Effect of vitamin D supplementation on N-glycan branching and cellular immunophenotypes in MS

Priscilla Bäcker-Koduah, Carmen Infante-Duarte, Federico Ivaldi, Antonio Uccelli, Judith Bellmann-Strobl, Klaus-Dieter Wernecke, Michael Sy, Michael Demetriou, Jan Dörr, Friedemann Paul, Alexander Ulrich Brandt, Priscilla Bäcker-Koduah, Carmen Infante-Duarte, Federico Ivaldi, Antonio Uccelli, Judith Bellmann-Strobl, Klaus-Dieter Wernecke, Michael Sy, Michael Demetriou, Jan Dörr, Friedemann Paul, Alexander Ulrich Brandt

Abstract

Objective: To investigate the effect of cholecalciferol (vitamin D3) supplementation on peripheral immune cell frequency and N-glycan branching in patients with relapsing-remitting multiple sclerosis (RRMS).

Methods: Exploratory analysis of high-dose (20 400 IU) and low-dose (400 IU) vitamin D3 supplementation taken every other day of an 18-month randomized controlled clinical trial including 38 RRMS patients on stable immunomodulatory therapy (NCT01440062). We investigated cholecalciferol treatment effects on N-glycan branching using L-PHA stain (phaseolus vulgaris leukoagglutinin) at 6 months and frequencies of T-, B-, and NK-cell subpopulations at 12 months with flow cytometry.

Results: High-dose supplementation did not change CD3+ T cell subsets, CD19+ B cells subsets, and NK cells frequencies, except for CD8+ T regulatory cells, which were reduced in the low-dose arm compared to the high-dose arm at 12 months. High-dose supplementation decreased N-glycan branching on T and NK cells, measured as L-PHA mean fluorescence intensity (MFI). A reduction of N-glycan branching in B cells was not significant. In contrast, low-dose supplementation did not affect N-glycan branching. Changes in N-glycan branching did not correlate with cell frequencies.

Interpretation: Immunomodulatory effect of vitamin D may involve regulation of N-glycan branching in vivo. Vitamin D3 supplementation did at large not affect the frequencies of peripheral immune cells.

Conflict of interest statement

Priscilla Bäcker‐Koduah is a Junior scholar of the Einstein Foundation Berlin. Carmen Duarte‐Infante receives research support from Novartis and Sanofi‐Genzyme and travels support from Novartis. Federico Ivaldi reports no disclosures. Antonio Uccelli has received personal compensation from Novartis, TEVA, Biogen, Merck, Roche, and Genzyme for public speaking and advisory boards. Judith Bellmann‐Strobl received speaking fees and travel grants from Bayer Healthcare, Sanofi Aventis/Genzyme, Biogen and Teva Pharmaceuticals, unrelated to the present scientific work. Klaus‐Dieter Wernecke reports no disclosures. Michael Sy reports no disclosures. Michael Demetriou reports no disclosures. Jan Dörr received research support by Bayer and Novartis, Honoraria for Lectures and Advisory by Bayer, Biogen, Merck Serono, Sanofi‐Genzyme, Novartis, Roche; Travel support by Bayer, Novartis, Merck‐Serono, Biogen. Friedemann Paul served on the scientific advisory boards of Novartis and MedImmune; received travel funding and/or speaker honoraria from Bayer, Novartis, Biogen, Teva, Sanofi‐Aventis/Genzyme, Merck Serono, Alexion, Chugai, MedImmune, and Shire; is an associate editor of Neurology: Neuroimmunology & Neuroinflammation; is an academic editor of PLoS ONE; consulted for Sanofi Genzyme, Biogen, MedImmune, Shire, and Alexion; received research support from Bayer, Novartis, Biogen, Teva, Sanofi‐Aventis/Genzyme, Alexion, and Merck Serono; and received research support from the German Research Council, Werth Stiftung of the City of Cologne, German Ministry of Education and Research, Arthur Arnstein Stiftung Berlin, EU FP7 Framework Pro‐gram, Arthur Arnstein Foundation Berlin, Guthy‐Jackson Charitable Foundation, and NMSS. Alexander Ulrich Brandt is co‐founder and shareholder of Motognosis GmbH and Nocturne GmbH. He is named as an inventor on several patent applications regarding MS serum biomarkers, OCT image analysis and perceptive visual computing.

