In Vitro Assessment of the Antiviral Activity of Ketotifen, Indomethacin and Naproxen, Alone and in Combination, against SARS-CoV-2

Pantea Kiani, Andrew Scholey, Thomas A Dahl, Lauren McMann, Jacqueline M Iversen, Joris C Verster, Pantea Kiani, Andrew Scholey, Thomas A Dahl, Lauren McMann, Jacqueline M Iversen, Joris C Verster

Abstract

The 2019 coronavirus infectious disease (COVID-19) is caused by infection with the new severe acute respiratory syndrome coronavirus (SARS-CoV-2). Currently, the treatment options for COVID-19 are limited. The purpose of the experiments presented here was to investigate the effectiveness of ketotifen, naproxen and indomethacin, alone or in combination, in reducing SARS-CoV-2 replication. In addition, the cytotoxicity of the drugs was evaluated. The findings showed that the combination of ketotifen with indomethacin (SJP-002C) or naproxen both reduce viral yield. Compared to ketotifen alone (60% inhibition at EC50), an increase in percentage inhibition of SARS-CoV-2 to 79%, 83% and 93% was found when co-administered with 25, 50 and 100 μM indomethacin, respectively. Compared to ketotifen alone, an increase in percentage inhibition of SARS-CoV-2 to 68%, 68% and 92% was found when co-administered with 25, 50 and 100 μM naproxen, respectively. For both drug combinations the observations suggest an additive or synergistic effect, compared to administering the drugs alone. No cytotoxic effects were observed for the administered dosages of ketotifen, naproxen, and indomethacin. Further research is warranted to investigate the efficacy of the combination of ketotifen with indomethacin (SJP-002C) or naproxen in the treatment of SARS-CoV-2 infection in humans.

Keywords: COVID-19; SARS-CoV-2; SJP-002C; antiviral; drug repurposing; indomethacin; ketotifen; mast cell stabilizer; naproxen.

Conflict of interest statement

Over the past 36 months, A.S. has held research grants from Abbott Nutrition, Arla Foods, Bayer, BioRevive, DuPont, Fonterra, Kemin Foods, Nestlé, Nutricia-Danone, Verdure Sciences. He has acted as a consultant/expert advisor to Arepa Nootroptics, Bayer, Coca-Cola, Danone, Naturex, Nestlé, Pfizer, Sanofi, Sen-Jam Pharmaceutical, and has received travel/hospitality/speaker fees from Bayer, Sanofi, and Verdure Sciences. Over the past 36 months, J.C.V. has held grants from Janssen and Sequential Medicine, and acted as a consultant/expert advisor to More Labs, Red Bull, Sen-Jam Pharmaceutical, Toast!, Tomo, and ZBiotics. T.A.D. is partner and Head of Product Development and Regulatory Affairs of Sen-Jam Pharmaceutical. J.M.I. is founder and Head of Clinical Development of Sen-Jam Pharmaceutical. L.M. was intern at Sen-Jam Pharmaceutical when the study was conducted. P.K. has nothing to declare. This independent study was conducted by 360biolabs, without involvement of the authors and the funder. The funder was involved in the design of the study, interpretation of data, writing of the manuscript, and in the decision to publish the results.

Figures

Figure 1
Figure 1
COVID-19 disease progression.
Figure 2
Figure 2
Dose–response curves for naproxen and ketotifen, alone and in combination. EC50 is the effective concentration of product, i.e., the concentration at which virus infection is inhibited by 50 percent.
Figure 3
Figure 3
Dose–response curves for indomethacin and ketotifen, alone and in combination.

