p38 MAPK inhibition: A promising therapeutic approach for COVID-19

Joseph M Grimes, Kevin V Grimes, Joseph M Grimes, Kevin V Grimes

Abstract

COVID-19, caused by the SARS-CoV-2 virus, is a major source of morbidity and mortality due to its inflammatory effects in the lungs and heart. The p38 MAPK pathway plays a crucial role in the release of pro-inflammatory cytokines such as IL-6 and has been implicated in acute lung injury and myocardial dysfunction. The overwhelming inflammatory response in COVID-19 infection may be caused by disproportionately upregulated p38 activity, explained by two mechanisms. First, angiotensin-converting enzyme 2 (ACE2) activity is lost during SARS-CoV-2 viral entry. ACE2 is highly expressed in the lungs and heart and converts Angiotensin II into Angiotensin 1-7. Angiotensin II signals proinflammatory, pro-vasoconstrictive, pro-thrombotic activity through p38 MAPK activation, which is countered by Angiotensin 1-7 downregulation of p38 activity. Loss of ACE2 upon viral entry may tip the balance towards destructive p38 signaling through Angiotensin II. Second, SARS-CoV was previously shown to directly upregulate p38 activity via a viral protein, similar to other RNA respiratory viruses that may hijack p38 activity to promote replication. Given the homology between SARS-CoV and SARS-CoV-2, the latter may employ a similar mechanism. Thus, SARS-CoV-2 may induce overwhelming inflammation by directly activating p38 and downregulating a key inhibitory pathway, while simultaneously taking advantage of p38 activity to replicate. Therapeutic inhibition of p38 could therefore attenuate COVID-19 infection. Interestingly, a prior preclinical study showed protective effects of p38 inhibition in a SARS-CoV mouse model. A number of p38 inhibitors are in the clinical stage and should be considered for clinical trials in serious COVID-19 infection.

Keywords: ACE2; COVID-19; SARS-CoV-2; p38 MAPK.

© 2020 The Authors. Published by Elsevier Ltd.