© 2020 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.

Figures

Figure 1
Figure 1
Experimental design flowchart.
Figure 2
Figure 2
Immune cell frequencies expressed as percentage fold change at 12 months in B and NK cells (B/NK). The figure shows the gating strategy (A) and boxplot of the frequencies of immune cells ( percentage fold change) between high‐dose (blue) and low‐dose (gray) arms in; (B) CD19+ B cells+ (C) CD19+ CD24lowCD38low (B‐mature), (D) CD19+CD24highCD38low (B‐memory), (E) CD19+CD24highCD38high (B‐regulatory), (F) CD19+CD24highCD38‐(B‐memory atypical), (G) CD19+CD24‐CD38high (B‐plasma), (H) CD16+CD56low (CD56dim), and (I) CD16+CD56high (CD56bright). Nonparametric analysis of covariate (ANCOVA) with baseline as covariate (n = 29). Abbreviations: BL, baseline; V12, 12 months.
Figure 3
Figure 3
Immune cell frequencies expressed as percentage fold change at 12 months in T regulatory cells (Tregs). The figure shows the gating strategy (A) and boxplot of the frequencies of immune cells (percentage fold change) between high‐dose (blue) and low‐dose (gray) arms in; (B) CD3+ T cells (C) CD3+CD4+ T cells (T helper), (D) CD3+CD8+ T cells (T cytotoxic), (E) CD45RA+CD25low (naïve T regulatory), (F) CD3+CD8+CD28‐CD127‐ (CD8+ T regulatory), and (G) CD3+CD4+CD25+CD127‐ (CD4+ T regulatory). Nonparametric analysis of covariate (ANCOVA) with baseline as covariate (n = 29).
Figure 4
Figure 4
Immune cell frequencies expressed as percentage fold change at 12 months in T effector cells (Teff). Gating strategy (A) and boxplot of immune cell frequencies (percentage fold change) between high‐dose (blue) and low‐dose (gray) arms in; (B) CD3+CD4+CCR6+CD161+CXCR3‐CCR4+ (Th17), (C) CD3+CD4+CCR6‐CD161‐CXCR3+ (Th1), and (D) CD3+CD4+CCR6‐CD161+CXCR3+ (Th1 nonclassic). Nonparametric analysis of covariate (ANCOVA) with baseline as covariate (n = 29).
Figure 5
Figure 5
Immune cells L‐PHA MFI over different time points. Boxplots of L‐PHA MFI on immune cells expressed as percentage fold change in T, B, and NK cells. The change in MFI of L‐PHA was compared between baseline and 6 months in the high‐dose arm (blue) and the low‐dose arm (gray) in (A) CD3+ (P = 0.007), (B) CD4+ (P = 0.005), (C) CD8+ (P = 0.026) T cells, (D) CD19+ B cells (P = 0.178), (E) CD56bright (P = 0.020), and (F) CD56dim, (p = 0.028) NK cells. Nonparametric analysis of covariate (ANCOVA) with baseline as covariate (n = 38). Abbreviations: BL, baseline, V6, 6 months, V12, 12 months, V18, 18 months.
Figure 6
Figure 6
Correlational analyses at 6 months between L‐PHA MFI and serum 25(OH)D levels. Association of serum 25(OH)D levels in both arms with the L‐PHA MFI of (A) CD3+, (B) CD4+, (C) CD8+ T cells, (D) CD19+ B cells, (E) CD56dim, and (F) CD56bright NK cells. Spearman’s Rho (n = 38).
Figure 7
Figure 7
Correlational analyses at 6 months between L‐PHA MFI and the corresponding cell frequencies. The plot of L‐PHA MFI with the corresponding cell frequencies at 6 months in both arms, (A) CD3+, (B) CD4+, (C) CD8+ T cells, (D) CD19+ B cells, (E) CD56dim, and (F) CD56bright NK cells. Spearman’s Rho (n = 38).

