Diagnostic effectiveness of quantitative [¹⁸F]flutemetamol PET imaging for detection of fibrillar amyloid β using cortical biopsy histopathology as the standard of truth in subjects with idiopathic normal pressure hydrocephalus

Ville Leinonen, Juha O Rinne, Dean F Wong, David A Wolk, John Q Trojanowski, Paul F Sherwin, Adrian Smith, Kerstin Heurling, Mandy Su, Igor D Grachev, Ville Leinonen, Juha O Rinne, Dean F Wong, David A Wolk, John Q Trojanowski, Paul F Sherwin, Adrian Smith, Kerstin Heurling, Mandy Su, Igor D Grachev

Abstract

Introduction: PET imaging of amyloid-β (Aβ) in vivo holds promise for aiding in earlier diagnosis and intervention in Alzheimer's disease (AD) and mild cognitive impairment. AD-like Aβ pathology is a common comorbidity in patients with idiopathic normal pressure hydrocephalus (iNPH). Fifty patients with iNPH needing ventriculo-peritoneal shunting or intracranial pressure monitoring underwent [18F]flutemetamol PET before (N = 28) or after (N = 22) surgery. Cortical uptake of [18F]flutemetamol was assessed visually by blinded reviewers, and also quantitatively via standard uptake value ratio (SUVR) in specific neocortical regions in relation to either cerebellum or pons reference region: the cerebral cortex of (prospective studies) or surrounding (retrospective studies) the biopsy site, the contralateral homolog, and a calculated composite brain measure. Aβ pathology in the biopsy specimen (standard of truth [SoT]) was measured using Bielschowsky silver and thioflavin S plaque scores, percentage area of grey matter positive for monoclonal antibody to Aβ (4G8), and overall pathology impression. We set out to find (1) which pair(s) of PET SUVR and pathology SoT endpoints matched best, (2) whether quantitative measures of [18F]flutemetamol PET were better for predicting the pathology outcome than blinded image examination (BIE), and (3) whether there was a better match between PET image findings in retrospective vs. prospective studies.

Results: Of the 24 possible endpoint/SoT combinations, the one with composite-cerebellum SUVR and SoT based on overall pathology had the highest Youden index (1.000), receiver operating characteristic area under the curve (1.000), sensitivity (1.000), specificity (1.000), and sum of sensitivity and specificity for the pooled data as well as for the retrospective and prospective studies separately (2.00, for all 3). The BIE sum of sensitivity and specificity, comparable to that for quantitation, was highest using Bielschowsky silver as SoT for all SUVRs (ipsilateral, contralateral, and composite, for both reference regions). The composite SUVR had a 100% positive predictive value (both reference regions) for the overall pathology diagnosis. All SUVRs had a 100% negative predictive value for the Bielschowsky silver result.

Conclusion: Bielschowsky silver stain and overall pathology judgment showed the strongest associations with imaging results.

Figures

Figure 1
Figure 1
Examples of abnormal and normal [18F]flutemetamol positron emission tomography (PET) and corresponding magnetic resonance (MR) or computed tomography (CT) imaging and histopathology. Panel a) [18F]Flutemetamol PET imaging correlates with histopathology (Study D). Amyloid plaques were determined in biopsy samples by 4G8 imunohistochemistry (IHC). Neuritic plaques were identified in serial sections using a modified Bielschowsky silver stain. Panel b) [18F]Flutemetamol PET images were obtained either retrospectively after biopsy (Studies A and C) or prospectively before biopsy (Studies B and D). Small cortical biopsies were taken during shunt placement and histopathology was correlated to standard uptake value ratio (SUVR) measures in volumes of interest (VOIs) either ipsilateral or contralateral to the site of biopsy.
Figure 2
Figure 2
Receiver-operator curves by pathology standard of truth for each SUVR type: a) 4G8, b) Bielschowsky silver stain, c) Thioflavin S, and d) Overall Pathology. The composite-cerebellum/overall pathology pair had the largest ROC AUC (1.000). ROC AUCs for composite-cerebellum/and contralateral-pons/Bielschowsky silver were nearly as large (both 0.9815).
Figure 3
Figure 3
Diagnostic efficacy by SUVR type (a – c using cerebellum as reference region, d – f using pons as reference region) for each pathology standard of truth (within each group from left to right: 4G8 [blue], Bielschowsky Silver [rust], Thioflavin S [green], and Overall Pathology [purple]). Horizontal axis: Groups of bars from left to right represent Sensitivity, Specificity, Accuracy, PPV, and NPV. Vertical axis: Percentage (maximum 100%). Error bars represent 95% confidence intervals.