References

    1. Zumla A., Chan J., Azhar A., Hui D., Yuen Y. Coronaviruses—drug discovery and therapeutic options. Nature Rev. 2016;15:327–347. doi: 10.1038/nrd.2015.37.
    1. Pal M., Berhanu G., Desalegn C., Kandi V. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): An update. Cureus. 2020;12:e7423. doi: 10.7759/cureus.7423.
    1. Ksiazek T., Erdman D., Goldsmith C., Zaki S., Peret T., Emery S., Tong S., Urbani C., Comer J., Lim W., et al. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 2003;348:1953–1966. doi: 10.1056/NEJMoa030781.
    1. ECDC Technical Report: Interim Guidance for Environmental Cleaning in Non-Healthcare Facilities Exposed to SARS-CoV-2. European Center for Disease Prevention and Control; Solna, Sweden: 2020.
    1. Paules C., Marston H., Fauci A. Coronavirus Infections—More Than Just the Common Cold. JAMA. 2020;323:707–708. doi: 10.1001/jama.2020.0757.
    1. V’kovski P., Kratzel A., Steiner S., Stalder H., Thiel V. Coronavirus biology and replication: Implications for SARS-CoV-2. Nat. Rev. Microbiol. 2020 doi: 10.1038/s41579-020-00468-6.
    1. Marinella M. Indomethacin and resveratrol as potential treatment adjuncts for SARS-CoV-2/COVID-19. Int. J. Clin. Pract. 2020;74:e13535. doi: 10.1111/ijcp.13535.
    1. Guo Y.R., Cao Q.D., Hong Z.S., Tan Y., Chen S., Jin H., Tan K., Wang D., Yan Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Military Med. Res. 2020;7:1–10. doi: 10.1186/s40779-020-00240-0.
    1. Del Valle D.M., Kim-Schulze S., Huang H.H., Beckmann N., Nirenberg S., Wang B., Lavin Y., Swartz T., Madduri D., Stock A., et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat. Med. 2020;26:1636–1643. doi: 10.1038/s41591-020-1051-9.
    1. Dauby N., Bottieau E. The unfinished story of hydroxychloroquine in COVID-19: The right anti-inflammatory dose at the right moment? Int. J. Infect. Dis. 2021;103:1–2. doi: 10.1016/j.ijid.2020.10.032.
    1. Tanacan A., Yazihan N., Erol S., Anuk A., Yetiskin F., Biriken D., Ozgu-Erdinc A., Keskin H., Tekin O., Sahin D. The impact of COVID-19 infection on the cytokine profile of pregnant women: A prospective case-control study. Cytokine. 2021;140:155431. doi: 10.1016/j.cyto.2021.155431.
    1. Karki R., Karki R., Sharma B., Tuladhar S., Williams E., Zalduondo L., Samir P., Zheng M., Sundaram B., Banoth B., et al. Synergism of TNF-a and IFN-g Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARSCoV-2 Infection and Cytokine Shock Syndromes. Cell. 2021;184:149–168. doi: 10.1016/j.cell.2020.11.025.
    1. Hojyo S., Hojyo S., Uchida M., Tanaka K., Hasebe R., Tanaka Y., Murakami M., Hirano T. How COVID-19 induces cytokine storm with high mortality. Inflamm. Regen. 2020;40:37. doi: 10.1186/s41232-020-00146-3.
    1. Mustafa M., Abdelmoneim A., Mahmoud E., Makhawi A. Cytokine storm in COVID-19 patients, its impact on organs and potential treatment by QTY code-designed detergent-free chemokine receptors. Mediators Inflam. 2020;2020:8198963. doi: 10.1155/2020/8198963.
    1. Abdulkhaleq L.A., Assi M.A., Abdullah R., Zamri-Saad M., Taufiq-Yap Y.H., Hezmee M.N.M. The crucial roles of inflammatory mediators in inflammation: A review. Vet. World. 2020;11:627–635. doi: 10.14202/vetworld.2018.627-635.
    1. McEvoy N., McElvaney O., Carroll T., Murphy M., Dunlea D., Choileain O., Clarke J., O’Connor E., Hogan G., Ryan D., et al. Characterization of the inflammatory response to severe COVID-19 illness. Am. J. Respir. Crit. Care Med. 2020;202:812–821.
    1. Li A., Garcia-Bengochea Y., Stechel R., Azari B. Management of COVID-19 myopericarditis with reversal of cardiac dysfunction after blunting of cytokine storm: A case report. Eur. Heart J. Case Rep. 2020;4:1–6. doi: 10.1093/ehjcr/ytaa224.