References

    1. Dankers W, Colin EM, van Hamburg JP, Lubberts E. Vitamin D in autoimmunity: molecular mechanisms and therapeutic potential. Front Immunol 2016;7:697 DOI: 10.3389/fimmu.2016.00697
    1. Li R, Patterson KR, Bar‐Or A. Reassessing B cell contributions in multiple sclerosis. Nat Immunol 2018;19(7):696–707. DOI: 10.1038/s41590-018-0135-x
    1. Saraste M, Irjala H, Airas L. Expansion of CD56Bright natural killer cells in the peripheral blood of multiple sclerosis patients treated with interferon‐beta. Neurol Sci 2007;28(3):121–126. DOI: 10.1007/s10072-007-0803-3
    1. Venken K, Hellings N, Broekmans T, et al. Natural naive CD4 + CD25 + CD127 low Regulatory T Cell (Treg) development and function are disturbed in multiple sclerosis patients: recovery of memory treg homeostasis during disease progression. J Immunol 2008;180(9):6411–6420. DOI: 10.4049/jimmunol.180.9.6411
    1. Knippenberg S, Peelen E, Smolders J, et al. Reduction in IL‐10 producing B cells (Breg) in multiple sclerosis is accompanied by a reduced naïve/memory Breg ratio during a relapse but not in remission. J Neuroimmunol. 2011;239(1–2):80–86. DOI: 10.1016/j.jneuroim.2011.08.019.
    1. Laroni A, Armentani E, Kerlero de Rosbo N, et al. Dysregulation of regulatory CD56bright NK cells/T cells interactions in multiple sclerosis. J Autoimmun 2016;72:8–18. DOI: 10.1016/j.jaut.2016.04.003
    1. Venken K, Hellings N, Liblau R, Stinissen P. Disturbed regulatory T cell homeostasis in multiple sclerosis. Trends Mol Med 2010;16(2):58–68. DOI: 10.1016/j.molmed.2009.12.003
    1. Peelen E, Knippenberg S, Muris A‐H, et al. Effects of vitamin D on the peripheral adaptive immune system: a review. Autoimmun Rev 2011;10(12):733–743. DOI: 10.1016/j.autrev.2011.05.002
    1. Orton S‐M, Wald L, Confavreux C, et al. Association of UV radiation with multiple sclerosis prevalence and sex ratio in France. Neurology 2011;76(5):425–431. DOI: 10.1212/WNL.0b013e31820a0a9f
    1. Munger KL, Levin LI, Hollis BW, et al. Serum 25‐hydroxyvitamin D levels and risk of multiple sclerosis. JAMA 2006;296(23):2832–2838. DOI:
    1. Mkhikian H, Grigorian A, Li CF, et al. Genetics and the environment converge to dysregulate N‐glycosylation in multiple sclerosis. Nat Commun 2011;2:334 DOI: 10.1038/ncomms1333
    1. van der Mei IAF, Ponsonby A‐l, Dwyer T, et al. Vitamin D levels in people with multiple sclerosis and community controls in Tasmania, Australia. J Neurol. 2007;254(5):581–590. DOI: 10.1007/s00415-006-0315-8
    1. Koduah P, Paul F, Dörr J‐M. Vitamin D in the prevention, prediction and treatment of neurodegenerative and neuroinflammatory diseases. EPMA J 2017;8(4):313–325. DOI: 10.1007/s13167-017-0120-8
    1. Behrens JR, Rasche L, Gieß RM, et al. Low 25‐hydroxyvitamin D, but not the bioavailable fraction of 25‐hydroxyvitamin D, is a risk factor for multiple sclerosis. Eur J Neurol 2016;23(1):62–67. DOI: 10.1111/ene.12788
    1. Dörr J, Döring A, Paul F. Can we prevent or treat multiple sclerosis by individualised vitamin D supply? EPMA J 2013;4(1):4 DOI: 10.1186/1878-5085-4-4
