y., Liu X., Yuan T. F. (2019). Gender does not matter: add-on repetitive transcranial magnetic stimulation treatment for female methamphetamine dependents. Prog. Neuropsychopharmacol. Biol. Psychiatry 92, 70–75. 10.1016/j.pnpbp.2018.12.018
    1. López-Alonso V., Cheeran B., Río-Rodríguez D., Fernández-Del-Olmo M. (2014). Inter-individual variability in response to non-invasive brain stimulation paradigms. Brain Stimul. 7, 372–380. 10.1016/j.brs.2014.02.004
    1. Lu L., Liu Y., Zhu W., Shi J., Liu Y., Ling W., et al. . (2009). Traditional medicine in the treatment of drug addiction. Am. J. Drug Alcohol Abuse 35, 1–11. 10.1080/00952990802455469
    1. Martinez D., Urban N., Grassetti A., Chang D., Hu M. C., Zangen A., et al. . (2018). Transcranial magnetic stimulation of medial prefrontal and cingulate cortices reduces cocaine self-administration: a pilot study. Front. Psychiatry 9:80. 10.3389/fpsyt.2018.00080
    1. Müller U. J., Voges J., Steiner J., Galazky I., Heinze H. J., Möller M., et al. . (2013). Deep brain stimulation of the nucleus accumbens for the treatment of addiction. Ann. N. Y. Acad. Sci. 1282, 119–128. 10.1111/j.1749-6632.2012.06834.x
    1. Nitsche M. A., Paulus W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 527, 633–639. 10.1111/j.1469-7793.2000.t01-1-00633.x
    1. Nutt D. J., Lingford-Hughes A., Erritzoe D., Stokes P. R. A. (2015). The dopamine theory of addiction: 40 years of highs and lows. Nat. Rev. Neurosci. 16, 305–312. 10.1038/nrn3939
    1. Orwin R. G. (1983). A fail-safe N for effect size in meta-analysis. J. Educ. Stat. 8, 157–159. 10.2307/1164923
    1. Paladini C. A., Roeper J. (2014). Generating bursts (and pauses) in the dopamine midbrain neurons. Neuroscience 282, 109–121. 10.1016/j.neuroscience.2014.07.032
    1. Paus T., Jech R., Thompson C. J., Comeau R., Peters T., Evans A. C. (1998). Dose-dependent reduction of cerebral blood flow during rapid-rate transcranial magnetic stimulation of the human sensorimotor cortex. J. Neurophysiol. 79, 1102–1107. 10.1152/jn.1998.79.2.1102
    1. Pettorruso M., Di Giuda D., Martinotti G., Cocciolillo F., De Risio L., Montemitro C., et al. . (2019). Dopaminergic and clinical correlates of high-frequency repetitive transcranial magnetic stimulation in gambling addiction: a SPECT case study. Addict. Behav. 93, 246–249. 10.1016/j.addbeh.2019.02.013
    1. Pogarell O., Koch W., Pöpperl G., Tatsch K., Jakob F., Mulert C., et al. . (2007). Acute prefrontal rTMS increases striatal dopamine to a similar degree as d-amphetamine. Psychiatry Res. 156, 251–255. 10.1016/j.pscychresns.2007.05.002
    1. Pogarell O., Koch W., Pöpperl G., Tatsch K., Jakob F., Zwanzger P., et al. (2006). Striatal dopamine release after prefrontal repetitive transcranial magnetic stimulation in major depression: preliminary results of a dynamic [123I] IBZM SPECT study. J. Psychiatr. Res. 40, 307–314. 10.1016/j.jpsychires.2005.09.001
    1. Ridding M. C., Rothwell J. C. (2007). Is there a future for therapeutic use of transcranial magnetic stimulation? Nat. Rev. Neurosci. 8, 559–567. 10.1038/nrn2169
    1. Ridding M. C., Ziemann U. (2010). Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. J. Physiol. 588, 2291–2304. 10.1113/jphysiol.2010.190314
    1. Rosenthal R. (1979). The file drawer problem and tolerance for null results. Psychol. Bull. 86, 638–641. 10.1037/0033-2909.86.3.638
    1. Sauvaget A., Trojak B., Bulteau S., Jiménez-Murcia S., Fernández-Aranda F., Wolz I., et al. . (2015). Transcranial direct current stimulation (tDCS) in behavioral and food addiction: a systematic review of efficacy, technical, and methodological issues. Front. Neurosci. 9:349. 10.3389/fnins.2015.00349
    1. Schultz W. (2002). Getting formal with dopamine and reward. Neuron 36, 241–263. 10.1016/S0896-6273(02)00967-4
    1. Sehatzadeh S., Daskalakis Z. J., Yap B., Tu H.-A., Palimaka S., Bowen J. M., et al. . (2019). Unilateral and bilateral repetitive transcranial magnetic stimulation for treatment-resistant depression: a meta-analysis of randomized controlled trials over 2 decades. J. Psychiatry Neurosci. 44, 151–163. 10.1503/jpn.180056
