Assembly and routing of von Willebrand factor variants: the requirements for disulfide-linked dimerization reside within the carboxy-terminal 151 amino acids

J Voorberg, R Fontijn, J Calafat, H Janssen, J A van Mourik, H Pannekoek, J Voorberg, R Fontijn, J Calafat, H Janssen, J A van Mourik, H Pannekoek

Abstract

The precursor protein of von Willebrand factor (pro-vWF) consists of four different repeated domains, denoted D1-D2-D'-D3-A1-A2-A3-D4-B1-B2-B3-C1-C2, followed by a carboxy-terminal region of 151 amino acids without obvious internal homology. Previously, we have shown the requirement of the domains D1, D2, D', and D3 of pro-vWF in the assembly of pro-vWF dimers into multimers. Here, we define the domains of vWF involved in dimerization, using deletion mutants of full-length vWF cDNA transiently expressed in monkey kidney COS-1 cells. It is shown that only the carboxy-terminal 151 amino acid residues of vWF are required for dimerization. In addition, by analyzing a construct, encoding only the carboxy-terminal 151 amino acids of vWF, we find that the formation of dimers is an event independent of other domains present on pro-vWF, such as the domains C1 and C2 previously suggested to be involved in dimerization. Furthermore, it is shown that a deletion mutant of vWF, lacking the carboxy-terminal 151 amino acid residues and thus unable to dimerize, is proteolytically degraded in the ER. In contrast, a mutant protein, composed only of the carboxy-terminal 151 amino acids of vWF, and able to dimerize, is transported from the ER in a similar fashion as wild-type vWF. The role of the ER in the assembly of vWF is discussed with regard to the data presented in this paper on the intracellular fate of several vWF mutant proteins.

References

    1. Gene. 1982 Oct;19(3):269-76
    1. Mol Biol Rep. 1990 Nov;14(4):265-75
    1. Biochim Biophys Acta. 1983 Sep 22;763(2):160-8
    1. J Cell Biol. 1984 Dec;99(6):2123-30
    1. Nucleic Acids Res. 1984 Dec 21;12(24):9441-56
    1. Biochim Biophys Acta. 1985 Mar 21;844(3):306-13
    1. Annu Rev Biochem. 1985;54:631-64
    1. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6394-8
    1. J Cell Biol. 1986 May;102(5):1558-66
    1. Cell. 1986 Jul 18;46(2):185-90
    1. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4670-4
    1. Biochemistry. 1986 Jun 3;25(11):3164-71
    1. Biochemistry. 1986 Jun 3;25(11):3171-84
    1. Cell. 1986 Sep 12;46(6):939-50
    1. EMBO J. 1986 Aug;5(8):1839-47
    1. J Biol Chem. 1986 Nov 25;261(33):15679-89
    1. Nature. 1986 Nov 20-26;324(6094):270-3
    1. Cell. 1987 Mar 13;48(5):899-907
    1. Biochem Biophys Res Commun. 1987 Apr 29;144(2):876-82
    1. EMBO J. 1987 Oct;6(10):2885-90
    1. J Cell Biol. 1987 Dec;105(6 Pt 2):2923-31
    1. J Biol Chem. 1988 Feb 15;263(5):2107-10
    1. Cell. 1988 Jan 29;52(2):229-36
    1. Biochemistry. 1987 Dec 15;26(25):8099-109
    1. Cell. 1988 Apr 22;53(2):197-209
    1. J Biol Chem. 1988 Jun 15;263(17):7921-4
    1. Cell. 1988 Jul 15;54(2):209-20
    1. J Cell Biol. 1988 Jul;107(1):89-99
    1. Annu Rev Cell Biol. 1988;4:257-88
    1. J Biol Chem. 1989 Sep 25;264(27):15824-8
    1. Nature. 1970 Aug 15;227(5259):680-5
    1. Thromb Res. 1978 Jul;13(1):15-24
    1. Blood. 1980 Jun;55(6):1056-9
    1. Blood. 1981 Jun;57(6):1140-3
    1. Cell. 1989 Nov 17;59(4):591-601
    1. Annu Rev Cell Biol. 1989;5:277-307
    1. J Cell Biol. 1989 Dec;109(6 Pt 2):3315-24
    1. EMBO J. 1990 Mar;9(3):797-803
    1. J Biol Chem. 1990 Aug 15;265(23):14001-7
    1. Nucleic Acids Res. 1983 Mar 11;11(5):1295-308

Source: PubMed

3
Iratkozz fel