    1. Waubant E, Lucas R, Mowry E, et al. Environmental and genetic risk factors for MS: an integrated review. Ann Clin Transl Neurol 2019;6(9):1905–1922. DOI: 10.1002/acn3.50862
    1. Jacobs BM, Noyce AJ, Giovannoni G, Dobson R. BMI and low vitamin D are causal factors for multiple sclerosis: a mendelian randomization study. Neurol Neuroimmunol Neuroinflamm 2020;7(2). e662 DOI: 10.1212/NXI.0000000000000662
    1. Camu W, Lehert P, Pierrot‐Deseilligny C, et al. Cholecalciferol in relapsing‐remitting MS: A randomized clinical trial (CHOLINE). Neurol Neuroimmunol Neuroinflamm 2019;6(5):e597 DOI: 10.1212/NXI.0000000000000597
    1. Sotirchos ES, Bhargava P, Eckstein C, et al. Safety and immunologic effects of high‐ vs low‐dose cholecalciferol in multiple sclerosis. Neurology 2016;86(4):382–390. DOI: 10.1212/WNL.0000000000002316
    1. Cantorna MT, Hayes CE, DeLuca HF. 1,25‐Dihydroxyvitamin D3 reversibly blocks the progression of relapsing encephalomyelitis, a model of multiple sclerosis. Proc Natl Acad Sci USA 1996;93(15):7861–7864.
    1. Piemonti L, Monti P, Sironi M, et al. Vitamin D3 affects differentiation, maturation, and function of human monocyte‐derived dendritic cells. J Immunol (Baltimore, Md 1950) 2000;164(9):4443–4451.
    1. Iho S, Takahashi T, Kura F, Sugiyama H, Hoshino T. The effect of 1,25‐dihydroxyvitamin D3 on in vitro immunoglobulin production in human B cells. J Immunol (Baltimore, Md 1950) 1986;136(12):4427–4431.
    1. Palmer MT, Lee YK, Maynard CL, et al. Lineage‐specific effects of 1,25‐Dihydroxyvitamin D3 on the development of effector CD4 T Cells. J Biol Chem 2011;286(2):997–1004. DOI: 10.1074/jbc.M110.163790
    1. Smolders J, Peelen E, Thewissen M, et al. Safety and T cell modulating effects of high dose vitamin D3 supplementation in multiple sclerosis. PLoS One 2010;5(12):e15235 DOI: 10.1371/journal.pone.0015235
    1. Correale J, Ysrraelit MC, Gaitán MI. Immunomodulatory effects of vitamin D in multiple sclerosis. Brain A J Neurol 2009;132(Pt 5):1146–1160. 10.1093/brain/awp033.
    1. Johnson JL, Jones MB, Ryan SO, Cobb BA. The regulatory power of glycans and their binding partners in immunity. Trends Immunol 2013;34(6):290–298. DOI: 10.1016/j.it.2013.01.006
    1. Marth JD, Grewal PK. Mammalian glycosylation in immunity. Nat Rev Immunol 2008;8(11):874–887. DOI: 10.1038/nri2417
    1. Lee S‐U, Grigorian A, Pawling J, et al. N‐glycan processing deficiency promotes spontaneous inflammatory demyelination and neurodegeneration. J Biol Chem 2007;282(46):33725–33734. DOI: 10.1074/jbc.M704839200
    1. Demetriou M, Granovsky M, Quaggin S, Dennis JW. Negative regulation of T‐cell activation and autoimmunity by Mgat5 N‐glycosylation. Nature 2001;409(6821):733–739. 10.1038/35055582.
    1. Lau KS, Partridge EA, Grigorian A, et al. Complex N‐glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 2007;129(1):123–134. DOI: 10.1016/j.cell.2007.01.049