    1. Shahbabaie A., Ebrahimpoor M., Hariri A., Nitsche M. A., Hatami J., Fatemizadeh E., et al. . (2018). Transcranial DC stimulation modifies functional connectivity of large-scale brain networks in abstinent methamphetamine users. Brain Behav. 8:e00922. 10.1002/brb3.922
    1. Shahbabaie A., Golesorkhi M., Zamanian B., Ebrahimpoor M., Keshvari F., Nejati V., et al. . (2014). State dependent effect of transcranial direct current stimulation (tDCS) on methamphetamine craving. Int. J. Neuropsychopharmacol. 17, 1591–1598. 10.1017/S1461145714000686
    1. Song S., Zilverstand A., Gui W., Li H., Zhou X. (2019). Effects of single-session versus multi-session non-invasive brain stimulation on craving and consumption in individuals with drug addiction, eating disorders or obesity: a meta-analysis. Brain Stimul. 12, 606–618. 10.1016/j.brs.2018.12.975
    1. Spagnolo P. A., Goldman D. (2017). Neuromodulation interventions for addictive disorders: challenges, promise, and roadmap for future research. Brain 140, 1183–1203. 10.1093/brain/aww284
    1. Stelten B. M. L., Noblesse L. H. M., Ackermans L., Temel Y., Visser-Vandewalle V. (2008). The neurosurgical treatment of addiction. Neurosurg. Focus 25:E5. 10.3171/FOC/2008/25/7/E5
    1. Strafella A. P., Paus T., Barrett J., Dagher A. (2001). Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J. Neurosci. 21:RC157. 10.1523/JNEUROSCI.21-15-j0003.2001
    1. Stürmer B., Redlich M., Irlbacher K., Brandt S. (2007). Executive control over response priming and conflict: a transcranial magnetic stimulation study. Exp. Brain Res. 183, 329–339. 10.1007/s00221-007-1053-6
    1. Su H., Zhong N., Gan H., Wang J., Han H., Chen T., et al. . (2017). High frequency repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex for methamphetamine use disorders: a randomised clinical trial. Drug Alcohol Depend. 175, 84–91. 10.1016/j.drugalcdep.2017.01.037
    1. Van Ettinger-Veenstra H. M., Huijbers W., Gutteling T. P., Vink M., Kenemans J. L., Neggers S. F. W. (2009). fMRI-guided TMS on cortical eye fields: the frontal but not intraparietal eye fields regulate the coupling between visuospatial attention and eye movements. J. Neurophysiol. 102, 3469–3480. 10.1152/jn.00350.2009
    1. Volkow N. D., Morales M. (2015). The brain on drugs: from reward to addiction. Cell 162, 712–725. 10.1016/j.cell.2015.07.046
    1. Volkow N. D., Wang G.-J., Fowler J. S., Tomasi D., Telang F. (2011). Addiction: Beyond dopamine reward circuitry. Proc. Natl. Acad. Sci. U.S.A. 108, 15037–15042. 10.1073/pnas.1010654108
    1. Volkow N. D., Wang G. J., Fowler J. S., Telang F. (2008). Overlapping neuronal circuits in addiction and obesity: evidence of systems pathology. Philos. Trans. R. Soc. B Biol. Sci. 363, 3191–3200. 10.1098/rstb.2008.0107
    1. Wang G. J., Smith L., Volkow N. D., Telang F., Logan J., Tomasi D., et al. . (2012). Decreased dopamine activity predicts relapse in methamphetamine abusers. Mol. Psychiatry 17, 918–925. 10.1038/mp.2011.86
    1. Wang S., Itthipuripat S., Ku Y. (2019). Electrical stimulation over human posterior parietal cortex selectively enhances the capacity of visual short-term memory. J. Neurosci. 39, 528–536. 10.1523/JNEUROSCI.1959-18.2018
    1. Wang S., Ku Y. (2018). The causal role of right dorsolateral prefrontal cortex in visual working memory. Acta Psychol. Sin. 50, 727–738. 10.3724/SP.J.1041.2018.00727
    1. Yan W. S., Li Y. H., Xiao L., Zhu N., Bechara A., Sui N. (2014). Working memory and affective decision-making in addiction: a neurocognitive comparison between heroin addicts, pathological gamblers and healthy controls. Drug Alcohol Depend. 134, 194–200. 10.1016/j.drugalcdep.2013.09.027
    1. Zangen A., Hyodo K. (2002). Transcranial magnetic stimulation induces increases in extracellular levels of dopamine and glutamate in the nucleus accumbens. NeuroReport 13, 2401–2405. 10.1097/00001756-200212200-00005
    1. Zhao D., Ku Y. (2018). Dorsolateral prefrontal cortex bridges bilateral primary somatosensory cortices during cross-modal working memory. Behav. Brain Res. 350, 116–121. 10.1016/j.bbr.2018.04.053
    1. Zhao D., Zhou Y.-D., Bodner M., Ku Y. (2018). The causal role of the prefrontal cortex and somatosensory cortex in tactile working memory. Cereb. Cortex 28, 3468–3477. 10.1093/cercor/bhx213

Source: PubMed

3
Iratkozz fel