References

    1. Blümke I. History of Neuroscience:Alois Alzheimer's First Report on Cortical Neurodegeneration. IBRO History of Neuroscience. Accessed: 11 Oct 2013 at .
    1. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Diseases. Neurology. 1984;2:939–944. doi: 10.1212/WNL.34.7.939.
    1. Beach TG, Monsell SE, Phillips LE, Kukull W. Accuracy of the clinical diagnosis of Alzheimer disease at National Institute on Aging Alzheimer Disease Centers, 2005-2010. J Neuropathol Exp Neurol. 2012;2:266–273. doi: 10.1097/NEN.0b013e31824b211b.
    1. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Peteresen RC, Snyder PJ, Carrillo MC, Thies B, Phelps CH. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;2:270–279. doi: 10.1016/j.jalz.2011.03.008.
    1. Jack CR Jr, Albert MS, Knopman DS, McKhann GM, Sperling RA, Carrillo MC, Thies B, Phelps CH. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;2:257–262. doi: 10.1016/j.jalz.2011.03.004.
    1. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Scheltens P, Carrillo MC, Thies B, Weintraub S, Phelps CH. Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;2:263–269. doi: 10.1016/j.jalz.2011.03.005.
    1. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, Iwatsubo T, Jack CR Jr, Kaye J, Montine TJ, Park DC, Reiman EM, Rowe CC, Siemers E, Stern Y, Yaffe K, Carrillo MC, Thies B, Morrison-Bogorad M, Wagster MV, Phelps CH. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;2:280–292. doi: 10.1016/j.jalz.2011.03.003.
    1. Penn RD, Basati S, Sweetman B, Guo X, Linninger A. Ventricle wall movements and cerebrospinal fluid flow in hydrocephalus. J Neurosurg. 2011;2:159–164. doi: 10.3171/2010.12.JNS10926.
    1. Albrechtsen M, Sørensen PS, Gjerris F, Bock E. High cerebrospinal fluid concentration of glial fibrillary acidic protein (GFAP) in patients with normal pressure hydrocephalus. J Neurol Sci. 1985;2:269–274. doi: 10.1016/0022-510X(85)90168-6.
    1. Gjerris A, Werdelin L, Gjerris F, Sørensen PS, Rafaelson OJ, Alling C. CSF-amine metabolites in depression, dementia and controls. Acta Psychiatr Scand. 1987;2:619–628. doi: 10.1111/j.1600-0447.1987.tb02846.x.
    1. Jeppsson A, Zetterberg H, Blennow K, Wikkelsø C. Idiopathic normal-pressure hydrocephalus: pathophysiology and diagnosis by CSF biomarkers. Neurology. 2013;2:1385–1392. doi: 10.1212/WNL.0b013e31828c2fda.
    1. Seppälä TT, Nerg O, Koivisto AM, Rummukainen J, Puli L, Zetterberg H, Pyykkö OT, Helisalmi S, Alafuzoff I, Hiltunen M, Jääskeläinen JE, Rinne J, Soininen H, Leinonen V, Herukka SK. CSF biomarkers for Alzheimer’s disease correlate with cortical brain biopsy findings. Neurology. 2012;2:1568–1575. doi: 10.1212/WNL.0b013e3182563bd0.
    1. Chromy BA, Nowak RJ, Lambert MP, Viola KL, Chang L, Velasco PT, Jones BW, Fernandez SJ, Lacor PN, Horowitz P, Finch CE, Krafft GA, Klein WL. Self-assembly of Abeta(1-42) into globular neurotoxins. Biochemistry. 2003;2:12749–12760. doi: 10.1021/bi030029q.
    1. Herskovits AZ, Locascio JJ, Peskind ER, Li G, Hyman BT. A Luminex assay detects amyloid β oligomers in Alzheimer’s disease cerebrospinal fluid. PLoS One. 2013;2:e67898. doi: 10.1371/journal.pone.0067898.
    1. Andrén K, Wikkelsø C, Tisell M, Hellström P. Natural course of idiopathic normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry. 2013. Doi:10.1136/jnnp-2013-306117.