    1. Food and Drug Administration (FDA) Guidance for Industry. Antiviral Product Development—Conducting and Submitting Virology Studies to the Agency. U.S. Department of Health and Human Services, FDA, Center for Drug Evaluation and Research (CDER); Silver Spring, MA, USA: 2006.
    1. St John A.L., Rathore A.P.S., Raghavan B., Ng M.L., Abraham S.N. Contributions of mast cells and vasoactive products, leukotrienes and chymase, to dengue virus-induced vascular leakage. eLife. 2013;2:e00481. doi: 10.7554/eLife.00481.
    1. Munoz-Fontela C. Animal models for COVID-19. Nature. 2020;586:509–515. doi: 10.1038/s41586-020-2787-6.
    1. Disodium cromoglycate. Lancet. 1972;2:1299.
    1. Theoharides T.C., Sieghart W., Greengard P., Douglas W.W. Antiallergic drug cromolyn may inhibit histamine secretion by regulating phosphorylation of a mast cell protein. Science. 1980;207:80–82. doi: 10.1126/science.6153130.
    1. McClean S.P., Arreaza E.E., Lett-Brown M.A., Grant J.A. Refractory cholinergic urticaria successfully treated with ketotifen. J. Allergy Clin. Immunol. 1989;83:738–741. doi: 10.1016/0091-6749(89)90008-0.
    1. Pauwels R., Balzarini J., Baba M., Snoeck R., Schols D., Herdewijn P., Desmyter J., De Clercq E. Rapid and automated tetrazoliμM-based colorimetric assay for the detection of anti-HIV compounds. J. Virol. Methods. 1988;20:309–321. doi: 10.1016/0166-0934(88)90134-6.
    1. Reed L.J., Muench H. A simple method of estimating fifty percent endpoints. Am. J. Hyg. 1938;27:493–497.
    1. Lejal N., Tarus B., Bouguyon E., Chenavas S., Bertho N., Delmas B., Ruigrok R.W.H., Di Primo C., Slama-Schwok A. structure-based discovery of the novel antiviral properties of naproxen against the nucleoprotein of influenza A virus. Antimicrob. Agents Chemother. 2013;57:2231–2241. doi: 10.1128/AAC.02335-12.
    1. Zheng W., Fan W., Zhang S., Jiao P., Shang Y., Cui L., Mahesutihan M., Li J., Wang D., Fu Gao G., et al. Naproxen exhibits broad anti-influenza virus activity in mice by impeding viral nucleoprotein nuclear export. Cell Rep. 2019;27:1875–1885. doi: 10.1016/j.celrep.2019.04.053.
    1. Amici C., Di Caro A., Ciucci A., Chiappa L., Castilletti C., Martella V., Decaro N., Buonavoglia C., Capobianchi M.R., Santoro M.G. Indomethacin has a potent antiviral activity against SARS coronavirus. Antivir Ther. 2006;11:1021–1030.
    1. Gomeni R., Xu T., Gao X., Bressolle-Gomeni F. Model based approach for estimating the dosage regimen of indomethacin a potential antiviral treatment of patients infected with SARS CoV-2. J. Pharmacokin. Pharmacodyn. 2020;47:189–198. doi: 10.1007/s10928-020-09690-4.
    1. Terracciano R., Preianò M., Fregola A., Pelaia C., Montalcini T., Savino R. Mapping the SARS-CoV-2–host protein–protein interactome by affinity purification mass spectrometry and proximity-dependent biotin labeling: A rational and straightforward route to discover host-directed anti-SARS-CoV-2 therapeutics. Int. J. Mol. Sci. 2021;22:532. doi: 10.3390/ijms22020532.
    1. Mostafa A., Kandeil A., Elshaier Y., Kutkat O., Moatasim Y., Rashad A., Shehata M., Gomaa M., Mahrous N., Mahmoud S., et al. FDA-Approved drugs with potent In vitro antiviral activity against Severe Acute Respiratory Syndrome Coronavirus 2. Pharmaceuticals. 2020;13:443. doi: 10.3390/ph13120443.
    1. Baradaran H., Hamishehkar H., Rezaee H. NSAIDs and COVID-19: A new challenging area. Pharm. Sci. 2020;26:S49–S51. doi: 10.34172/PS.2020.41.
