A review of odd-chain fatty acid metabolism and the role of pentadecanoic Acid (c15:0) and heptadecanoic Acid (c17:0) in health and disease

Benjamin Jenkins, James A West, Albert Koulman, Benjamin Jenkins, James A West, Albert Koulman

Abstract

The role of C17:0 and C15:0 in human health has recently been reinforced following a number of important biological and nutritional observations. Historically, odd chain saturated fatty acids (OCS-FAs) were used as internal standards in GC-MS methods of total fatty acids and LC-MS methods of intact lipids, as it was thought their concentrations were insignificant in humans. However, it has been thought that increased consumption of dairy products has an association with an increase in blood plasma OCS-FAs. However, there is currently no direct evidence but rather a casual association through epidemiology studies. Furthermore, a number of studies on cardiometabolic diseases have shown that plasma concentrations of OCS-FAs are associated with lower disease risk, although the mechanism responsible for this is debated. One possible mechanism for the endogenous production of OCS-FAs is α-oxidation, involving the activation, then hydroxylation of the α-carbon, followed by the removal of the terminal carboxyl group. Differentiation human adipocytes showed a distinct increase in the concentration of OCS-FAs, which was possibly caused through α-oxidation. Further evidence for an endogenous pathway, is in human plasma, where the ratio of C15:0 to C17:0 is approximately 1:2 which is contradictory to the expected levels of C15:0 to C17:0 roughly 2:1 as detected in dairy fat. We review the literature on the dietary consumption of OCS-FAs and their potential endogenous metabolism.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
(A) On the left—the bacteria bio-synthesis pathway for the production of the fatty acids, C16:0 and C18:0 through the repeated condensation of malonyl CoA with acetyl CoA [19]. (B) On the right—the fundamental processes of α-oxidation where the removal of one carbon produces an odd chain fatty acid [18].
Figure 2
Figure 2
Cyclic β-oxidation process and the production of the acetyl CoA molecules [76]. This diagram shows the substrates and products of each reaction in the β-oxidation pathway.
Figure 3
Figure 3
The α-oxidation process on the β-branched chain fatty acid (phytanic acid) to produce an α-branched chain fatty acid (pristanic acid) which then can be activated and enter the β-oxidation pathway [77].
Figure 4
Figure 4
The comparison between the C15:0 and C17:0 fatty acids within dairy products [4] and the comparative concentration within in plasma [59].

References

    1. Miettinen T.A., Railo M., Lepäntalo M., Gylling H. Plant sterols in serum and in atherosclerotic plaques of patients undergoing carotid endarterectomy. J. Am. Coll. Cardiol. 2005;45:1794–1801. doi: 10.1016/j.jacc.2005.02.063.
    1. Manninen V., Tenkanen L., Koskinen P., Huttunen J.K., Mänttäri M., Heinonen O.P., Frick M.H. Joint effects of serum triglyceride and LDL cholesterol and HDL cholesterol concentrations on coronary heart disease risk in the helsinki heart study. Implications for treatment. Circulation. 1992;85:37–45. doi: 10.1161/01.CIR.85.1.37.
    1. Wang L., Folsom A.R., Zheng Z.J., Pankow J.S., Eckfeldt J.H. ARIC study investigators. Plasma fatty acid composition and incidence of diabetes in middle-aged adults: The atherosclerosis risk in communities (ARIC) study. Am. J. Clin. Nutr. 2003;78:91–98.
    1. Vlaeminck B., Fievez V., Cabrita A.R.J., Fonseca A.J.M., Dewhurst R.J. Factors affecting odd- and branched-chain fatty acids in milk: A review. Anim. Feed Sci. Technol. 2006;131:389–417. doi: 10.1016/j.anifeedsci.2006.06.017.
    1. Reitz C., Tang M., Luchsinger J., Mayeux R. Relation of plasma lipids to alzheimer disease and vascular dementia. Arch. Neurol. 2004;61:705–714. doi: 10.1001/archneur.61.5.705.
    1. LIPID Maps. [(accessed on 28 January 2015)]. Available online:
    1. Ulbricht T.L.V., Southgate D.A.T. Coronary heart disease: Seven dietary factors. Lancet. 1991;338:985–992. doi: 10.1016/0140-6736(91)91846-M.