    1. Koivisto AM, Alafuzoff I, Savolainen S, Sutela A, Rummukainen J, Kurki MI, Jääskeläinen JE, Soininen H, Rinne J, Leinonen V. Subsequent dementia in shunt responsive idiopathic normal pressure hydrocephalus. Neurosurgery. 2013;2:1–8.
    1. Golomb J, Wisoff J, Miller DC, Boksay I, Kluger A, Weiner H, Salton J, Graves W. Alzheimer’s disease comorbidity in normal pressure hydrocephauls: prevalence and shunt response. J Neurol Neurosurg Psychiatry. 2000;2:778–781. doi: 10.1136/jnnp.68.6.778.
    1. Hamilton R, Patel S, Lee EB, Jackson EM, Lopinto J, Arnold SE, Clark CM, Basil A, Shaw LM, Xie SX, Grady MS, Trojanowski JQ. Lack of shunt response in suspected idiopathic normal pressure hydrocephalus with Alzheimer disease pathology. Ann Neurol. 2010;2:535–540. doi: 10.1002/ana.22015.
    1. Leinonen V, Koivisto AM, Savolainen S, Rummukainen J, Tamminen JN, Tillgren T, Vainikka S, Pyykkö OT, Mölsä J, Fraunberg M, Pirttilä T, Jääskeläinen JE, Soininen H, Rinne J, Alafuzoff I. Amyloid and tau proteins in cortical brain biopsy and Alzheimer’s disease. Ann Neurol. 2010;2:446–453. doi: 10.1002/ana.22100.
    1. Wolk DA, Grachev ID, Buckley C, Kazi H, Grady MS, Trojanowski JQ, Hamilton RH, Sherwin P, McLain R, Arnold SE. Association between in vivo fluorine 18-labeled flutemetamol amyloid positron emission tomography imaging and in vivo cerebral cortical histopathology. Arch Neurol. 2011;2:1398–1403. doi: 10.1001/archneurol.2011.153.
    1. Mathis CA, Mason NS, Lopresti BJ, Klunk WE. Development of positron emission tompography B-amyloid plaque imaging agents. Semin Nucl Med. 2012;2:423–432. doi: 10.1053/j.semnuclmed.2012.07.001.
    1. Ikonomovic MD, Klunk WE, Abrahamson EE, Mathis CA, Price JC, Tsopelas ND, Lopresti BJ, Ziolko S, Bi W, Paljug WR, Debnath ML, Hope CE, Isanski BA, Hamilton RL, DeKosky ST. Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease. Brain. 2008;2:1630–1645. doi: 10.1093/brain/awn016.
    1. Klunk WE. Biopsy support for the validity of Pittsburgh compound B positron emission tomography with a twist. Arch Neurol. 2008;2:1281–1283.
    1. Leinonen V, Alafuzoff I, Aalto S, Suotunen T, Savolainen S, Någren K, Tapiola T, Pirttilä T, Rinne J, Jääskeläinen JE, Soininen H, Rinne JO. Assessment of beta-amyloid in a frontal cortical brain biopsy specimen and by positron emission tomography with 11-labeled Pittsburgh Compund B. Arch Neurol. 2008;2:1304–1309. doi: 10.1001/archneur.65.10.noc80013.
    1. Vizamyl [package insert] Arlington Heights, IL: GE Healthcare; 2013. .
    1. Amyvid [package insert] Indianapolis, IN: Eli Lilly and Company; 2012. .
    1. Ni R, Gillberg P, Bergfors A, Marutle A, Nordberg A. Amyloid tracers detect multiple binding sites in Alzheimer’s disease brain tissue. Brain. 2013;2:2217–2227. doi: 10.1093/brain/awt142.
    1. Nelisson N, Van Laere K, Thurfjell L, Owenius R, Vandenbulcke M, Koole M, Guy B, Brooks DJ, Vandenberghe R. Phase 1 study of the Pittsburgh Compound B derivative 18F-flutemetamol in healthy volunteers and patients with probable Alzheimer disease. J Nucl Med. 2009;2:1251–1259. doi: 10.2967/jnumed.109.063305.
    1. Wong DF, Moghekar AR, Rigamonti D, Brašić JR, Rousset O, Willis W, Buckley C, Smith A, Gok B, Sherwin P, Grachev ID. An in vivo evaluation of cerebral cortical amyloid with [18F]flutemetamol using positron emission tomography compared with parietal biopsy samples in living normal pressure hydrocephalus patients. Mol Imaging Biol. 2013;2:230–237. doi: 10.1007/s11307-012-0583-x.
