Apoptosis of malignant human B cells by ligation of CD20 with monoclonal antibodies

D Shan, J A Ledbetter, O W Press, D Shan, J A Ledbetter, O W Press

Abstract

CD20 is a nonglycosylated 33 to 37 kD phosphoprotein involved in B-cell signaling that subserves important functions in the regulation of B-cell proliferation and differentiation. In addition, this B-cell surface antigen has been shown recently to be an effective target for immunotherapy of B-cell malignancies using chimeric (mouse/human) or radiolabeled murine monoclonal anti-CD20 antibodies. In this report we show that extensive crosslinking of CD20 with murine anti-CD20 monoclonal antibodies (MoAbs) in the presence of either goat anti-mouse IgG or Fc receptor (FcR)-expressing cells directly inhibits B-cell proliferation, induces nuclear DNA fragmentation, and leads to cell death by apoptosis. The apoptotic effects of these MoAbs can be inhibited by chelation of extracellular or intracellular Ca2+ by EGTA or Bapta AM, indicating that anti-CD20-mediated apoptosis may be related to changes in Ca2+ concentration. These findings suggest that ligation of CD20 in vivo by anti-CD20 antibodies in the presence of FcR-expressing cells may initiate signal transduction events that induce elevation of [Ca2+]i and lead to apoptosis of malignant B cells, thereby contributing to the impressive tumor regressions observed in mouse models and clinical trials using anti-CD20 MoAbs.

Source: PubMed

3
Iratkozz fel