    1. Simopoulos A.P. Omega-3 fatty acids in health and disease and in growth and development. Am. J. Clin. Nutr. 1991;54:438–463.
    1. Izai K., Uchida Y., Orii T., Yamamoto S., Hashimoto T. Novel fatty acid beta-oxidation enzymes in rat liver mitochondria. I. Purification and properties of very-long-chain acyl-coenzyme a dehydrogenase. J. Biol. Chem. 1992;267:1027–1033.
    1. Poulos A., Sharp P., Fellenberg A.J., Danks D.M. Cerebro-hepato-renal (zellweger) syndrome, adrenoleukodystrophy, and refsum’s disease: plasma changes and skin fibroblast phytanic acid oxidase. Hum. Genet. 1985;70:172–177. doi: 10.1007/BF00273077.
    1. Hodson L., Skeaff C.M., Fielding B.A. Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog. Lipid Res. 2008;47:348–380. doi: 10.1016/j.plipres.2008.03.003.
    1. Khaw K.T., Friesen M.D., Riboli E., Luben R., Wareham N. Plasma phospholipid fatty acid concentration and incident coronary heart disease in men and women: The EPIC-norfolk prospective study. PLoS Med. 2012;9:e1001255. doi: 10.1371/journal.pmed.1001255.
    1. Çoker M., de Klerk J.B.C., Poll-The B.T., Huijmans J.G.M., Duran M. Plasma total odd-chain fatty acids in the monitoring of disorders of propionate, methylmalonate and biotin metabolism. J. Inherit. Metab. Dis. 1996;19:743–751. doi: 10.1007/BF01799166.
    1. Phillips G.B., Dodge J.T. Composition of phospholipids and of phospholipid fatty acids of human plasma. J. Lipid Res. 1967;8:676–681.
    1. Horning M.G., Martin D.B., Karmen A., Vagelos P.R. Fatty acid synthesis in adipose tissue II. Enzymatic synthesis of branched chain and odd-numbered fatty acids. J. Biol. Chem. 1961;236:669–672.
    1. Mead J.F., Gabriel M. Levis. A 1 Carbon degradation of the long chain fatty acids of brain sphingolipids. J. Biol. Chem. 1963;238:1634–1636.
    1. Vanitallie T.B., Khachadurian A.K. Rats enriched with odd-carbon fatty acids: Maintenance of liver glycogen during starvation. Science. 1969;165:811–813. doi: 10.1126/science.165.3895.811.
    1. Jansen G.A., Ronald J.A. Wanders. Alpha-oxidation. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2006;1763:1403–1412. doi: 10.1016/j.bbamcr.2006.07.012.
    1. Ferrannini E., Barrett E.J., Bevilacqua S., DeFronzo R.A. Effect of fatty acids on glucose production and utilization in man. J. Clin. Investig. 1983;72:1737–1747. doi: 10.1172/JCI111133.
    1. Nestel P.J., Straznicky N., Mellett N.A., Wong G., De Souza D.P., Tull D.L., Barlow C.K., Grima M.T., Meikle P.J. Specific plasma lipid classes and phospholipid fatty acids indicative of dairy food consumption associate with insulin sensitivity. Am. J. Clin. Nutr. 2014;99:46–53. doi: 10.3945/ajcn.113.071712.
    1. Sampson D., Hensley W.J. A rapid gas chromatographic method for the quantitation of underivatised individual free fatty acids in plasma. Clin. Chim. Acta. 1975;61:1–8. doi: 10.1016/0009-8981(75)90391-5.
    1. Novgorodtseva T.P., Karaman Y.K., Zhukova N.V., Lobanova E.G., Antonyuk M.V., Kantur T.A. Composition of fatty acids in plasma and erythrocytes and eicosanoids level in patients with metabolic syndrome. Lipids Health Dis. 2011;10:82. doi: 10.1186/1476-511X-10-82.
    1. Hellmuth C., Demmelmair H., Schmitt I., Peissner W., Blüher M., Koletzko B. Association between plasma nonesterified fatty acids species and adipose tissue fatty acid composition. PLoS One. 2013;8:e74927. doi: 10.1371/journal.pone.0074927.
