Thiopurine Enhanced ALL Maintenance (TEAM): study protocol for a randomized study to evaluate the improvement in disease-free survival by adding very low dose 6-thioguanine to 6-mercaptopurine/methotrexate-based maintenance therapy in pediatric and adult patients (0-45 years) with newly diagnosed B-cell precursor or T-cell acute lymphoblastic leukemia treated according to the intermediate risk-high group of the ALLTogether1 protocol

Linea Natalie Toksvang, Bodil Als-Nielsen, Christopher Bacon, Ruta Bertasiute, Ximo Duarte, Gabriele Escherich, Elín Anna Helgadottir, Inga Rinvoll Johannsdottir, Ólafur G Jónsson, Piotr Kozlowski, Cecilia Langenskjöld, Kristi Lepik, Riitta Niinimäki, Ulrik Malthe Overgaard, Mari Punab, Riikka Räty, Heidi Segers, Inge van der Sluis, Owen Patrick Smith, Marion Strullu, Goda Vaitkevičienė, Hilde Skuterud Wik, Mats Heyman, Kjeld Schmiegelow, Linea Natalie Toksvang, Bodil Als-Nielsen, Christopher Bacon, Ruta Bertasiute, Ximo Duarte, Gabriele Escherich, Elín Anna Helgadottir, Inga Rinvoll Johannsdottir, Ólafur G Jónsson, Piotr Kozlowski, Cecilia Langenskjöld, Kristi Lepik, Riitta Niinimäki, Ulrik Malthe Overgaard, Mari Punab, Riikka Räty, Heidi Segers, Inge van der Sluis, Owen Patrick Smith, Marion Strullu, Goda Vaitkevičienė, Hilde Skuterud Wik, Mats Heyman, Kjeld Schmiegelow

Abstract

Background: A critical challenge in current acute lymphoblastic leukemia (ALL) therapy is treatment intensification in order to reduce the relapse rate in the subset of patients at the highest risk of relapse. The year-long maintenance phase is essential in relapse prevention. The Thiopurine Enhanced ALL Maintenance (TEAM) trial investigates a novel strategy for ALL maintenance.

Methods: TEAM is a randomized phase 3 sub-protocol to the ALLTogether1 trial, which includes patients 0-45 years of age with newly diagnosed B-cell precursor or T-cell ALL, and stratified to the intermediate risk-high (IR-high) group, in 13 European countries. In the TEAM trial, the traditional methotrexate (MTX)/6-mercaptopurine (6MP) maintenance backbone (control arm) is supplemented with low dose (2.5-12.5 mg/m2/day) oral 6-thioguanine (6TG) (experimental arm), while the starting dose of 6MP is reduced from 75 to 50 mg/m2/day. A total of 778 patients will be included in TEAM during ~ 5 years. The study will close when the last included patient has been followed for 5 years from the end of induction therapy. The primary objective of the study is to significantly improve the disease-free survival (DFS) of IR-high ALL patients by adding 6TG to 6MP/MTX-based maintenance therapy. TEAM has 80% power to detect a 7% increase in 5-year DFS through a 50% reduction in relapse rate. DFS will be evaluated by intention-to-treat analysis. In addition to reducing relapse, TEAM may also reduce hepatotoxicity and hypoglycemia caused by high levels of methylated 6MP metabolites. Methotrexate/6MP metabolites will be monitored and low levels will be reported back to clinicians to identify potentially non-adherent patients.

Discussion: TEAM provides a novel strategy for maintenance therapy in ALL with the potential of improving DFS through reducing relapse rate. Potential risk factors that have been considered include hepatic sinusoidal obstruction syndrome/nodular regenerative hyperplasia, second cancer, infection, and osteonecrosis. Metabolite monitoring can potentially increase treatment adherence in both treatment arms.

Trial registration: EudraCT, 2018-001795-38. Registered 2020-05-15, Clinicaltrials.gov , NCT04307576 . Registered 2020-03-13, https://ichgcp.net/clinical-trials-registry/NCT04307576.

Keywords: 6-mercaptopurine; 6-thioguanine; Acute lymphoblastic leukemia; DNA-TG; Maintenance; Methotrexate; Thiopurines.