    1. Ryczko MC, Pawling J, Chen R, et al. Metabolic reprogramming by hexosamine biosynthetic and golgi N‐glycan branching pathways. Sci Rep 2016;6(1):23043 DOI: 10.1038/srep23043
    1. Grigorian A, Mkhikian H, Li CF, et al. Pathogenesis of multiple sclerosis via environmental and genetic dysregulation of N‐glycosylation. Semin Immunopathol 2012;34(3):415–424. DOI: 10.1007/s00281-012-0307-y
    1. Lau KS, Partridge EA, Grigorian A, et al. Complex N‐glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 2007;129(1):123–134. DOI: 10.1016/j.cell.2007.01.049
    1. Araujo L, Khim P, Mkhikian H, et al. Glycolysis and glutaminolysis cooperatively control T cell function by limiting metabolite supply to N‐glycosylation. Elife 2017;6 DOI: 10.7554/eLife.21330
    1. Chen H‐L, Li CF, Grigorian A, et al. T cell receptor signaling co‐regulates multiple golgi genes to enhance N ‐glycan branching. J Biol Chem 2009;284(47):32454–32461. DOI: 10.1074/jbc.M109.023630
    1. Mkhikian H, Mortales C‐L, Zhou RW, et al. Golgi self‐correction generates bioequivalent glycans to preserve cellular homeostasis. Elife 2016;5 DOI: 10.7554/ELIFE.14814
    1. Grigorian A, Lee S‐U, Tian W, et al. Control of T cell‐mediated autoimmunity by metabolite flux to N ‐glycan biosynthesis. J Biol Chem 2007;282(27):20027–20035. DOI: 10.1074/jbc.M701890200
    1. Grigorian A, Araujo L, Naidu NN, et al. N ‐Acetylglucosamine Inhibits T‐helper 1 (Th1)/T‐helper 17 (Th17) cell responses and treats experimental autoimmune encephalomyelitis. J Biol Chem 2011;286(46):40133–40141. DOI: 10.1074/jbc.M111.277814
    1. Dörr J, Ohlraun S, Skarabis H, Paul F. Efficacy of vitamin D supplementation in multiple sclerosis (EVIDIMS Trial): study protocol for a randomized controlled trial. Trials 2012;13:15 DOI: 10.1186/1745-6215-13-15
    1. Dörr J, Bäcker‐Koduah P, Wernecke K‐D, et al. High‐dose vitamin D supplementation in multiple sclerosis – results from the randomized EVIDIMS (efficacy of vitamin D supplementation in multiple sclerosis) trial. Mult Scler J ‐ Exp Transl Clin 2020;6(1):205521732090347 DOI: 10.1177/2055217320903474
    1. Bäcker‐Koduah P, Bellmann‐Strobl J, Scheel M, et al. Vitamin D and Disease severity in multiple sclerosis—baseline data from the randomized controlled trial (EVIDIMS). Front Neurol 2020;11:129 DOI: 10.3389/fneur.2020.00129
    1. Polman CH, Reingold SC, Edan G, et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol 2005;58(6):840–846. DOI: 10.1002/ana.20703
    1. Cellerino M, Ivaldi F, Pardini M, et al. Impact of treatment on cellular immunophenotype in MS. Neurol Neuroimmunol Neuroinflamm 2020;7(3):e693 DOI: 10.1212/NXI.0000000000000693
    1. Feger U, Tolosa E, Huang YH, et al. HLA‐G expression defines a novel regulatory T‐cell subset present in human peripheral blood and sites of inflammation. Blood 2007;110(2):568–577. DOI: 10.1182/blood-2006-11-057125
    1. Zozulya AL, Wiendl H. The role of regulatory T cells in multiple sclerosis. Nat Clin Pract Neurol 2008;4(7):384–398. DOI: 10.1038/ncpneuro0832