    1. Baylin A., Kim M.K., Donovan-Palmer A., Siles X., Dougherty L., Tocco P., Campos H. Fasting whole blood as a biomarker of essential fatty acid intake in epidemiologic studies: comparison with adipose tissue and plasma. Am. J. Epidemiol. 2005;162:373–381. doi: 10.1093/aje/kwi213.
    1. Quehenberger O., Armando A.M., Brown A.H., Milne S.B., Myers D.S., Merrill A.H., Bandyopadhyay S., Jones K.N., Kelly S., Shaner R.L., et al. Lipidomics reveals a remarkable diversity of lipids in human plasma. J. Lipid Res. 2010;51:3299–3305. doi: 10.1194/jlr.M009449.
    1. Matthan N.R., Ooi E.M., van Horn L., Neuhouser M.L., Woodman R., Lichtenstein A.H. Plasma phospholipid fatty acid biomarkers of dietary fat quality and endogenous metabolism predict coronary heart disease risk: A nested case-control study within the women’s health initiative observational study. J. Am. Heart Assoc. 2014;3:E000764. doi: 10.1161/JAHA.113.000764.
    1. Forouhi N.G., Koulman A., Sharp S.J., Imamura F., Kröger J., Schulze M.B., Crowe F.L., Huerta J.M., Guevara M., Beulens J.W., et al. Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes: The EPIC-InterAct case-cohort study. Lancet Diabetes Endocrinol. 2014 doi: 10.1016/S2213-8587(14)70146-9.
    1. Saadatian-Elahi M., Slimani N., Chajès V., Jenab M., Goudable J., Biessy C., Ferrari P., Byrnes G., Autier P., Peeters P.H., et al. Plasma phospholipid fatty acid profiles and their association with food intakes: Results from a cross-sectional study within the European prospective investigation into cancer and nutrition. Am. J. Clin. Nutr. 2009;89:331–346. doi: 10.3945/ajcn.2008.26834.
    1. Crowe F.L., Allen N.E., Appleby P.N., Overvad K., Aardestrup I.V., Johnsen N.F., Tjønneland A., Linseisen J., Kaaks R., Boeing H., et al. Fatty acid composition of plasma phospholipids and risk of prostate cancer in a case-control analysis nested within the European prospective investigation into cancer and nutrition. Am. J. Clin. Nutr. 2008;88:1353–1363.
    1. Zák A., Vecka M. Composition of plasma fatty acids and non-cholesterol sterols in anorexia nervosa. Physiol. Res. Acad. Sci. Bohemoslov. 2005;54:443–451.
    1. Dyerberg J., Bang H.O., Hjorne N. Fatty acid composition of the plasma lipids in Greenland Eskimos. Am. J. Clin. Nutr. 1975;28:958–966.
    1. Ma J., Folsom A.R., Shahar E., Eckfeldt J.H. Plasma fatty acid composition as an indicator of habitual dietary fat intake in middle-aged adults. The atherosclerosis risk in communities (ARIC) study investigators. Am. J. Clin. Nutr. 1995;62:564–571.
    1. Caramia G., Cocchi M. Fatty acids composition of plasma phospholipids and triglycerides in children with cystic fibrosis. The effect of dietary supplementation with an olive and soybean oils mixture. Pediatr. Med. E Chir. Med. Surg. Pediatr. 2007;25:42–49.
    1. Raatz S.K., Bibus D., Thomas W., Kris-Etherton P. Total fat intake modifies plasma fatty acid composition in humans. J. Nutr. 2001;131:231–234.
    1. Ruíz-Gutiérrez V., Prada J.L., Pérez-Jiménez F. Determination of fatty acid and triacylglycerol composition of human very-low-density lipoproteins. J. Chromatogr. B Biomed. Sci. Appl. 1993;622:117–124. doi: 10.1016/0378-4347(93)80257-5.
    1. Skeaff C.M., Hodson L., McKenzie J.E. Dietary-induced changes in fatty acid composition of human plasma, platelet, and erythrocyte lipids follow a similar time course. J. Nutr. 2006;136:565–569.
    1. Tserng K.Y., Kliegman R.M., Miettinen E.L., Kalhan S.C. A rapid, simple, and sensitive procedure for the determination of free fatty acids in plasma using glass capillary column gas-liquid chromatography. J. Lipid Res. 1981;22:852–858.