Conflict of interest statement

The authors declare no conflict of interest.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Intracellular metabolism of thiopurines and methotrexate. The tiopurines 6-mercaptopurine (6MP) and 6-thioguanine (6TG) are converted to thiguanine nucleotides (TGN) through sequential intracellular enzymatical steps. TGN are then incorporated into DNA (DNA-TG). The enzyme thiopurine methyl transferase (TPMT) creates methylated 6MP metabolites, which are associated with hepatotoxicity. Methotrexate (MTX) and some of the methylated 6MP metabolites inhibit purine de novo synthesis, thereby enhancing incorporation of TGN into DNA. Thus, DNA-TG is a downstream metabolite that integrates all upstream thiopurine and MTX metabolites

References

    1. Hunger SP, Mullighan CG. Acute lymphoblastic leukemia in children. N Engl J Med. 2015;373:1541–1552. doi: 10.1056/NEJMra1400972.
    1. Oskarsson T, Söderhäll S, Arvidson J, Forestier E, Montgomery S, Bottai M, et al. Relapsed childhood acute lymphoblastic leukemia in the Nordic countries: prognostic factors, treatment and outcome. Haematologica. 2016;101:68–76. doi: 10.3324/haematol.2015.131680.
    1. Roy A, Cargill A, Love S, Moorman AV, Stoneham S, Lim A, et al. Outcome after first relapse in childhood acute lymphoblastic leukaemia - lessons from the United Kingdom R2 trial. Br J Haematol. 2005;130:67–75. doi: 10.1111/j.1365-2141.2005.05572.x.
    1. Fielding AK, Richards SM, Chopra R, Lazarus HM, Litzow MR, Buck G, et al. Outcome of 609 adults after relapse of acute lymphoblastic leukemia (ALL); an MRC UKALL12/ECOG 2993 study. Blood. 2007;109:944–950. doi: 10.1182/blood-2006-05-018192.
    1. Gökbuget N, Stanze D, Beck J, Diedrich H, Horst HA, Hüttmann A, et al. Outcome of relapsed adult lymphoblastic leukemia depends on response to salvage chemotherapy, prognostic factors, and performance of stem cell transplantation. Blood. 2012;120:2032–2041. doi: 10.1182/blood-2011-12-399287.
    1. Kantarjian H, Stein A, Gökbuget N, Fielding AK, Schuh AC, Ribera J-M, et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med. 2017;376:836–847. doi: 10.1056/NEJMoa1609783.
    1. Kato M, Ishimaru S, Seki M, Yoshida K, Shiraishi Y, Chiba K, et al. Long-term outcome of 6-month maintenance chemotherapy for acute lymphoblastic leukemia in children. Leukemia. 2017;31:580–584. doi: 10.1038/leu.2016.274.
    1. Relling MV, Hancock ML, Boyett JM, Pui C-H, Evans WE. Prognostic importance of 6-Mercaptopurine dose intensity in acute lymphoblastic leukemia. Blood. 1999;93:2817–2823. doi: 10.1182/blood.V93.9.2817.
    1. Bhatia S, Landier W, Hageman L, Chen Y, Kim H, Sun CL, et al. Systemic exposure to thiopurines and risk of relapse in children with acute lymphoblastic leukemia: a children’s oncology group study. JAMA Oncol. 2015;1:287–295. doi: 10.1001/jamaoncol.2015.0245.
    1. Schmiegelow K, Nielsen SN, Frandsen TL, Nersting J. Mercaptopurine/methotrexate maintenance therapy of childhood acute lymphoblastic leukemia: clinical facts and fiction. J Pediatr Hematol Oncol. 2014;36:503–517. doi: 10.1097/MPH.0000000000000206.
    1. Schmiegelow K, Nersting J, Nielsen SN, Heyman M, Wesenberg F, Kristinsson J, et al. Maintenance therapy of childhood acute lymphoblastic leukemia revisited-should drug doses be adjusted by white blood cell, neutrophil, or lymphocyte counts? Pediatr Blood Cancer. 2016;63:2104–2111. doi: 10.1002/pbc.26139.