    1. Leinonen V, Rinne JO, Virtanen KA, Eskola O, Rummukainen J, Huttenen J, Von und zu Fraunberg M, Nerg O, Koivisto AM, Rinne J, Jääskeläinen JE, Buckley C, Smith A, Jones PA, Sherwin P, Farrar G, McClain R, Kailajärvi M, Heurling K, Grachev ID. Positron emission tomography with [18F]flutemetamol and [11C]PiB for in vivo detection of cerebral cortical amyloid in normal pressure hydrocephalus patients. Eur J Neurol. 2013;2:1043–1052. doi: 10.1111/ene.12102.
    1. Rinne JO, Frantzen J, Leinonen V, Lonrot K, Laasko A, Virtanen KA, Solin O, Kotkansalo A, Koivisto A, Sajanti J, Karppinen A, Lehto H, Rummukainen J, Buckley C, Smith A, Jones PA, Sherwin P, Farrar G, McLain R, Kailajarvi M, Grachev ID. Prospective flutemetamol PET and histopathology in normal pressure hydrocephalus. Neurodegener Dis. 2013. Doi:10.1159/000355256.
    1. Rinne JO, Wong DF, Wolk DA, Leinonen V, Arnold SE, Buckley C, Smith A, McLain R, Sherwin PF, Farrar G, Kailajärvi M, Grachev ID. [18F]Flutemetamol PET imaging and cortical biopsy histopathology for fibrillar amyloid B detection in living subjects with normal pressure hydrochephalus: pooled analysis of four studies. Acta Neuropathol. 2012;2:833–845. doi: 10.1007/s00401-012-1051-z.
    1. Clark CM, Schneider JA, Bedell BJ, Beach TG, Bilker WB, Minyun MA, Pontecorvo MJ, Hefti F, Carpenter AP, Flitter ML, Krautkramer MJ, Kung HF, Coleman RE, Doraiswamy PM, Fleisher A, Sabbagh MN, Sadowsky CH, Reiman EM, Zehntner SP, Skovronsky DM. for the AV45-A07 Study Group. Use of florbetapir-PET for imaging B-amyloid pathology. JAMA. 2011;2:275–283. doi: 10.1001/jama.2010.2008.
    1. Kepe V, Moghbel MC, Långström B, Zaidi H, Vinters HV, Huang S, Satyamurthy N, Doudet D, Mishani E, Cohen RM, Høilend-Carlsen PF, Alavi A, Barrio JR. Amyloid-β positron emission tomography probes: a critical review. J Alzheimers Dis. 2013;2:613–631.
    1. Raji CA, Becker JT, Tsopelas ND, Price JC, Mathis CA, Saxton JA, Lopresti BJ, Hoge JA, Ziolko SK, DeKosky ST, Klunk WE. Characterizing regional correlation, laterality and symmetry of amyloid deposition in mild cognitive impairment and Alzheimer’s disease with Pittsburgh Compound B. J Neurosci Meth. 2008;2:277–282. doi: 10.1016/j.jneumeth.2008.05.005.
    1. Vandenberghe R, Van Laere K, Ivanoiu A, Salmon E, Bastin C, Triau E, Hasselbalch S, Law I, Andersen A, Korner A, Minthon L. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol. 2010;2:319–329. doi: 10.1002/ana.22068.
    1. Thal DR, Rüb U, Orantes M, Braak H. Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology. 2002;2:1791–1800. doi: 10.1212/WNL.58.12.1791.
    1. Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC, Dickson DW, Duyckaerts C, Frosch MP, Masliah EM, Mirra SS, Nelson PT, Schneider JA, Thal DR, Thies B, Trojanowski JQ, Vinters HV, Montine TJ. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement. 2012;2:1–13. doi: 10.1016/j.jalz.2011.10.007.
    1. Lopresti B, Klunk WE, Mathis CA, Hoge JA, Ziolko SK, Lu X, Meltzer CC, Schimmel K, Tsopelas ND, DeKosky ST, Price JC. Simplified quantification of Pittsburgh Compund B amyloid imaging PET studies: a comparative analysis. J Nucl Med. 2005;2:1959–1972.