    1. Persson X.M., Blachnio-Zabielska A.U., Jensen M.D. Rapid measurement of plasma free fatty acid concentration and isotopic enrichment using LC/MS. J. Lipid Res. 2010;51:2761–2765. doi: 10.1194/jlr.M008011.
    1. Kagan M.L., West A.L., Zante C., Calder P.C. Acute appearance of fatty acids in human plasma—A comparative study between polar-lipid rich oil from the microalgae nannochloropsis oculata and krill oil in healthy young males. Lipids Health Dis. 2013;12:102. doi: 10.1186/1476-511X-12-102.
    1. Moser A.B., Kreiter N., Bezman L., Lu S., Raymond G.V., Naidu S., Moser H.W. Plasma very long chain fatty acids in 3000 peroxisome disease patients and 29,000 controls. Ann. Neurol. 1999;45:100–110. doi: 10.1002/1531-8249(199901)45:1<100::AID-ART16>;2-U.
    1. Astrup A. A changing view on saturated fatty acids and dairy: From enemy to friend. Am. J. Clin. Nutr. 2014;100:1407–1408. doi: 10.3945/ajcn.114.099986.
    1. Seppänen-Laakso T., Oresic M. How to study lipidomes. J. Mol. Endocrinol. 2009;42:185–190. doi: 10.1677/JME-08-0150.
    1. Emmanuel B. The relative contribution of propionate, and long-chain even-numbered fatty acids to the production of long-chain odd-numbered fatty acids in rumen bacteria. Biochim. Biophys. Acta (BBA) Lipids Lipid Metab. 1978;528:239–246. doi: 10.1016/0005-2760(78)90198-4.
    1. Hughes R. Definitions for public health nutrition: A developing consensus. Public Health Nutr. 2003;6:615–620.
    1. Jeremiah S. Diet and Coronary Heart Disease. Proceedings of “Current Topics in Biostatistics and Epidemiology”. A Memorial Symposium in Honor of Jerome Cornfield. Biometrics. 1982;38:95–114. doi: 10.2307/2529859.
    1. Smedman A.E., Gustafsson I.B., Berglund L.G., Vessby B.O. Pentadecanoic acid in serum as a marker for intake of milk fat: Relations between intake of milk fat and metabolic risk factors. Am. J. Clin. Nutr. 1999;69:22–29.
    1. Brevik A., Veierød M.B., Drevon C.A., Andersen L.F. Evaluation of the odd fatty acids 15:0 and 17:0 in serum and adipose tissue as markers of intake of milk and dairy fat. Eur. J. Clin. Nutr. 2005;59:1417–1422. doi: 10.1038/sj.ejcn.1602256.
    1. Laliotis G.P., Bizelis I., Rogdakis E. Comparative approach of the de novo fatty acid synthesis (lipogenesis) between ruminant and non-ruminant mammalian species: From biochemical level to the main regulatory lipogenic genes. Curr. Genomics. 2010;11:168–183. doi: 10.2174/138920210791110960.
    1. Or-Rashid M.M., Odongo N.E., McBride B.W. Fatty acid composition of ruminal bacteria and protozoa, with emphasis on conjugated linoleic acid, vaccenic acid, and odd-chain and branched-chain fatty acids. J. Anim. Sci. 2007;85:1228–1234. doi: 10.2527/jas.2006-385.
    1. Dijkstra J., van Zijderveld S.M., Apajalahti J.A., Bannink A., Gerrits W.J.J., Newbold J.R., Perdok H.B., Berends H. Relationships between methane production and milk fatty acid profiles in dairy cattle. Anim. Feed Sci. Technol. 2011;166–167:590–595. doi: 10.1016/j.anifeedsci.2011.04.042.
    1. French E.A., Bertics S.J., Armentano L.E. Rumen and milk odd- and branched-chain fatty acid proportions are minimally influenced by ruminal volatile fatty acid infusions. J. Dairy Sci. 2012;95:2015–2026. doi: 10.3168/jds.2011-4827.