    1. Hung I.F.N., To K.K.W., Chan J.F.W., Cheng V.C.C., Liu K.S.H., Tam A., Chan T.-C., Zhang A.J., Li P., Wong T.-L., et al. Efficacy of clarithromycin-naproxen-oseltamivir combination in the treatment of patients hospitalized for influenza A (H3N2) infection: An open-label randomized, controlled, phase IIb/III trial. Chest. 2017;151:1069–1080. doi: 10.1016/j.chest.2016.11.012.
    1. Hanly P.J., Roberts D., Dobson K., Light R.B. Effects of indomethacin on arterial oxygenation in critically ill patients with severe distress syndrome. Lancet. 1987;1:351–354. doi: 10.1016/S0140-6736(87)91727-2.
    1. Steinberg S.M., Rodriguez J.L., Bitzer L.G., Rhee J.W., Kelley K.A., Flint L.M. Indomethacin treatment of human adult respiratory distress syndrome. Circ. Shock. 1990;30:375–384.
    1. Sacerdote P., Carrabba M., Galante A., Pisati R., Manfredi B., Panerai A.E. Plasma and synovial fluid interleukin-1, interleukin-6 and substance P concentrations in rheumatoid arthritis patients: Effect of the nonsteroidal anti-inflammatory drugs indomethacin, diclofenac and naproxen. Inflamm. Res. 1995;44:486–490. doi: 10.1007/BF01837915.
    1. Bour A.M., Westendorp R.G., Laterveer J.C., Bollen E.L., Remarque E.J. Interaction of indomethacin with cytokine production in whole blood. Potential mechanism for a brain-protective effect. Exp. Gerontol. 2000;35:1017–1024. doi: 10.1016/S0531-5565(00)00128-5.
    1. Wu R., Wang L., Kuo H., Shannar A., Peter R., Chou P., Li S., Hudlikar R., Liu X., Liu Z., et al. An update on current therapeutic drugs treating COVID-19. Curr. Pharmacol. Rep. 2020;6:56–70. doi: 10.1007/s40495-020-00216-7.
    1. Al-Horani R., Kar S. Potential anti-SARS-CoV-2 therapeutics that target the post-entry stages of the viral life cycle: A comprehensive review. Viruses. 2020;12:1092. doi: 10.3390/v12101092.
    1. Robb C., Goepp M., Rossi A., Yao C. Non-steroidal anti-inflammatory drugs, prostaglandins, and COVID-19. Br. J. Pharmacol. 2020;177:4899–4920. doi: 10.1111/bph.15206.
    1. Dilly S., Fotso A., Lejal N., Zedda G., Chebbo M., Rahman F., Companys S., Bertrand H., Vidic J., Noiray M., et al. From Naproxen Repurposing to Naproxen Analogues and Their Antiviral Activity against Influenza A Virus. J. Med. Chem. 2018;61:7202–7217. doi: 10.1021/acs.jmedchem.8b00557.
    1. Enkirch T., Sauber S., Anderson D.E., Gan E.S., Kenanov D., Maurer-Stroh S., von Messling V. Identification and in vivo efficacy assessment of approved orally bioavailable human host protein-targeting drugs with broad anti-influenza A activity. Front Immunol. 2019;10:1097. doi: 10.3389/fimmu.2019.01097.
    1. Hu Y., Jin Y., Han D., Zhang G., Cao S., Xie J., Xue J., Li Y., Meng D., Fan X., et al. Mast cell-induced lung injury in mice infected with H5N1 influenza virus. J. Virol. 2012;86:3347–3356. doi: 10.1128/JVI.06053-11.
    1. Eliakim R., Karmeli F., Rachmilewitz D. Ketotifen-old drug, new indication: Reduction of gastric mucosal injury. Scand J. Gastroenterol. 1993;28:202–204. doi: 10.3109/00365529309096072.
    1. Narendranathan M., Chitra P., Kurien M., Philip J. Ketotifen in prevention of indomethacin-induced gastropathy. Indian J. Gastroenterol. 1999;18:76–77.
    1. Terrier O., Dilly S., Pizzorno A., Henri J., Berenbaum F., Lina B., Fève B., Adnet F., Sabbah M., Rosa-Calatrava M., et al. Broad-spectrum antiviral activity of naproxen: From influenza A to SARS-CoV-2 coronavirus. BioRxiv. 2020 doi: 10.1101/2020.04.30.069922.
    1. Xu T., Gao X., Wu Z., Selinger D.W., Zhou Z. Indomethacin has a potent antiviral activity against SARS CoV-2 in vitro and canine coronavirus in vivo. BioRxiv. 2020 doi: 10.1101/2020.04.01.017624.

Source: PubMed

3
Iratkozz fel