Figures

Graphical abstract
Graphical abstract

References

    1. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and Is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280.
    1. Hamming I., Timens W., Bulthuis M.L.C., Lely A.T., Navis G.J., Goor H. van. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004;203:631–637.
    1. Ruan Q., Yang K., Wang W., Jiang L., Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan. China. Intensive Care Med. 2020:1–3.
    1. Fang W., Cai S.-X., Wang C.-L., Sun X.-X., Li K., Yan X.-W. Modulation of mitogen-activated protein kinase attenuates sepsis-induced acute lung injury in acute respiratory distress syndrome rats. Mol. Med. Rep. 2017;16:9652–9658.
    1. Ma Xin L., Sanjay Kumar, Feng Gao, Louden Calvert S., Lopez Bernard L., Christopher Theodore A. Inhibition of p38 mitogen-activated protein kinase decreases cardiomyocyte apoptosis and improves cardiac function after myocardial ischemia and reperfusion. circulation. Am. Heart Assoc. 1999;99:1685–1691.
    1. Zarubin T., Han J. Activation and signaling of the p38 MAP kinase pathway. Cell Res. Nat. Publ. Group. 2005;15:11–18.
    1. Mahmoud Gheblawi, Wang Kaiming, Anissa Viveiros, Quynh Nguyen, Jiu-Chang Zhong, Turner Anthony J. Angiotensin converting enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System. Circ. Res. 2020 doi: 10.1161/CIRCRESAHA.120.317015. Ahead of Print.
    1. Crowley S.D., Rudemiller N.P. Immunologic Effects of the Renin-Angiotensin System. J. Am. Soc. Nephrol. JASN. 2017;28:1350–1361.
    1. Silva A.S., Silveira K.D., Ferreira A.J., Teixeira M.M. ACE2, angiotensin-(1–7) and Mas receptor axis in inflammation and fibrosis. Br. J. Pharmacol. 2013;169:477–492.
    1. Joon-Keun Park, Robert Fischer, Ralf Dechend, Erdenechimeg Shagdarsuren, Andrej Gapeljuk, Maren Wellner. p38 Mitogen-activated protein kinase inhibition ameliorates angiotensin II–Induced Target Organ Damage. Hypertens. Am. Heart Assoc. 2007;49:481–489.
    1. Yu X., Cui L., Hou F., Liu X., Wang Y., Wen Y. Angiotensin-converting enzyme 2-angiotensin (1–7)-Mas axis prevents pancreatic acinar cell inflammatory response via inhibition of the p38 mitogen-activated protein kinase/nuclear factor-κB pathway. Int. J. Mol. Med. 2018;41:409–420.
    1. Scott A.J., O’Dea K.P., O’Callaghan D., Williams L., Dokpesi J.O., Tatton L. Reactive Oxygen Species and p38 Mitogen-activated Protein Kinase Mediate Tumor Necrosis Factor α-Converting Enzyme (TACE/ADAM-17) Activation in Primary Human Monocytes. J Biol Chem. Am. Soc. Biochem. Mol. Biol. 2011;286:35466–35476.
    1. Zhang P., Zhu L., Cai J., Lei F., Qin J.-J., Xie J. Association of inpatient use of angiotensin converting enzyme inhibitors and Angiotensin II Receptor Blockers with mortality among patients with hypertension hospitalized with COVID-19. Circ. Res. 2020 In press.
    1. Liu Y., Yang Y., Zhang C., Huang F., Wang F., Yuan J. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci. China Life Sci. 2020;63:364–374.
    1. Kopecky-Bromberg S.A., Martinez-Sobrido L., Palese P. 7a protein of severe acute Respiratory syndrome coronavirus inhibits cellular protein synthesis and activates p38 Mitogen-Activated Protein Kinase. J. Virol. Am. Soc. Microbiol. J. 2006;80:785–793.
    1. Börgeling Y., Schmolke M., Viemann D., Nordhoff C., Roth J., Ludwig S. Inhibition of p38 Mitogen-activated Protein Kinase Impairs Influenza Virus-induced Primary and Secondary Host Gene Responses and Protects Mice from Lethal H5N1 Infection. J. Biol. Chem. 2014;289:13–27.
    1. Marchant D., Singhera G.K., Utokaparch S., Hackett T.L., Boyd J.H., Luo Z. Toll-Like Receptor 4-mediated activation of p38 Mitogen-activated Protein Kinase is a determinant of respiratory virus entry and tropism. J. Virol. 2010;84:11359–11373.
    1. Xiao L., Haack K.K.V., Zucker I.H. Angiotensin II regulates ACE and ACE2 in neurons through p38 mitogen-activated protein kinase and extracellular signal-regulated kinase 1/2 signaling. Am. J. Phys. Cell Physiol. 2013;304:C1073–C1079.
    1. Jimenez-Guardeño J.M., Nieto-Torres J.L., DeDiego M.L., Regla-Nava J.A., Fernandez-Delgado R., Castaño-Rodriguez C. The PDZ-binding motif of severe acute respiratory syndrome coronavirus envelope protein is a determinant of viral pathogenesis. PLoS Pathog. 2014;10
    1. Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet. Elsevier. 2020;395:1054–1062.
    1. Zhang Y., Xiao M., Zhang S., Xia P., Cao W., Jiang W. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N. Engl. J. Med. 2020;382
    1. Varga Z., Flammer A.J., Steiger P., Haberecker M., Andermatt R., Zinkernagel A.S. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–1418.
    1. Chen X., Tao T., Wang H., Zhao H., Lu L., Wu F. Arterial Thrombosis is accompanied by elevated MITOGEN-Activated Protein Kinase (MAPK) and Cyclooxygenase-2 (COX-2) expression via Toll-Like Receptor 4 (TLR-4) Activation by S100A8/A9. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2018;24:7673–7681.
    1. Marber M.S., Rose B., Wang Y. The p38 mitogen-activated protein kinase pathway–a potential target for intervention in infarction, hypertrophy, and heart failure. J. Mol. Cell. Cardiol. 2011;51:485–490.
    1. Church A.C., Martin D.H., Wadsworth R., Bryson G., Fisher A.J., Welsh D.J. The reversal of pulmonary vascular remodeling through inhibition of p38 MAPK-alpha: a potential novel anti-inflammatory strategy in pulmonary hypertension. Am. J. Physiol-Lung Cell Mol. Physiol. Am. Physiol. Soc. 2015;309:L333–L347.
    1. Morrell E.D., Tsai B.M., Wang M., Crisostomo P.R., Meldrum D.R. p38 mitogen-activated protein kinase mediates the sustained phase of hypoxic pulmonary vasoconstriction and plays a role in phase I vasodilation. J. Surg. Res. 2006;134:335–341.
    1. Barbour A.M., Sarov-Blat L., Cai G., Fossler M.J., Sprecher D.L., Graggaber J. Safety, tolerability, pharmacokinetics and pharmacodynamics of losmapimod following a single intravenous or oral dose in healthy volunteers. Br. J. Clin. Pharmacol. 2013;76:99–106.
    1. Joseph Cheriyan, Webb Andrew J., Lea Sarov-Blat, Maysoon Elkhawad, Wallace Sharon M.L., Mäki-Petäjä Kaisa M. Inhibition of p38 Mitogen-Activated Protein Kinase Improves Nitric Oxide–Mediated Vasodilatation and reduces inflammation in Hypercholesterolemia. Circulation. Am. Heart Assoc. 2011;123:515–523.
    1. O’Donoghue M.L., Glaser R., Cavender M.A., Aylward P.E., Bonaca M.P., Budaj A. Effect of Losmapimod on cardiovascular outcomes in patients hospitalized with acute myocardial infarction: A randomized clinical trial. JAMA. Am. Med. Assoc. 2016;315:1591–1599.
    1. Christie J.D., Vaslef S., Chang P.K., May A.K., Gunn S.R., Yang S. A randomized dose-escalation study of the safety and anti-inflammatory activity of the p38 mitogen-activated protein kinase inhibitor dilmapimod in severe trauma subjects at risk for Acute Respiratory Distress Syndrome. Crit. Care Med. 2015;43:1859–1869.
    1. Deshotels Matthew, Xia Huijing, Sriramula Srinivas, Lazartigues Eric, Filipeanu Catalin. Angiotensin-II mediates ACE2 Internalization and Degradation through an Angiotensin-II type I receptor-dependent mechanism. Hypertension. 2014;64(6):1368–1375.
    1. Kova V, Huang XR, Wang W, Truong LD, Lan HY. Angiotensin II up-regulates angiotensin I-converting enzyme (ACE), but down-regulates ACE2 via the AT1-ERK/p38 MAP kinase pathway. Am. J. Pathol. 2008;172(5):1174–1183.
    1. Ma Q, Pan W, Li R, Liu B, Li C, Xie Y. Liu Shen capsule shows antiviral and anti-inflammatory abilities against novel coronavirus SARS-CoV-2 via suppression of NF-κB signaling pathway. Pharmacol. Res. 2020 doi: 10.1016/j.phrs.2020.104850. In press.

Source: PubMed

3
Iratkozz fel