    1. Heck J.M., van Valenberg H.J., Bovenhuis H., Dijkstra J., van Hooijdonk T. Characterization of milk fatty acids based on genetic and herd parameters. J. Dairy Res. 2012;79:39–46. doi: 10.1017/S0022029911000641.
    1. Berthelot V., Bas P., Pottier E., Normand J. The effect of maternal linseed supplementation and/or lamb linseed supplementation on muscle and subcutaneous adipose tissue fatty acid composition of indoor lambs. Meat Sci. 2012;90:548–557. doi: 10.1016/j.meatsci.2011.09.014.
    1. Dohme-Meier F., Bee G. Feeding unprotected cla methyl esters compared to sunflower seeds increased milk CLA level but inhibited milk fat synthesis in cows. Asian Australas J. Anim. Sci. 2012;25:75–85. doi: 10.5713/ajas.2011.11146.
    1. Stefanov I., Baeten V., Abbas O., Vlaeminck B., De Baets B., Fievez V. Evaluation of FT-NIR and ATR-FTIR spectroscopy techniques for determination of minor odd- and branched-chain saturated and trans unsaturated milk fatty acids. J. Agric. Food Chem. 2013;61:3403–3413. doi: 10.1021/jf304515v.
    1. Dewhurst R.J., Moorby J.M., Vlaeminck B., Fievez V. Apparent recovery of duodenal odd- and branched-chain fatty acids in milk of dairy cows. J. Dairy Sci. 2007;90:1775–1780. doi: 10.3168/jds.2006-715.
    1. Fievez V., Colman E., Castro-Montoya J.M., Stefanov I., Vlaeminck B. Milk odd- and branched-chain fatty acids as biomarkers of rumen function—An update. Anim. Feed Sci. Technol. 2012;172:51–65. doi: 10.1016/j.anifeedsci.2011.12.008.
    1. James P.D., Windhauser M.M., Champagne C.M., Bray G.A. Differential oxidation of individual dietary fatty acids in humans. Am. J. Clin. Nutr. 2000;72:905–911.
    1. Sun Q., Ma J., Campos H., Hu F.B. Plasma and erythrocyte biomarkers of dairy fat intake and risk of ischemic heart disease. Am. J. Clin. Nutr. 2007;86:929–937.
    1. Meikle P.J., Wong G., Barlow C.K., Weir J.M., Greeve M.A., MacIntosh G.L., Almasy L., Comuzzie A.G., Mahaney M.C., Kowalczyk A., et al. Plasma lipid profiling shows similar associations with prediabetes and type 2 diabetes. PLoS One. 2013;8 doi: 10.1371/journal.pone.0074341.
    1. Holman R.T., Johnson S.B., Kokmen E. Deficiencies of polyunsaturated fatty acids and replacement by nonessential fatty acids in plasma lipids in multiple sclerosis. Proc. Natl. Acad. Sci. USA. 1989;86:4720–4724. doi: 10.1073/pnas.86.12.4720.
    1. Holman R.T., Adams C.E., Nelson R.A., Grater S.J., Jaskiewicz J.A., Johnson S.B., Erdman J.W., Jr. Patients with anorexia nervosa demonstrate deficiencies of selected essential fatty acids, compensatory changes in nonessential fatty acids and decreased fluidity of plasma lipids. J. Nutr. 1995;125:901–907.
    1. Bazinet R.P., Layé S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat. Rev. Neurosci. 2014 doi: 10.1038/nrn3820.
    1. Tan Z.S., Harris W.S., Beiser A.S., Au R., Himali J.J., Debette S., Pikula A., DeCarli C., Wolf P.A., Vasan R.S., et al. Red blood cell omega-3 fatty acid levels and markers of accelerated brain aging. Neurology. 2012;78:658–664. doi: 10.1212/WNL.0b013e318249f6a9.
    1. Torres M., Price S.L., Fiol-deRoque M.A., Marcilla-Etxenike A., Ahyayauch H., Barceló-Coblijn G., Terés S., Katsouri L., Ordinas M., López D.J., et al. Membrane lipid modifications and therapeutic effects mediated by hydroxydocosahexaenoic acid on Alzheimer’s disease. Biochim. Biophys. Acta (BBA) Biomembr. 2014;1838:1680–1692. doi: 10.1016/j.bbamem.2013.12.016.