    1. Liu GZ, Fang LB, Hjelmström P, Gao XG. Increased CD8+ central memory T cells in patients with multiple sclerosis. Mult Scler 2007;13(2):149–155. DOI: 10.1177/1352458506069246
    1. Vieyra‐Lobato MR, Vela‐Ojeda J, Montiel‐Cervantes L, et al. Description of CD8+ regulatory T lymphocytes and their specific intervention in graft‐versus‐host and infectious diseases, autoimmunity, and cancer. J Immunol Res 2018;2018:3758713 DOI: 10.1155/2018/3758713
    1. Von Essen MR, Kongsbak M, Schjerling P, et al. Vitamin D controls T cell antigen receptor signaling and activation of human T cells. Nat Immunol. 2010;11(4):344–349. 10.1038/ni.1851.
    1. Kongsbak M, von Essen MR, Levring TB, et al. Vitamin D‐binding protein controls T cell responses to vitamin D. BMC Immunol 2014;15(1). DOI: 10.1186/s12865-014-0035-2
    1. Zella LA, Shevde NK, Hollis BW, et al. Vitamin D‐binding protein influences total circulating levels of 1,25‐dihydroxyvitamin D3 but does not directly modulate the bioactive levels of the hormone in vivo. Endocrinology 2008;149(7):3656–3667. DOI: 10.1210/en.2008-0042
    1. Drozdenko G, Heine G, Worm M. Oral vitamin D increases the frequencies of CD38 + human B cells and ameliorates IL‐17‐producing T cells. Exp Dermatol 2014;23(2):107–112. DOI: 10.1111/exd.12300
    1. Veldman CM, Cantorna MT, DeLuca HF. Expression of 1,25‐Dihydroxyvitamin D3 receptor in the immune system. Arch Biochem Biophys. 2000;374(2):334–338. DOI: 10.1006/abbi.1999.1605
    1. Medrano M, Carrillo‐Cruz E, Montero I, Perez‐Simon JA. Vitamin D: effect on haematopoiesis and immune system and clinical applications. Int J Mol Sci 2018;19(9). DOI: 10.3390/ijms19092663
    1. Chen S, Sims GP, Chen XX, Gu YY, Chen S, Lipsky PE. Modulatory effects of 1,25‐dihydroxyvitamin D3 on human B cell differentiation. J Immunol (Baltimore, Md 1950) 2007;179(3):1634–1647.
    1. Lips P. Interaction between vitamin D and calcium. Scand J Clin Lab Invest 2012;72(SUPPL. 243):60–64. DOI: 10.3109/00365513.2012.681960
    1. Smolders J, Thewissen M, Peelen E, et al. Vitamin D status is positively correlated with regulatory T cell function in patients with multiple sclerosis. PLoS One 2009;4(8):e6635 DOI: 10.1371/journal.pone.0006635
    1. Muris AH, Smolders J, Rolf L, et al. Immune regulatory effects of high dose vitamin D3 supplementation in a randomized controlled trial in relapsing remitting multiple sclerosis patients receiving IFNβ; the SOLARIUM study. J Neuroimmunol 2016;300:47–56. DOI: 10.1016/j.jneuroim.2016.09.018
    1. Toghianifar N, Ashtari F, Zarkesh‐Esfahani SH, Mansourian M. Effect of high dose vitamin D intake on interleukin‐17 levels in multiple sclerosis: a randomized, double‐blind, placebo‐controlled clinical trial. J Neuroimmunol 2015;285:125–128. DOI: 10.1016/j.jneuroim.2015.05.022
    1. Åivo J, Hänninen A, Ilonen J, Soilu‐Hänninen M. Vitamin D3 administration to MS patients leads to increased serum levels of latency activated peptide (LAP) of TGF‐beta. J Neuroimmunol 2015;280:12–15. DOI: 10.1016/j.jneuroim.2015.01.005