    1. Rowe CC, Ackerman U, Browne W, Mulligan R, Pike KL, O’Keefe G, Tochon-Danguy H, Chan G, Berlangieri SU, Jones G, Dickinson-Rowe KL, Kung HP, Zhang W, Kung MP, Skovronsky D, Dyrks T, Holl G, Krause S, Friebe M, Lehman L, Lindemann S, Dinkelborg LM, Masters CL, Villemagne VL. Imaging of amyloid β in Alzheimer’s disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism. Lancet Neurol. 2008;2:129–135. doi: 10.1016/S1474-4422(08)70001-2.
    1. Rinne JO, Brooks DJ, Rossor MN, Fox NC, Bullock R, Klunk WE, Mathis CA, Blennow K, Barakos J, Okello AA, Rodriguez Martinez de Liano S, Liu E, Koller M, Gregg KM, Schenk D, Black R, Grundman M. 11C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer’s disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol. 2010;2:363–372. doi: 10.1016/S1474-4422(10)70043-0.
    1. Jack CR Jr, Lowe VJ, Senjem ML, Weigand SD, Kemp BJ, Shiung MM, Knopman DS, Boeve BF, Klunk WE, Mathis CA, Petersen RC. 11C PiB and structural MRI provide complementary information in imaging of Alzheimer’s disease and amnestic mild cognitive impairment. Brain. 2008;2:665–680. doi: 10.1093/brain/awm336.
    1. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, vogel FS, Hughes JP, van Belle G, Berg L. and participating CERAD neuropathologists. The consortium to establish a registry for Alzheimer’s diseases (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology. 1991;2:479–486. doi: 10.1212/WNL.41.4.479.
    1. Youden WJ. Index for rating diagnostic tests. Cancer. 1950;2:32–35. doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>;2-3.
    1. Connell FA, Koepsell TD. Measures of gain in certainty from a diagnostic test. Am J Epidemiol. 1985;2:744–753. doi: 10.1093/aje/121.5.744.
    1. Meyer PT, Hellwig S, Amtage F, Rottenburger C, Sahm U, Reuland P, Weber WA, Hüll M. Dual-biomarker imaging of regional cerebral amyloid load and neuronal activity in dementia with PET and 11C-labeled Pittsburgh Compound B. J Nucl Med. 2011;2:393–400. doi: 10.2967/jnumed.110.083683.
    1. Selkoe DJ. In: Alzheimer’s disease. Morimoto R, Kelly J, Selkoe D, vol 3, editor. 2011. p. a004457. (Cold Spring Harb Perspect Biol).
    1. King A, Maekawa S, Bodi I, Troakes C, Curran O, Ashkan K, Al-Sarraj S. Simulated surgical-type cerebral biopsies from post-mortem brains allows accurate neuropathological diagnoses in the majority of neurodegenerative disease groups. Acta Neuropathol Comm. 2013;2:53. doi: 10.1186/2051-5960-1-53.
    1. Thal DR, Sassin I, Schultz C, Haass C, Braak E, Braak H. Fleecy amyloid deposits in the internal layers of the human entorhinal cortex are comprised of N-terminal truncated fragments of Abeta. J Neuropathol Exp Neurol. 1999;2:210–216. doi: 10.1097/00005072-199902000-00010.
    1. Spillantini MG, Goedert M, Jakes R, Klug A. Topographical relationship between β-amyloid and tau protein epitopes in tangle-bearing cells in Alzheimer’s disease. Proc Natl Acad Sci U S A. 1990;2:3952–3956. doi: 10.1073/pnas.87.10.3952.
    1. Thal DR, Rüb U, Schultz C, Sassin I, Ghebremedhin E, Del Tredici K, Braak E, Braak H. Sequence of Aβ-protein deposition in the human medial temporal lobe. J Neuropath Exp Neurol. 2000;2:733–748.
    1. Uchihara T. Silver diagnosis in neuropathology: principles, practice, and revised interpretation. Acta Neuropathol. 2007;2:483–499. doi: 10.1007/s00401-007-0200-2.