    1. Haag M. Essential fatty acids and the brain. Can. J. Psychiatry. 2003;48:195–203.
    1. Yang X., Sun G.Y., Eckert G.P., Lee J.C.-M. Cellular membrane fluidity in amyloid precursor protein processing. Mol. Neurobiol. 2014;50:119–129. doi: 10.1007/s12035-014-8652-6.
    1. Fonteh A.N., Cipolla M., Chiang J., Arakaki X., Harrington M.G. Human cerebrospinal fluid fatty acid levels differ between supernatant fluid and brain-derived nanoparticle fractions, and are altered in Alzheimer’s disease. PLoS One. 2014;9:e100519. doi: 10.1371/journal.pone.0100519.
    1. Shibata R., Gotoh N., Kubo A., Kanda J., Nagai T., Mizobe H., Yoshinaga K., Kojima K., Watanabe H., Wada S. Comparison of catabolism rate of fatty acids to carbon dioxide in mice. Eur. J. Lipid Sci. Technol. 2012;114:1340–1344. doi: 10.1002/ejlt.201200164.
    1. De Oliveira Otto M.C., Nettleton J.A., Lemaitre R.N., Steffen L.M., Kromhout D., Rich S.S., Tsai M.Y., Jacobs D.R., Mozaffarian D. Biomarkers of dairy fatty acids and risk of cardiovascular disease in the multi-ethnic study of atherosclerosis. J. Am. Heart Assoc. Cardiovasc. Cerebrovasc. Dis. 2013;2 doi: 10.1161/JAHA.113.000092.
    1. Hodge A.M., English D.R., O’Dea K., Sinclair A.J., Makrides M., Gibson R.A., Giles G.G. Plasma phospholipid and dietary fatty acids as predictors of type 2 diabetes: Interpreting the role of linoleic acid. Am. J. Clin. Nutr. 2007;86:189–197.
    1. Mock D.M., Johnson S.B., Holman R.T. Effects of biotin deficiency on serum fatty acid composition: evidence for abnormalities in humans. J. Nutr. 1988;118:342–348.
    1. Moser H.W., Moser A.B., Frayer K.K., Chen W., Schulman J.D., O’Neill B.P., Kishimoto Y. Adrenoleukodystrophy increased plasma content of saturated very long chain fatty acids. Neurology. 1981;31:1241–1249. doi: 10.1212/WNL.31.10.1241.
    1. Roe C.R., Sweetman L., Roe D.S., David F., Brunengraber H. Treatment of cardiomyopathy and rhabdomyolysis in long-chain fat oxidation disorders using an anaplerotic odd-chain triglyceride. J. Clin. Investig. 2002;110:259–269. doi: 10.1172/JCI0215311.
    1. Mannaerts G.P., Van Veldhoven P.P., Casteels M. Peroxisomal lipid degradation via beta- and alpha-oxidation in mammals. Cell Biochem. Biophys. 2000;32:73–87. doi: 10.1385/CBB:32:1-3:73.
    1. Eaton S., Bartlett K., Pourfarzam M. Mammalian mitochondrial beta-oxidation. Biochem. J. 1996. [(accessed on 29 January 2014)]. Available online: .
    1. Wierzbicki A.S., Lloyd M.D., Schofield C.J., Feher M.D., Gibberd F.B. Refsum’s disease: A peroxisomal disorder affecting phytanic acid α-oxidation. J. Neurochem. 2002;80:727–735. doi: 10.1046/j.0022-3042.2002.00766.x.
    1. Wanders R.J., Jansen G.A., Lloyd M.D. Phytanic acid alpha-oxidation, new insights into an old problem: A review. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids. 2003;1631:119–135. doi: 10.1016/S1388-1981(03)00003-9.
    1. Foulon V., Sniekers M., Huysmans E., Asselberghs S., Mahieu V., Mannaerts G.P., Veldhoven P.P.V., Casteels M. Breakdown of 2-hydroxylated straight chain fatty acids via peroxisomal 2-hydroxyphytanoyl-coa lyase a revised pathway for the α-oxidation of straight chain fatty acids. J. Biol. Chem. 2005;280:9802–9812. doi: 10.1074/jbc.M413362200.