    1. Carlberg C, Haq A. The concept of the personal vitamin D response index. J Steroid Biochem Mol Biol 2018;175:12–17. DOI: 10.1016/j.jsbmb.2016.12.011
    1. Vukić M, Neme A, Seuter S, et al. Relevance of vitamin D receptor target genes for monitoring the vitamin D responsiveness of primary human cells. Campbell M, ed. PLoS One 2015;10(4):e0124339 DOI: 10.1371/journal.pone.0124339
    1. Carlberg C, Seuter S, de Mello VDF, et al. Primary vitamin D target genes allow a categorization of possible benefits of vitamin D3 supplementation. Campbell M, ed. PLoS One 2013;8(7):e71042 DOI: 10.1371/journal.pone.0071042
    1. Seuter S, Virtanen JK, Nurmi T, et al. Molecular evaluation of vitamin D responsiveness of healthy young adults. J Steroid Biochem Mol Biol 2017;174:314–321. DOI: 10.1016/j.jsbmb.2016.06.003
    1. Holick MF. Vitamin D deficiency. N Engl J Med 2007;357(3):266–281. DOI: 10.1056/NEJMra070553
    1. Holick MF, Binkley NC, Bischoff‐Ferrari HA, et al. Guidelines for preventing and treating vitamin D deficiency and insufficiency revisited. J Clin Endocrinol Metab 2012;97(4):1153–1158. DOI: 10.1210/jc.2011-2601
    1. Okazaki R, Ozono K, Fukumoto S, et al. Assessment criteria for vitamin D deficiency/insufficiency in Japan: proposal by an expert panel supported by the Research Program of Intractable Diseases, Ministry of Health, Labour and Welfare, Japan, the Japanese Society for Bone and Mineral Research and the Japan Endocrine Society [Opinion]. J Bone Miner Metab 2017;35(1):1–5. DOI: 10.1007/s00774-016-0805-4
    1. Rosen CJ, Abrams SA, Aloia JF, et al. IOM Committee members respond to endocrine society vitamin D guideline. J Clin Endocrinol Metab 2012;97(4):1146–1152. DOI: 10.1210/jc.2011-2218
    1. Kieseier BC. The mechanism of action of interferon‐β in relapsing multiple sclerosis. CNS Drugs 2011;25(6):491–502. DOI: 10.2165/11591110-000000000-00000
    1. Stewart N, Simpson S, van der Mei I, et al. Interferon‐ and serum 25‐hydroxyvitamin D interact to modulate relapse risk in MS. Neurology 2012;79(3):254–260. DOI: 10.1212/WNL.0b013e31825fded9
    1. Waschbisch A, Sanderson N, Krumbholz M, et al. Interferon beta and vitamin D synergize to induce immunoregulatory receptors on peripheral blood monocytes of multiple sclerosis patients. Jacobson S, ed. PLoS One 2014;9(12):e115488 DOI: 10.1371/journal.pone.0115488
    1. Feng X, Wang Z, Howlett‐Prieto Q, et al. Vitamin D enhances responses to interferon‐β in MS. Neurol Neuroimmunol Neuroinflamm 2019;6(6):e622 DOI: 10.1212/NXI.0000000000000622
    1. Rotstein DL, Healy BC, Malik MT, et al. Effect of vitamin D on MS activity by disease‐modifying therapy class. Neurol Neuroimmunol Neuroinflamm 2015;2(6):e167 DOI: 10.1212/NXI.0000000000000167
    1. van Etten E, Gysemans C, Branisteanu DD, et al. Novel insights in the immune function of the vitamin D system: synergism with interferon‐beta. J Steroid Biochem Mol Biol 2007;103(3–5):546–551. DOI: 10.1016/j.jsbmb.2006.12.094

Source: PubMed

3
Iratkozz fel