    1. Spillantini MG, Goedert M, Jakes R, Klug A. Different configurational states of β-amyloid and their distributions relative to plaques and tangles in Alzheimer’s disease. Proc Natl Acad Sci U S A. 1990;2:3947–3951. doi: 10.1073/pnas.87.10.3947.
    1. Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL, Selkoe DJ. Amyloid β-protein dimers isolated directly from Alzheimer brains impair synaptic platicity and memory. Nat Med. 2008;2:837–842. doi: 10.1038/nm1782.
    1. Koffie RM, Meyer-Luehmann M, Hashimoto T, Adams KW, Mielke ML, Garcia-Alloza M, Micheva KD, Smith SJ, Kim ML, Lee VM, Hyman BT, Spires-Jones TL. Oligomeric amyloid B associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc Natl Acad Sci U S A. 2009;2:4012–4017. doi: 10.1073/pnas.0811698106.
    1. Braak H, Braak E. Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging. 1997;2:351–357. doi: 10.1016/S0197-4580(97)00056-0.
    1. Vandenberghe R, Adamczuk K, Dupont P, Van Laere K, Chételat G. Amyloid PET in clinical practice: its place in the multidimensional space of Alzheimer’s disease. NeuroImage: Clin. 2013;2:497–511.
    1. Choi SR, Schneider JA, Bennett DA, Beach TG, Bedell BJ, Zehntner SP, Krautkramer M, Kung HF, Skovronsky DM, Hefti F, Clark CM. Correlation of amyloid PET ligand florbetapir F 18 (18F-AV-45) binding with β-amyloid aggregation and neuritic plaque deposition in postmortem brain tissue. Alzheimer Dis Assoc Disord. 2012;2:8–16. doi: 10.1097/WAD.0b013e31821300bc.
    1. Braak H, Del Tredici K. The pathological process underlying Alzheimer’s disease in individuals under thirty. Acta Neuropathol. 2011;2:171–181. doi: 10.1007/s00401-010-0789-4.
    1. Alafuzoff I, Pikkarainen M, Arzbereger T, Dietmar RT, Al-Sarraj S, Bell J, Bodi I, Budka H, Capetillo-Zarate E, Ferrer I, Gelpi E, Gentleman S, Giaccone G, Kavantzas N, King A, Korkolopoulou P, Kovács GG, Meyronet D, Monoranu C, Parchi P, Patsouris E, Roggendorf W, Stadelmann C, Streichenberger N, Tagliavani F, Kretzchmar H. Inter-laboratory comparison of neuropathological assessments of B-amyloid protein: a study of the BrainNet Europe consortium. Acta Neuropathol. 2008;2:533–546. doi: 10.1007/s00401-008-0358-2.
    1. Kohannim O, Hua X, Rajagopalan P, Hibar DP, Jahanshad N, Grill JD, Apostolova LG, Toga AW, Jack CR, Weiner MW, Thompson PM. for the Alzheimer Disease Neuroimaging Initiative. Multilocus genetic profiling to empower drug trials and predict brain atrophy. NeuroImage: Clin. 2013;2:827–835.
    1. Barthel H, Gertz H, Dresel S, Peters O, Bartenstein P, Buerger K, Hiemeyer F, Wittemer-Rump SM, Seibyl J, Reininger C, Sabri O. Cerebral amyloid-β PET with florbetaben (18F) in patients with Alzheimer’s disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol. 2011;2:424–435. doi: 10.1016/S1474-4422(11)70077-1.
    1. United States Department of Health and Human Services, Food and Drug Administration, CDER; CBER; CDRH. Draft Guidance: Enrichment Strategies for Clinical Trials to Support Approval of Human Drugs and Biological Products (dated December 2012) Accessed 15 July 2012 at .
    1. Pyykö OT, Lumela M, Rummukainen J, Nerg O, Seppälä TT, Herukka S, Koivisto AM, Alafuzoff I, Puli L, Savolainen S, Soininen H, Jääskeläinen JE, Hiltunen M, Zetterberg H, Leinonen V. Cerebrospinal fluid biomarker and brain biopsy findings in idiopathic normal pressure hydrocephalus. PLoS One. 2014;2(3):e91974. doi: 10.1371/journal.pone.0091974. doi:10.1371/journal.pone.0091974.

Source: PubMed

3
Iratkozz fel