    1. Guo L., Zhou D., Pryse K.M., Okunade A.L., Su X. Fatty acid 2-hydroxylase mediates diffusional mobility of raft-associated lipids, glut4 level, and lipogenesis in 3t3-l1 adipocytes. J. Biol. Chem. 2010;285:25438–25447. doi: 10.1074/jbc.M110.119933.
    1. Kondo N., Ohno Y., Yamagata M., Obara T., Seki N., Kitamura T., Naganuma T., Kihara A. Identification of the phytosphingosine metabolic pathway leading to odd-numbered fatty acids. Nat. Commun. 2014;5 doi: 10.1038/ncomms6338.
    1. Nagy K., Brahmbhatt V.V., Berdeaux O., Bretillon L., Destaillats F., Acar N. Comparative study of serine-plasmalogens in human retina and optic nerve: Identification of atypical species with odd carbon chains. J. Lipid Res. 2012;53:776–783. doi: 10.1194/jlr.D022962.
    1. Su X., Han X., Yang J., Mancuso D.J., Chen J., Bickel P.E., Gross R.W. Sequential ordered fatty acid α oxidation and δ9 desaturation are major determinants of lipid storage and utilization in differentiating adipocytes. Biochemistry. 2004;43:5033–5044. doi: 10.1021/bi035867z.
    1. Veldhoven P.P.V. Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism. J. Lipid Res. 2010;51:2863–2895. doi: 10.1194/jlr.R005959.
    1. Yuki D., Sugiura Y., Zaima N., Akatsu H., Hashizume Y., Yamamoto T., Fujiwara M., Sugiyama K., Setou M. Hydroxylated and non-hydroxylated sulfatide are distinctly distributed in the human cerebral cortex. Neuroscience. 2011;193:44–53. doi: 10.1016/j.neuroscience.2011.07.045.
    1. Valentine N.H., Richard S. Hindmilk Improves Weight Gain in Low-Birth-Weight Infants Fe: Journal of Pediatric Gastroenterology and Nutrition. J. Pediatr. Gastr. Nutr. 1994. [(accessed on 31 January 2014)]. Available online: .
    1. Roberts L.D., Virtue S., Vidal-Puig A., Nicholls A.W., Griffin J.L. Metabolic phenotyping of a model of adipocyte differentiation. Physiol. Genomics. 2009;39:109–119. doi: 10.1152/physiolgenomics.90365.2008.
    1. Labarthe F., Gélinas R., Rosiers C.D. Medium-chain fatty acids as metabolic therapy in cardiac disease. Cardiovasc. Drugs Ther. 2008;22:97–106. doi: 10.1007/s10557-008-6084-0.
    1. Jacobs S., Schiller K., Jansen E., Fritsche A., Weikert C., di Giuseppe R., Boeing H., Schulze M.B., Kröger J. Association between erythrocyte membrane fatty acids and biomarkers of dyslipidemia in the EPIC-Potsdam study. Eur. J. Clin. Nutr. 2014;68:517–525. doi: 10.1038/ejcn.2014.18.
    1. Mozaffarian D. Saturated fatty acids and type 2 diabetes: More evidence to re-invent dietary guidelines. Lancet Diabetes Endocrinol. 2014;2:770–772. doi: 10.1016/S2213-8587(14)70166-4.
    1. Sbaï D., Narcy C., Thompson G.N., Mariotti A., Poggi F., Saudubray J.M., Bresson J.L. Contribution of odd-chain fatty acid oxidation to propionate production in disorders of propionate metabolism. Am. J. Clin. Nutr. 1994;59:1332–1337.
    1. Gozzo S., Oliverio A., Salvati S., Serlupi-Crescenzi G., Tagliamonte B., Tomassi G. Effects of dietary phospholipids and odd-chain fatty acids on the behavioural maturation of mice. Food Chem. Toxicol. 1982;20:153–157. doi: 10.1016/S0278-6915(82)80240-8.
    1. Brass E.P., Beyerinck R.A. Effects of propionate and carnitine on the hepatic oxidation of short- and medium-chain-length fatty acids. Biochem. J. 1988. [(accessed on 15 January 2014)]. Available online: .

Source: PubMed

3
Iratkozz fel