    1. Meyer JA, Wang J, Hogan LE, Yang JJ, Dandekar S, Patel JP, et al. Relapse-specific mutations in NT5C2 in childhood acute lymphoblastic leukemia. Nat Genet. 2013;45:290–294. doi: 10.1038/ng.2558.
    1. Li B, Li H, Bai Y, Kirschner-Schwabe R, Yang JJ, Chen Y, et al. Negative feedback-defective PRPS1 mutants drive thiopurine resistance in relapsed childhood ALL. Nat Med. 2015;21:563–571. doi: 10.1038/nm.3840.
    1. Saliba J, Evensen NA, Meyer JA, Newman D, Nersting J, Narang S, et al. Feasibility of monitoring peripheral blood to detect emerging clones in children with acute lymphoblastic leukemia†. Pediatr Blood Cancer. 2020;67:e28306. doi: 10.1002/pbc.28306.
    1. Karran P, Attard N. Thiopurines in current medical practice: molecular mechanisms and contributions to therapy-related cancer. Nat Rev Cancer. 2008;8:24–36. doi: 10.1038/nrc2292.
    1. Evensen NA, Madhusoodhan PP, Meyer J, Saliba J, Chowdhury A, Araten DJ, et al. MSH6 haploinsufficiency at relapse contributes to the development of thiopurine resistance in pediatric B-lymphoblastic leukemia. Haematologica. 2018;103:830–839. doi: 10.3324/haematol.2017.176362.
    1. Nersting J, Nielsen SN, Grell K, Paerregaard M, Abrahamsson J, Lund B, et al. Methotrexate polyglutamate levels and co-distributions in childhood acute lymphoblastic leukemia maintenance therapy. Cancer Chemother Pharmacol. 2019;83:53–60. doi: 10.1007/s00280-018-3704-7.
    1. Nielsen SN, Grell K, Nersting J, Frandsen TL, Hjalgrim LL, Schmiegelow K. Measures of 6-mercaptopurine and methotrexate maintenance therapy intensity in childhood acute lymphoblastic leukemia. Cancer Chemother Pharmacol. 2016;78:983–994. doi: 10.1007/s00280-016-3151-2.
    1. Schmiegelow K, Björk O, Glomstein A, Gustafsson G, Keiding N, Kristinsson J, et al. Intensification of mercaptopurine/methotrexate maintenance chemotherapy may increase the risk of relapse for some children with acute lymphoblastic leukemia. J Clin Oncol. 2003;21:1332–1339. doi: 10.1200/JCO.2003.04.039.
    1. Nielsen SN, Grell K, Nersting J, Abrahamsson J, Lund B, Kanerva J, et al. DNA-thioguanine nucleotide concentration and relapse-free survival during maintenance therapy of childhood acute lymphoblastic leukaemia (NOPHO ALL2008): a prospective substudy of a phase 3 trial. Lancet Oncol. 2017;18:515–524. doi: 10.1016/S1470-2045(17)30154-7.
    1. Jacobsen JH, Schmiegelow K, Nersting J. Liquid chromatography-tandem mass spectrometry quantification of 6-thioguanine in DNA using endogenous guanine as internal standard. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;881–882:115–118. doi: 10.1016/j.jchromb.2011.11.032.
    1. Toksvang LN, Grell K, Nersting J, Degn M, Nielsen SN, Abrahamsson J, et al. DNA-thioguanine concentration and relapse risk in children and young adults with acute lymphoblastic leukemia: an IPD meta-analysis. Leukemia. 2022;36:33–41. doi: 10.1038/s41375-021-01182-9.
    1. Larsen RH, Utke Rank C, Grell K, Nørgaard Møller L, Malthe Overgaard U, Kampmann P, et al. Increments in DNA-thioguanine level during thiopurine-enhanced maintenance therapy of acute lymphoblastic leukemia. Haematologica. 2021;106:2824–2833.
    1. Erb N, Harms DO, Janka-Schaub G. Pharmacokinetics and metabolism of thiopurines in children with acute lymphoblastic leukemia receiving 6-thioguanine versus 6-mercaptopurine. Cancer Chemother Pharmacol. 1998;42:266–272. doi: 10.1007/s002800050816.
    1. Toksvang LN, Grell K, Nielsen SN, Nersting J, Murdy D, Moorman AV, et al. DNA-TG and risk of sinusoidal obstruction syndrome in childhood acute lymphoblastic leukemia. Leukemia. 2022;36:555–557. doi: 10.1038/s41375-021-01420-0.
    1. Nygaard U, Toft N, Schmiegelow K. Methylated metabolites of 6-mercaptopurine are associated with hepatotoxicity. Clin Pharmacol Ther. 2004;75:274–281. doi: 10.1016/j.clpt.2003.12.001.
    1. Melachuri S, Gandrud L, Bostrom B. The association between fasting hypoglycemia and methylated mercaptopurine metabolites in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2014;61:1003–1006. doi: 10.1002/pbc.24928.
    1. Harms DO, Gobel U, Spaar HJ, Graubner UB, Jorch N, Gutjahr P, et al. Thioguanine offers no advantage over mercaptopurine in maintenance treatment of childhood ALL: results of the randomized trial COALL-92. Blood. 2003;102:2736–2740. doi: 10.1182/blood-2002-08-2372.
    1. Vora A, Mitchell CD, Lennard L, Eden TOB, Kinsey SE, Lilleyman J, et al. Toxicity and efficacy of 6-thioguanine versus 6-mercaptopurine in childhood lymphoblastic leukaemia: a randomised trial. Lancet. 2006;368:1339–1348. doi: 10.1016/S0140-6736(06)69558-5.
    1. Stork LC, Matloub Y, Broxson E, La M, Yanofsky R, Sather H, et al. Oral 6-mercaptopurine versus oral 6-thioguanine and veno-occlusive disease in children with standard-risk acute lymphoblastic leukemia: report of the Children’s oncology group CCG-1952 clinical trial. Blood. 2010;115:2740–2748. doi: 10.1182/blood-2009-07-230656.
    1. Escherich G, Richards S, Stork LC, Vora AJ. Meta-analysis of randomised trials comparing thiopurines in childhood acute lymphoblastic leukaemia. Leukemia. 2011;25:953–959. doi: 10.1038/leu.2011.37.
    1. Toksvang LN, Schmidt MS, Arup S, Larsen RH, Frandsen TL, Schmiegelow K, et al. Hepatotoxicity during 6-thioguanine treatment in inflammatory bowel disease and childhood acute lymphoblastic leukaemia: a systematic review. PLoS One. 2019;14:1–17. doi: 10.1371/journal.pone.0212157.
    1. Pires NMM, Pols TWH, De Vries MR, Van Tiel CM, Bonta PI, Vos M, et al. Activation of nuclear receptor Nur77 by 6-mercaptopurine protects against neointima formation. Circulation. 2007;115:493–500. doi: 10.1161/CIRCULATIONAHA.106.626838.
    1. Yoo YG, Na TY, Yang WK, Kim HJ, Lee IK, Kong G, et al. 6-Mercaptopurine, an activator of Nur77, enhances transcriptional activity of HIF-1α resulting in new vessel formation. Oncogene. 2007;26:3823–3834. doi: 10.1038/sj.onc.1210149.
    1. Pols TWH, Bonta PI, Pires NMM, Otermin I, Vos M, De Vries MR, et al. 6-Mercaptopurine inhibits atherosclerosis in apolipoprotein e*3-Leiden transgenic mice through atheroprotective actions on monocytes and macrophages. Arterioscler Thromb Vasc Biol. 2010;30:1591–1597. doi: 10.1161/ATVBAHA.110.205674.
    1. Schmiegelow K, Al-Modhwahi I, Andersen MK, Behrendtz M, Forestier E, Hasle H, et al. Methotrexate/6-mercaptopurine maintenance therapy influences the risk of a second malignant neoplasm after childhood acute lymphoblastic leukemia: results from the NOPHO ALL-92 study. Blood. 2009;113:6077–6084. doi: 10.1182/blood-2008-11-187880.
    1. Toksvang LN, Andrés-Jensen L, Rank CU, Niinimäki R, Nersting J, Nielsen SN, et al. Maintenance therapy and risk of osteonecrosis in children and young adults with acute lymphoblastic leukemia: a NOPHO ALL2008 sub-study. Cancer Chemother Pharmacol. 2021;88:911–917. doi: 10.1007/s00280-021-04316-z.

Source: PubMed

3
Iratkozz fel